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In the preceding article we argue that biquaternionic extension of Klein-Gordon equa-
tion has solution containing imaginary part, which differs appreciably from known so-
Iution of KGE. In the present article we present numerical /computer solution of ra-
dial biquaternionic KGE (radialBQKGE); which differs appreciably from conventional
Yukawa potential. Further observation is of course recommended in order to refute or

verify this proposition.

1 Introduction

In the preceding article [1] we argue that biquaternionic ex-
tension of Klein-Gordon equation has solution containing
imaginary part, which differs appreciably from known solu-
tion of KGE. In the present article we presented here for the
first time a numerical/computer solution of radial biquater-
nionic KGE (radialBQKGE); which differs appreciably from
conventional Yukawa potential.

This biquaternionic effect may be useful in particular to
explore new effects in the context of low-energy reaction
(LENR) [2]. Nonetheless, further observation is of course
recommended in order to refute or verify this proposition.

2 Radial biquaternionic KGE (radial BQKGE)

In our preceding paper [1], we argue that it is possible to
write biquaternionic extension of Klein-Gordon equation
as follows:
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= —m? p(z,t),

or this equation can be rewritten as:
(00 +m?) p(z,t) =0,

provided we use this definition:
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where e;, ep, ez are quaternion imaginary units obeying
(with ordinary quaternion symbols: e; =1, e =7, e3 = k):

P=2=k=-1, ij=—ji=k,

4
ki=—ik=7. @

gk = —kj =1,

and quaternion Nabla operator is defined as [1]:
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(Note that (3) and (5) included partial time-differentiation.)
In the meantime, the standard Klein-Gordon equation
usually reads [3, 4]:
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(;:2 - V2> o(z,t) = —m’p(z,t).

Now we can introduce polar coordinates by using the
following transformation:
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Therefore, by substituting (7) into (6), the radial Klein-

Gordon equation reads — by neglecting partial-time differen-
tiation — as follows [3, 5]:
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and for £ = 0, then we get [5]:

10 /(,0 5 B
(7‘2 ar (r 81") +m )(p(a:,t)—O.

The same method can be applied to equation (2) for radial
biquaternionic KGE (BQKGE), which for the 1-dimensional
situation, one gets instead of (8):
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In the next Section we will discuss numerical/computer
solution of equation (10) and compare it with standard solu-
tion of equation (9) using Maxima software package [6]. It
can be shown that equation (10) yields potential which differs
appreciably from standard Yukawa potential. For clarity, all
solutions were computed in 1-D only.
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3 Numerical solution of radial biquaternionic Klein-
Gordon equation

Numerical solution of the standard radial Klein-Gordon equa-
tion (9) is given by:

(%i1) diff(y,t,2)-"diff(y,r,2)+m"2*y;

(%01) m?.y — %y

(%i12) ode2 (%ol,y ,r);

(%02) y = %ok - % exp(mr) + %k2 - % exp(—mr) a1

In the meantime, numerical solution of equation (10) for
radial biquaternionic KGE (BQKGE), is given by:

(%i3) diff(y,t,2)- (%i+1)*diff(y,r,2)+m"2*y;
(%03 m? -y — (i +1) Ly
(%i4) ode2 (%03, y , 1);

(o) y = ok -sim (12 ) 4 %ok - cos (2 ) (12)

Therefore, we conclude that numerical solution of radial
biquaternionic extension of Klein-Gordon equation yields
different result compared to the solution of standard Klein-
Gordon equation; and it differs appreciably from the well-
known Yukawa potential [3, 7]:

2
u(r) = —97 e ™M, (13)

Meanwhile, Comay puts forth argument that the Yukawa
lagrangian density has theoretical inconsistency within
itself [3].

Interestingly one can find argument that biquaternion
Klein-Gordon equation is nothing more than quadratic form
of (modified) Dirac equation [8], therefore BQKGE describ-
ed herein, i.e. equation (12), can be considered as a plausible
solution to the problem described in [3]. For other numerical
solutions to KGE, see for instance [4].

Nonetheless, we recommend further observation [9] in or-
der to refute or verify this proposition of new type of potential
derived from biquaternion Klein-Gordon equation.
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