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The present article discusses Neutrosophic logic view to Schrödinger’s cat paradox.
We argue that this paradox involves some degree of indeterminacy (unknown) which
Neutrosophic logic can take into consideration, whereas other methods including Fuzzy
logic cannot. To make this proposition clear, we revisit our previous paper by offering
an illustration using modified coin tossing problem, known as Parrondo’s game.

1 Introduction

The present article discusses Neutrosophic logic view to
Schrödinger’s cat paradox. In this article we argue that this
paradox involves some degree of indeterminacy (unknown)
which Neutrosophic logic can take into consideration,
whereas other methods including Fuzzy logic cannot.

In the preceding article we have discussed how Neutro-
sophic logic view can offer an alternative method to solve the
well-known problem in Quantum Mechanics, i.e. the Schrö-
dinger’s cat paradox [1, 2], by introducing indeterminacy of
the outcome of the observation.

In other article we also discuss possible re-interpretation
of quantum measurement using Unification of Fusion Theo-
ries as generalization of Information Fusion [3, 4, 5], which
results in proposition that one can expect to neglect the prin-
ciple of “excluded middle”; therefore Bell’s theorem can be
considered as merely tautological. [6] This alternative view
of Quantum mechanics as Information Fusion has also been
proposed by G. Chapline [7]. Furthermore this Information
Fusion interpretation is quite consistent with measurement
theory of Quantum Mechanics, where the action of measure-
ment implies information exchange [8].

In the first section we will discuss basic propositions of
Neutrosophic probability and Neutrosophic logic. Then we
discuss solution to Schrödinger’s cat paradox. In subsequent
section we discuss an illustration using modified coin tossing
problem, and discuss its plausible link to quantum game.

While it is known that derivation of Schrödinger’s equa-
tion is heuristic in the sense that we know the answer to which
the algebra and logic leads, but it is interesting that Schrö-
dinger’s equation follows logically from de Broglie’s grande
loi de la Nature [9, p.14]. The simplest method to derive
Schrödinger’s equation is by using simple wave as [9]:
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where px, ~ represents momentum at x direction, and ratio-
nalised Planck constants respectively.

By introducing kinetic energy of the moving particle, T ,
and wavefunction, as follows [9]:
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and
 (x) = exp(ikx) : (4)

Then one has the time-independent Schrödinger equation
from [1, 3, 4]:
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It is interesting to remark here that by convention physi-
cists assert that “the wavefunction is simply the mathematical
function that describes the wave” [9]. Therefore, unlike the
wave equation in electromagnetic fields, one should not con-
sider that equation [5] has any physical meaning. Born sug-
gested that the square of wavefunction represents the prob-
ability to observe the electron at given location [9, p.56].
Although Heisenberg rejected this interpretation, apparently
Born’s interpretation prevails until today.

Nonetheless the founding fathers of Quantum Mechanics
(Einstein, De Broglie, Schrödinger himself) were dissatisfied
with the theory until the end of their lives. We can summarize
the situation by quoting as follows [9, p.13]:

“The interpretation of Schrödinger’s wave function
(and of quantum theory generally) remains a matter of
continuing concern and controversy among scientists
who cling to philosophical belief that the natural world
is basically logical and deterministic.”

Furthermore, the “pragmatic” view of Bohr asserts that for a
given quantum measurement [9, p.42]:

“A system does not possess objective values of its phys-
ical properties until a measurement of one of them is
made; the act of measurement is asserted to force the
system into an eigenstate of the quantity being mea-
sured.”

16 F. Smarandache and V. Christianto. The Neutrosophic Logic View to Schrödinger’s Cat Paradox, Revisited



July, 2008 PROGRESS IN PHYSICS Volume 3

In 1935, Einstein-Podolsky-Rosen argued that the axiomatic
basis of Quantum Mechanics is incomplete, and subsequently
Schrödinger was inspired to write his well-known cat para-
dox. We will discuss solution of his cat paradox in subsequent
section.

2 Cat paradox and imposition of boundary conditions

As we know, Schrödinger’s deep disagreement with the Born
interpretation of Quantum Mechanics is represented by his
cat paradox, which essentially questioning the “statistical” in-
terpretation of the wavefunction (and by doing so, denying
the physical meaning of the wavefunction). The cat paradox
has been written elsewhere [1, 2], but the essence seems quite
similar to coin tossing problem:

“Given p= 0.5 for each side of coin to pop up, we
will never know the state of coin before we open our
palm from it; unless we know beforehand the “state”
of the coin (under our palm) using ESP-like phenom-
ena. Prop. (1).”

The only difference here is that Schrödinger asserts that the
state of the cat is half alive and half dead, whereas in the coin
problem above, we can only say that we don’t know the state
of coin until we open our palm; i.e. the state of coin is inde-
terminate until we open our palm. We will discuss the solu-
tion of this problem in subsequent section, but first of all we
shall remark here a basic principle in Quantum Mechanics,
i.e. [9, p.45]:

“Quantum Concept: The first derivative of the wave-
function 	 of Schrödinger’s wave equation must be
single-valued everywhere. As a consequence, the
wavefunction itself must be single-valued everywhere.”

The above assertion corresponds to quantum logic, which can
be defined as follows [10, p.30; 11]:

P _Q = P +Q� PQ : (6)

As we will see, it is easier to resolve this cat paradox
by releasing the aforementioned constraint of “single-
valuedness” of the wavefunction and its first derivative. In
fact, nonlinear fluid interpretation of Schrödinger’s equation
(using the level set function) also indicates that the physical
meaning of wavefunction includes the notion of multivalued-
ness [12]. In other words, one can say that observation of
spin-half electron at location x does not exclude its possibility
to pop up somewhere else. This counter-intuitive proposition
will be described in subsequent section.

3 Neutrosophic solution of the Schrödinger cat paradox

In the context of physical theory of information [8], Barrett
has noted that “there ought to be a set theoretic language
which applies directly to all quantum interactions”. This is
because the idea of a bit is itself straight out of classical set

theory, the definitive and unambiguous assignment of an el-
ement of the set {0,1}, and so the assignment of an informa-
tion content of the photon itself is fraught with the same dif-
ficulties [8]. Similarly, the problem becomes more adverse
because the fundamental basis of conventional statistical the-
ories is the same classical set {0,1}.

For example the Schrödinger’s cat paradox says that the
quantum state of a photon can basically be in more than one
place in the same time which, translated to the neutrosophic
set, means that an element (quantum state) belongs and does
not belong to a set (a place) in the same time; or an ele-
ment (quantum state) belongs to two different sets (two dif-
ferent places) in the same time. It is a question of “alternative
worlds” theory very well represented by the neutrosophic set
theory. In Schrödinger’s equation on the behavior of electro-
magnetic waves and “matter waves” in quantum theory, the
wave function, which describes the superposition of possible
states may be simulated by a neutrosophic function, i.e. a
function whose values are not unique for each argument from
the domain of definition (the vertical line test fails, intersect-
ing the graph in more points).

Therefore the question can be summarized as follows [1]:

“How to describe a particle � in the infinite micro-
universe that belongs to two distinct places P1 and P2
in the same time? � 2 P1 and � 2 :P1 is a true con-
tradiction, with respect to Quantum Concept described
above.”

Now we will discuss some basic propositions in Neutrosophic
logic [1].

3a Non-standard real number and subsets

Let T,I,F be standard or non-standard real subsets�]�0, 1+[,

with sup T = t sup, inf T= t inf,
sup I = i sup, inf I = i inf,
sup F = f sup, inf F = f inf,
and n sup = t sup + i sup + f sup,
n inf = t inf + i inf + f inf.

Obviously, t sup, i sup, f sup6 1+; and t inf, i inf, f inf>�0,
whereas n sup6 3+ and n inf>�0. The subsets T, I, F are not
necessarily intervals, but may be any real subsets: discrete or
continuous; single element; finite or infinite; union or inter-
section of various subsets etc. They may also overlap. These
real subsets could represent the relative errors in determining
t, i, f (in the case where T, I, F are reduced to points).

For interpretation of this proposition, we can use modal
logic [10]. We can use the notion of “world” in modal logic,
which is semantic device of what the world might have been
like. Then, one says that the neutrosophic truth-value of a
statement A, NLt(A) = 1+ if A is “true in all possible
worlds.” (syntagme first used by Leibniz) and all conjunc-
tures, that one may call “absolute truth” (in the modal logic
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it was named necessary truth, as opposed to possible truth),
whereasNLt(A) = 1 if A is true in at least one world at some
conjuncture, we call this “relative truth” because it is related
to a “specific” world and a specific conjuncture (in the modal
logic it was named possible truth). Because each “world” is
dynamic, depending on an ensemble of parameters, we in-
troduce the sub-category “conjuncture” within it to reflect a
particular state of the world.

In a formal way, let’s consider the world W as being gen-
erated by the formal system FS. One says that statement A
belongs to the world W if A is a well-formed formula (wff )
in W, i.e. a string of symbols from the alphabet of W that
conforms to the grammar of the formal language endowing
W. The grammar is conceived as a set of functions (formation
rules) whose inputs are symbols strings and outputs “yes” or
“no”. A formal system comprises a formal language (alpha-
bet and grammar) and a deductive apparatus (axioms and/or
rules of inference). In a formal system the rules of inference
are syntactically and typographically formal in nature, with-
out reference to the meaning of the strings they manipulate.

Similarly for the Neutrosophic falsehood-value,
NLf (A) = 1+ if the statement A is false in all possible
worlds, we call it “absolute falsehood”, whereasNLf (A) = 1
if the statement A is false in at least one world, we call it
“relative falsehood”. Also, the Neutrosophic indeterminacy
value NLi(A) = 1 if the statement A is indeterminate in all
possible worlds, we call it “absolute indeterminacy”, whereas
NLi(A) = 1 if the statement A is indeterminate in at least
one world, we call it “relative indeterminacy”.

3b Neutrosophic probability definition

Neutrosophic probability is defined as: “Is a generalization
of the classical probability in which the chance that an event
A occurs is t% true — where t varies in the subset T, i% in-
determinate — where i varies in the subset I, and f% false
— where f varies in the subset F. One notes that NP(A) =
(T, I, F)”. It is also a generalization of the imprecise probabil-
ity, which is an interval-valued distribution function.

The universal set, endowed with a Neutrosophic probabil-
ity defined for each of its subset, forms a Neutrosophic prob-
ability space.

3c Solution of the Schrödinger’s cat paradox

Let’s consider a neutrosophic set a collection of possible lo-
cations (positions) of particle x. And let A and B be two
neutrosophic sets. One can say, by language abuse, that any
particle x neutrosophically belongs to any set, due to the per-
centages of truth/indeterminacy/falsity involved, which varies
between �0 and 1+. For example: x (0.5, 0.2, 0.3) belongs
to A (which means, with a probability of 50% particle x is in
a position of A, with a probability of 30% x is not in A, and
the rest is undecidable); or y (0, 0, 1) belongs to A (which

normally means y is not for sure in A); or z (0, 1, 0) belongs
to A (which means one does know absolutely nothing about
z’s affiliation with A).

More general, x ((0.2–0.3), (0.40–0.45) [ [0.50–0.51],
{0.2, 0.24, 0.28}) belongs to the set A, which means:

— with a probability in between 20-30% particle x is in
a position of A (one cannot find an exact approximate
because of various sources used);

— with a probability of 20% or 24% or 28% x is not in A;
— the indeterminacy related to the appurtenance of x to

A is in between 40–45% or between 50–51% (limits
included).

The subsets representing the appurtenance, indeterminacy,
and falsity may overlap, and n sup = 30% + 51% + 28%>
100% in this case.

To summarize our proposition [1, 2], given the Schrö-
dinger’s cat paradox is defined as a state where the cat can be
dead, or can be alive, or it is undecided (i.e. we don’t know
if it is dead or alive), then herein the Neutrosophic logic,
based on three components, truth component, falsehood com-
ponent, indeterminacy component (T, I, F), works very well.
In Schrödinger’s cat problem the Neutrosophic logic offers
the possibility of considering the cat neither dead nor alive,
but undecided, while the fuzzy logic does not do this. Nor-
mally indeterminacy (I) is split into uncertainty (U) and para-
dox (conflicting) (P).

We have described Neutrosophic solution of the Schrö-
dinger’s cat paradox. Alternatively, one may hypothesize
four-valued logic to describe Schrödinger’s cat paradox, see
Rauscher et al. [13, 14].

In the subsequent section we will discuss how this Neu-
trosophic solution involving “possible truth” and “indetermi-
nacy” can be interpreted in terms of coin tossing problem
(albeit in modified form), known as Parrondo’s game. This
approach seems quite consistent with new mathematical for-
mulation of game theory [20].

4 An alternative interpretation using coin toss problem

Apart from the aforementioned pure mathematics-logical ap-
proach to Schrödinger’s cat paradox, one can use a well-
known neat link between Schrödinger’s equation and Fokker-
Planck equation [18]:

D
@2p
@z2 � @�

@z
p� � @p

@z
� @p
@t

= 0 : (7)

A quite similar link can be found between relativistic clas-
sical field equation and non-relativistic equation, for it is
known that the time-independent Helmholtz equation and
Schrödinger equation is formally identical [15]. From this
reasoning one can argue that it is possible to explain Aharo-
nov effect from pure electromagnetic field theory; and there-
fore it seems also possible to describe quantum mechan-
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ical phenomena without postulating the decisive role of
“observer” as Bohr asserted. [16, 17]. In idiomatic form, one
can expect that quantum mechanics does not have to mean
that “the Moon is not there when nobody looks at”.

With respect to the aforementioned neat link between
Schrödinger’s equation and Fokker-Planck equation, it is in-
teresting to note here that one can introduce “finite differ-
ence” approach to Fokker-Planck equation as follows. First,
we can define local coordinates, expanded locally about a
point (z0, t0) we can map points between a real space (z; t)
and an integer or discrete space (i; j). Therefore we can sam-
ple the space using linear relationship [19]:

(z; t) = (z0 + i�; t0 + j� ) ; (8)

where � is the sampling length and � is the sampling time.
Using a set of finite difference approximations for the Fokker-
Planck PDE:

@p
@z

= A1 =
p (z0 + �; t0 � � )� p (z0 � �; t0 � � )

2�
; (9)

@2p
@z2 = 2A2 =

=
p (z0��; t0�� ) �2p (z0; t0�� ) +p (z0 +�; t0�� )

�2 ; (10)

and
@p
@t

= B1 =
p (z0; t0)� p (z0; t0 � � )

�
: (11)

We can apply the same procedure to obtain:

@�
@z

= A1 =
� (z0 +�; t0�� ) �� (z0��; t0�� )

2�
: (12)

Equations (9–12) can be substituted into equation (7) to
yield the required finite partial differential equation [19]:

p (z0; t0) = a�1 � p (z0��; t0�� ) �a0 � p (z0; t0�� ) +

+ a+1 � p (z0 + �; t0 � � ) : (13)

This equation can be written in terms of discrete space by
using [8], so we have:

pi;j = a�1 � pi�1;j�1 + a0 � pi;j�1 + a+1 � pi+1;j�1 : (14)

Equation (14) is precisely the form required for Parron-
do’s game. The meaning of Parrondo’s game can be described
in simplest way as follows [19]. Consider a coin tossing prob-
lem with a biased coin:

phead =
1
2
� " ; (15)

where " is an external bias that the game has to “overcome”.
This bias is typically a small number, for instance 1/200. Now
we can express equation (15) in finite difference equation (14)
as follows:

pi;j =
�1

2
� "
�
�pi�1;j�1 +0�pi;j�1 +

�1
2

+ "
�
�pi+1;j�1 : (16)

Furthermore, the bias parameter can be related to an ap-

plied external field.
With respect to the aforementioned Neutrosophic solu-

tion to Schrödinger’s cat paradox, one can introduce a new
“indeterminacy” parameter to represent conditions where the
outcome may be affected by other issues (let say, apparatus
setting of Geiger counter). Therefore equation (14) can be
written as:

pi;j =
�

1
2
� "� �

�
� pi�1;j�1 +

+ a0 � pi;j�1 +
�

1
2

+ "� �
�
� pi+1;j�1 ; (17)

where unlike the bias parameter (�1/200), the indeterminacy
parameter can be quite large depending on the system in ques-
tion. For instance in the Neutrosophic example given above,
we can write that:

� � 0.2� 0.3 = k
�
d
t

��1

= k
�
t
d

�
6 0.50: (18)

The only problem here is that in original coin tossing, one
cannot assert an “intermediate” outcome (where the outcome
is neither A nor B). Therefore one shall introduce modal logic
definition of “possibility” into this model. Fortunately, we
can introduce this possibility of intermediate outcome into
Parrondo’s game, so equation (17) shall be rewritten as:

pi;j =
�

1
2
� "� �

�
� pi�1;j�1 +

+ (2�) � pi;j�1 +
�

1
2

+ "� �
�
� pi+1;j�1 ; (19)

For instance, by setting � � 0.25, then one gets the finite
difference equation:

pi;j = (0.25� ") � pi�1;j�1 + (0.5) � pi;j�1 +

+ (0.25 + ") � pi+1;j�1 ; (20)

which will yield more or less the same result compared with
Neutrosophic method described in the preceding section.

For this reason, we propose to call this equation (19):
Neutrosophic-modified Parrondo’s game. A generalized ex-
pression of equation [19] is:

pi;j = (p0 � "� �) � pi�1;j�1 + (z�) � pi;j�1 +

+ (p0 + "� �) � pi+1;j�1 ; (21)

where p0, z represents the probable outcome in standard coin
tossing, and a real number, respectively. For the practical
meaning of �, one can think (by analogy) of this indetermi-
nacy parameter as a variable that is inversely proportional to
the “thickness ratio” (d=t) of the coin in question. There-
fore using equation (18), by assuming k= 0.2, coin thick-
ness = 1.0 mm, and coin diameter d= 50 mm, then we get
d=t= 50, or �= 0.2(50)�1 = 0.004, which is negligible. But
if we use a thick coin (for instance by gluing 100 coins alto-
gether), then by assuming k= 0.2, coin thickness = 100 mm,
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and coin diameter d= 50 mm, we get d=t= 0.5, or
�= 0.2(0.5)�1 = 0.4, which indicates that chance to get out-
come neither A nor B is quite large. And so forth.

It is worth noting here that in the language of “modal
logic” [10, p.54], the “intermediate” outcome described here
is given name ‘possible true’, written }A, meaning that “it is
not necessarily true that not-A is true”. In other word, given
that the cat cannot be found in location x, does not have to
mean that it shall be in y.

Using this result (21), we can say that our proposition in
the beginning of this paper (Prop. 1) has sufficient reason-
ing; i.e. it is possible to establish link from Schrödinger wave
equation to simple coin toss problem, albeit in modified form.
Furthermore, this alternative interpretation, differs apprecia-
bly from conventional Copenhagen interpretation.

It is perhaps more interesting to remark here that Heisen-
berg himself apparently has proposed similar thought on this
problem, by introducing “potentia”, which means “a world
devoid of single-valued actuality but teeming with unreal-
ized possibility” [4, p.52]. In Heisenberg’s view an atom is
certainly real, but its attributes dwell in an existential limbo
“halfway between an idea and a fact”, a quivering state of
attenuated existence. Interestingly, experiments carried out
by J . Hutchison seem to support this view, that a piece of
metal can come in and out from existence [23].

In this section we discuss a plausible way to represent the
Neutrosophic solution of cat paradox in terms of Parrondo’s
game. Further observation and theoretical study is recom-
mended to explore more implications of this plausible link.

5 Concluding remarks

In the present paper we revisit the Neutrosophic logic view of
Schrödinger’s cat paradox. We also discuss a plausible way
to represent the Neutrosophic solution of cat paradox in terms
of Parrondo’s game.

It is recommended to conduct further experiments in order
to verify and explore various implications of this new propo-
sition, including perhaps for the quantum computation theory.
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