
Performance evaluation of
fuzzy-based fusion rules for
tracking applications

A. Tchamova*
Institute of Information and Communication Technology,
Bulgarian Academy of Science, Bulgaria
E-mail: tchamova@bas.bg
*Corresponding author

J. Dezert
The French Aerospace Lab,
Chemin de la Hunière,
F-91761 Palaiseau, France
E-mail: jean.dezert@onera.fr

Abstract:
The objective of this paper is to present and to evaluate the performance of particular

fusion rules based on fuzzy T-Conorm/T-Norm operators for two tracking applications:
(1) Tracking object’s type changes, supporting the process of objects’ identification
(e.g. fighter against cargo, friendly aircraft against hostile ones), which, consequently
is essential for improving the quality of generalized data association for targets’ track-
ing; (2) Alarms identification and prioritization in terms of degree of danger relating
to a set of a priori defined, out of the ordinary dangerous directions. The aim is to
present and demonstrate the ability of these rules to assure coherent and stable way
for identification and to improve decision-making process in a temporal way. A com-
parison with performance of Dezert-Smarandache Theory based Proportional Conflict
Redistribution rule no.5 and Dempster’s rule is also provided.
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1 INTRODUCTION

Surveillance system is intended to provide monitoring of
observed area, in order to recognize and to track suspi-
cious targets, as well to provide a smart operational con-
trol, based on the intelligent analysis and interpretation
of alarms coming from a variety of sensors installed in the
area. The general purpose is to prevent, instead of inves-
tigating dangerous situations, by providing relevant and
accurate timely processed information for decisions, facili-
tating an appropriate evidence-based action. Targets’ type
estimates can be used during the tracking process stages
for improving generalized data (attributes and kinematics)
association and for the quality evaluation of complicated
situations characterized with closely spaced or/and cross-
ing targets (Bar Shalom, 1990; Blackman and Popoli, 1999;
Bogler, 1987). It supports the process of identification, e.g.
friendly aircraft against hostile ones, fighter against cargo.
In such a case, although the attribute of each target is in-
variant over time, at the attribute-tracking level the type of
the target committed to the (unresolved) track varies with
time and must be tracked properly in order to discrimi-
nate how many different targets are hidden in the same
unresolved track. Alarms classification and prioritization
(Khosla and Dillon, 1997; Vale and Machado, 1993; Lin et
al, 2004; DeSouza et al, 2004; McArthur et al, 1996; Foong
et al, 2009) is very challenging task, because in case of mul-
tiple suspicious signals (relating to a set of a priori defined,
out of the ordinary dangerous directions), generated from
a number of sensors in the observed area, it requires the
most dangerous among them to be correctly recognized, in
order to decide properly where the video camera should be
oriented. There are cases, when some of the alarms gen-
erated could be incorrectly interpreted as false, increasing
the chance to be ignored, in case when they are really sig-
nificant and dangerous. That way the critical delay of the
proper response could cause significant damages. In both
cases above, the uncertainty and conflicts encountered in
objects’ and signals’ data, could weaken or even mistake
the respective surveillance system decision. That is why
a strategy for an intelligent, scan by scan processing and
synergistic combination of data generated is needed in or-
der to provide the surveillance system with a meaningful
output providing a better understanding of the problem
under consideration.
In this paper we focus our attention on the ability of
alternative class fusion rules, the so called T-Conorm-
Norm (TCN) fusion rules (Tchamova, Dezert, Smaran-
dache, 2006), based on particular fuzzy operators, focus-
ing on the t-norm based conjunctive rule as an analog of
the ordinary conjunctive rule of combination and on t-
conorm based disjunctive rule as an analog of the ordinary
disjunctive rule of combination. These rules are defined
within Dezert-Smarandache Theory (DSmT) of plausible
and paradoxical reasoning and are based on the Propor-
tional Conflict Redistribution rule no.5 (PCR5).
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The goal is to improve the process of data fusion and
to successfully finalize the decision-making procedures in
both described above surveillance cases.
The work is based on preliminary research in (Dezert and
Smarandache, 2004-2009; Tchamova and Dezert, 2013).
The basics of Proportional Conflict Redistribution rule
no.5 (PCR5), defined within DSmT are recalled in Section
II. Basics of PCR5 based TCN fusion rules are outlined in
section III. The main properties, as well as different im-
portant types of t-norm and t-conorm operators are pre-
sented. In section IV the decision making approach used
for both estimation procedures are described. The perfor-
mance of TCN rules related to the problem of target type
tracking is analyzed in section V. Section VI presents the
problem of alarms’ classification and examine the ability
of TCN fusion rule to solve it. Performance, obtained in
the most probable case, when sound signals emitted from
the localized sources start asynchronously is also consid-
ered and discussed. A comparison with performances of
Dezert-Smarandache Theory based Proportional Conflict
Redistribution rule no.5 and Dempster’s rule is also pro-
vided. Concluding remarks are given in section VII.

2 BASICS OF PCR5 FUSION RULE

The general principle of Proportional Conflict Redistribu-
tion rules is to: 1 ) calculate the conjunctive consensus
between the sources of evidences; 2 ) calculate the total or
partial conflicting masses; 3 ) redistribute the conflicting
mass (total or partial) proportionally on non-empty sets
involved in the model according to all integrity constraints.
The idea behind the Proportional Conflict Redistribution
rule no. 5 defined within DSmT (Dezert and Smarandache,
2004-2009) (Vol. 2) is to transfer conflicting masses (to-
tal or partial) proportionally to non-empty sets involved
in the model according to all integrity constraints. Under
Shafer’s model assumption of the frame Θ, PCR5 combina-
tion rule for only two sources of information characterized
by their basic belief assignments (bba’s) m1(.) and m2(.)
is defined as: mPCR5(∅) = 0 and ∀X ∈ 2Θ \ {∅}

mPCR5(X) = m12(X)+∑
X2∈2Θ\{X}
X2∩X=∅

[
m1(X)2m2(X2)

m1(X) +m2(X2)
+

m2(X)2m1(X2)

m2(X) +m1(X2)
] (1)

All sets involved in the formula (1) are in canonical form.
The quantity m12(X) corresponds to the conjunctive con-
sensus, i.e:

m12(X) =
∑

X1,X2∈2Θ

X1∩X2=X

m1(X1)m2(X2).

All denominators are different from zero. If a denomi-
nator is zero, that fraction is discarded. No matter how
big or small is the conflicting mass, PCR5 mathematically
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does a better redistribution of the conflicting mass than
Dempster-Shafer’s rule since PCR5 goes backwards on the
tracks of the conjunctive rule and redistributes the partial
conflicting masses only to the sets involved in the conflict
and proportionally to their masses put in the conflict, con-
sidering the conjunctive normal form of the partial conflict.
PCR5 is quasi-associative and also preserves the neutral
impact of the vacuous belief assignment.

Remark: Along with PCR5 fusion rule, the Propor-
tional Conflict Redistribution no. 6 (PCR6) rule was de-
fined within DSmT (Dezert and Smarandache, 2004-2009),
Vol.2. PCR5 and PCR6 fusion rules coincide for the com-
bination of two basic belief assignments, but they differ
in general as soon as three or more sources have to be
combined altogether, because of different principles of the
proportional conflict transfer. In (Smarandache, Dezert,
2013) it is shown and proved the strong relationship be-
tween PCR6 rule and the averaging fusion rule which is
commonly used to estimate the probabilities in the clas-
sical frequentist interpretation of probabilities. Such a
probability estimate cannot be obtained using Dempster-
Shafer (DS), nor PCR5 fusion rules. In this paper, we are
only concerned with the fusion of two bba’s, and so we
use PCR5 fusion rule in our analysis which, in this case,
coincides with PCR6.

3 BASICS OF TCN FUSION RULE

In this work, the combination rules for information fusion
take their source from t-norm and t-conorm operators in
fuzzy logics, where AND logic operator corresponds in in-
formation fusion to the conjunctive rule and OR logic op-
erator corresponds to the disjunctive rule. One interprets
the fusion/association between the sources of information
as vague relations, characterized with the following two
characteristics:

• The way of association between the possible proposi-
tions is based on union and intersection operations.

• The degree of association between the propositions is
obtained by using a t-norms (for conjunction) or t-
conorms (for disjunction) operators applied over the
probability masses of corresponding focal elements.
While the logic operators deal with degrees of truth
and false, the fusion rules deal with degrees of belief
of hypotheses.

TCN rules are defined within DSmT based PCR5 fusion
rule. Under Shafer’s model assumption of the frame Θ,
TCN fusion rules for only two sources of information are

defined as: m̃TCN (∅) = 0, and ∀X ∈ 2Θ \ {∅}

m̃TCN (X) = m̃12(X)+∑
X2∈2Θ\{X}
X2∩X=∅

[
m1(X).Tnorm{m1(X),m2(X2)}

Tconorm{m1(X),m2(X2)}
+

m2(X).Tnorm{m2(X),m1(X2)}
Tconorm{m2(X),m1(X2)}

] (2)

The quantity m̃12(X) corresponds to the conjunctive
consensus, obtained by:

m̃12(X) =
∑

X1,X2∈2Θ

X1∩X2=X

Tnorm{m1(X1),m2(X2)}.

TCN fusion rules require a normalization procedure :

m̃TCN (X) =
m̃TCN (X)∑

X∈2Θ

X ̸=⊘
m̃TCN (X)

Depending on the choice of a t-norms and t-conorms
one obtains different results for conjunction and disjunc-
tion. Our goal is to study the way how different t-norms
and t-conorms functions used in TCN fusion rule affects
over the target type estimation and alarms classification
performance.
The attractive features of TCN rules could be defined as:

very easy to implement, satisfying the impact of neutral
Vacuous Belief Assignment; commutative, convergent to
idempotence, reflects majority opinion, assures adequate
data processing in case of partial and total conflict between
the information granules. The general drawback of these
rules is related to the lack of associativity, which is not a
main issue in temporal data fusion.

3.1 Main Properties and Types of T-Norm and
T-Conorm Functions

Triangular norms (t-norms) and triangular conorms (t-
conorms) are the most general families of binary functions
that satisfy the requirements of the conjunction and dis-
junction operators, respectively. They are twoplace func-
tions mapping the unit square into the unit interval, i.e.
T −norm : [0, 1]2 7→ [0, 1] and T −conorm : [0, 1]2 7→ [0, 1].
They are monotonic, commutative and associative. t-
norms have to satisfy the following conditions:

• Associativity:

Tnorm(Tnorm(x, y), z) = Tnorm(x, Tnorm(y, z)).

• Commutativity:

Tnorm(x, y) = Tnorm(y, x)

• Monotonicity:

if (x ≤ a)&(y ≤ b) then Tnorm(x, y) ≤ Tnorm(a, b)
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• Boundary condition: the number 1 becomes the neu-
tral element for t-norms:

Tnorm(0, 0) = 0; Tnorm(x, 1) = x

There are many functions satisfying t-norm conditions,
among which the most important are:

• Minimum operator, also called Gödel t-norm, as it is
the standard semantics for conjunction in Gödel fuzzy
logic. It occurs in most t-norm based fuzzy logics as
the standard semantics for weak conjunction:

m(X) = min {m1(Xi),m2(Xj)}

• Algebraic product operator, which is the standard se-
mantics for strong conjunction in fuzzy logic:

m(X) = m1(Xi) ·m2(Xj).

• Lukasiewicz operator:

m(X) = max {[m1(Xi) +m2(Xj)− 1] , 0}

The dual notion of t-norm is called t-conorm. The condi-
tions to satisfy are the same as for t-norms, but the neutral
element, which is 0 (Tconorm(x, 0) = x) instead of 1, as
in t-norms. The important dual t-conorms, corresponding
to the above described t-norms are:

• Maximum Gödel operator - it is the smallest t-conorm
and is used to represent the weak disjunction in all t-
norm based fuzzy logics.

m(X) = max {m1(Xi),m2(Xj)}.

• Probabilistic sum, which is the standard semantics for
strong disjunction:

m(X) = m1(Xi) +m2(Xj)−m1(Xi) ·m2(Xj).

• Bounded sum operator, the standard semantics for
strong disjunction in Lukasiewicz fuzzy logic:

m(X) = min {[m1(Xi) +m2(Xj)] , 1}.

4 Decision-making support

In this work, we assume Shafer’s model and the classical
Pignistic Transformation (Dezert and Smarandache, 2004-
2009) is used here to take a decision. This subjective prob-
ability measure (also called betting probability) is defined
for ∀A ∈ 2Θ by:

BetP (A) =
∑

X∈DΘ

|X ∩A|
|X|

· m̃(X) (3)

where |X| denotes the cardinality of X.

In this work, the estimation of targets’ types as well
as the level of alarms’ danger at time k are given by the
most probable model, i.e. the one having the maximum
of pignistic probability BetP (.). However, BetP (.) is not
the best solution to approximate a non-Bayesian bba into
a subjective probability measure because the value of its
PIC (Probabilistic Informational Content) is not very high
in general and that is why it is recommended to use the
DSmP (.) transformation as explained in details in (Dezert
and Smarandache, 2004-2009), Vol.3. DSmP (.) takes into
account both the values of the belief masses and the car-
dinality of focal elements in a proportional redistribution
process of masses committed to partial ignorances and thus
DSmP (.) increases the PIC values and reduces the entropy
of the subjective probability measure approximated from
the bba. In this work, we didn’t use DSmP (.) because it
was a bit more complex to implement and mainly because
the main problem for correct alarm identification doesn’t
come from the specific probabilistic transformation used,
but mainly from the choice of the fusion rule applied. An
inefficient fusion rule will provide bad results which can
never be corrected by a method (even a very good one like
DSmP ) to approximate the bba into subjective probabil-
ity measure for decision-making.

5 TARGET TYPE TRACKING APPROACH

The principle of our estimators is based on the sequential
combination of the current basic belief assignment (drawn
from classifier decision, i.e. our measurements) with the
prior bba estimated up to current time from all past clas-
sifier declarations.
The problem can be simply stated as follows:

• Let k = 1, 2, ..., kmax be the time index and consider
M possible target types Ti ∈ Θ = {θ1, . . . , θM} in the
environment; for example Θ = {Fighter, Cargo} and
T1 , Fighter, T2 , Cargo.

• at each instant k, a target of true type T (k) ∈ Θ
(not necessarily the same target) is observed by an
attribute-sensor (we assume a perfect target detection
probability here).

• the attribute measurement of the sensor (for example
noisy Radar Cross Section) is then processed through
a classifier which provides a decision Td(k) on the type
of the observed target at each instant k.

• The sensor is in general not totally reliable and it is
characterized by a M ×M confusion matrix:

C = [cij = P (Td = Tj |TrueTargetType = Ti)]

The goal is to estimate T (k) from the sequence
of declarations done by the unreliable classifier up to
time k, i.e. how to build an estimator T̂ (k) =
f(Td(1), Td(2), . . . , Td(k)) of T (k). The principle of the
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estimator is based on the sequential combination of the
current basic belief assignment (drawn from classifier deci-
sion, i.e. our measurements) with the prior bba estimated
up to current time from all past classifier declarations.
The algorithm follows the next main steps:

1 Initialization step (i.e. k = 0). Select the target type
frame Θ = {θ1, . . . , θM} and set the prior bbas m−(.)
(m̃−

TCN (.) for TCN rule, m−
PCR5(.) for PCR5 rule, and

m−
DS(.) for DS rule) as vacuous belief assignment, i.e

m−(θ1 ∪ . . . ∪ θM ) = 1 since one has no information
about the first target type that will be observed.

2 Generation of the current bba mobs(.) from the cur-
rent classifier declaration Td(k) based on attribute
measurement. At this step, one takes mobs(Td(k)) =
cTd(k)Td(k) and all the unassigned mass 1−mobs(Td(k))
is then committed to total ignorance θ1 ∪ . . . ∪ θM .

3 Combination of current bba mobs(.) with prior bba
m−(.) to get the estimation of the current bba m(.).
Symbolically we will write the generic fusion operator
as ⊕, so that m(.) = [mobs⊕m−](.) = [m−⊕mobs](.).
The combination ⊕ is done according either TCN fu-
sion rules (m(.) = mTCN (.)), or PCR5 rule (m(.) =
mPCR5(.)), ot Demspter’s rule (m(.) = mDS(.)) .

4 Estimation of True Target Type is obtained from m(.)
by taking the singleton of Θ, i.e. a Target Type, hav-
ing the maximum of belief (or eventually the maxi-
mum Pignistic Probability).

5 set m−(.) = m(.); do k = k + 1 and go back to 2).

5.1 Simulations results

In order to evaluate the performances of TCN fusion rules
based estimators, a set of Monte-Carlo simulations on a
very simple scenario for a 2D Target Type frame, i.e.
Θ = {(F )ighter, (C)argo} is realized for classifier with a
following confusion matrix:

C =

[
0.9 0.1
0.1 0.9

]
We assume there are two closely spaced targets: Cargo and
Fighter. Due to circumstances, attribute measurements
received are predominately from one or another and both
targets generates actually one single (unresolved kinemat-
ics) track. To simulate such scenario, a Ground Truth se-
quence over 100 scans was generated. The sequence starts
with the observation of a Cargo type and then the obser-
vation of the target type switches two times onto Fighter
type during different time duration. At each time step k
the decision Td(k) is randomly generated according to the
corresponding row of the confusion matrix of the classifier
given the true target type (known in simulations). Then
the algorithm from above is applied. The simulation con-
sists of 10000 Monte-Carlo runs. The computed averaged
performances (on the base of estimated belief masses ob-
tained by the tracker) are shown on the figures 1 and 2.
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Figure 1: Estimation of belief assignment for Cargo type.
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Figure 2: Estimation of belief assignment for Fighter type.

They are based on TCN fusion rule realized with differ-
ent t-conorm and t-norm functions. On the same figures,
for a comparison purposes, the respective performances of
PCR5 and DS rule are presented. It is evident, that PCR5
fusion rule outperforms the results based on TCN rule, be-
cause PCR5 allows a very efficient Target Type Tracking,
reducing drastically the latency delay for correct Target
Type decision. TCN fusion rule shows a stable and ad-
equate behavior, characterized with more smoothed pro-
cess of re-estimating the belief masses in comparison to
PCR5 f. TCN fusion rule based on Lukasiewicz t-conorm
and t-norm operators (denoted as TCN-L in the legend)
reacts and adopts much better than TCN rule based on
Gödel’s t-conorm and t-norm operators (denoted as TCN-
G), followed by TCN rule, based on probabilistic Sum and
Product for t-conorm and t-norm (denoted as TCN-SP).
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6 ALARMS CLASSIFICATION APPROACH

The approach assumes all the localized sound sources to
be subjects of attention and investigation for being indi-
cation of dangerous situations. The specific input sounds’
attributes, emitted by each source, are sensor’s level pro-
cessed and evaluated in timely manner for their contri-
bution towards correct alarms’ classification (in term of
degree of danger). The applied algorithm considers the
following steps:

• Defining the frame of expected hypotheses as fol-
lows: Θ = {θ1 = (E )mergency , θ2 = (A)larm, θ3 =
(W )arning}. Here Shafer’s model holds and we work
on the power-set:

2Θ = {∅,E ,A,W ,E ∪A,E ∪W ,A ∪W ,E ∪A ∪W }.

The hypothesis with a highest priority is Emergency,
following by Alarm and then Warning.

• Defining an input rule base to map the sounds’ at-
tributes (so called observations) obtained from all lo-
calized sources into non-Bayesian basic belief assign-
ments mobs(.).

• At the very first time moment k = 0 we start with
a priori basic belief assignment (history) set to be a
vacuous belief assignment mhist(E ∪ A ∪ W ) = 1 ,
since there is no information about the first detected
degree of danger according to sound sources.

• Combination of currently received measurement’s bba
mobs(.) (for each of located sound sources), based on
the input interface mapping, with a history’s bba, in
order to obtain estimated bba relating to the current
degree of danger m(.) = [mhist ⊕mobs](.). TCN rule
is applied in the process of temporal data fusion to
update bba’s associated with each sound emitter.

• Flag for an especially high degree of danger has to be
taken, when during the a priori defined scanning pe-
riod, the maximum Pignistic Probability (Dezert and
Smarandache, 2004-2009) is associated with the hy-
pothesis Emergency. In this work, we assume Shafer’s
model and we use the classical Pignistic Transforma-
tion (Dezert and Smarandache, 2004-2009), (Smets
and Kennes, 1994) to take a decision about the mode
of danger. It is defined for ∀A ∈ 2Θ by:

BetP (A) =
∑

X∈DΘ

|X ∩A|
|X|

·m(X) (4)

where |X| denotes the cardinality of X.

6.1 Simulation Scenario

A set of three sensors located at different distances from
the microphone array are installed in an observed area for
protection purposes, together with a video camera (Behar
et al., 2010).

Figure 3: Simulation scenario.

They are assembled with alarm devices: Sensor 1 with
Sonitron, Sensor 2 with E2S, and Sensor 3 with System
Sensor. In case of alarm events (smoke, flame, intrusion,
etc.) they emit powerful sound signals with various dura-
tion and frequency of intermittence (Table 1), depending
on the nature of the event.

Table 1 Sound signal parameters.
Continuous Intermittent-I Intermittent-II
(Warning) (Alarm) (Emergency)
fint = 0Hz fint = 5Hz fint = 1Hz
Tsig = 10s Tsig = 30s Tsig = 60s

The frequency of intermittencies fint, associated with the
localized sound sources is utilized in the specific input in-
terface (the rule base) below.

Rule 1: if fint → 1Hz then mobs(E) = 0.9 and mobs(E ∪
A) = 0.1.

Rule 2: if fint → 5Hz then mobs(A) = 0.7, mobs(A∪E) =
0.2 and mobs(A ∪W ) = 0.1.

Rule 3: if fint → 0Hz then mobs(W ) = 0.6 and mobs(W ∪
A ∪ E) = 0.4.

Three main cases are estimated: the probabilities of
modes, evaluated for Sensor 1 (associated with Emergency
mode), Sensor 2 (associated with Alarm mode), and Sen-
sor 3 (associated with Warming mode. The decisions
should be governed at the video camera level, taken peri-
odically, depending on: 1) specificities of the video camera
(time needed to steer the video camera toward a localized
direction); 2) time duration needed to analyze correctly
and reliably the sequentially gathered information. We
choose as a reasonable sampling period for camera deci-
sions Tdec = 20sec, i.e. at every 10th scan.

6.2 TCN-L rule performance for danger level es-
timation.

TCN fusion rule based on Lukasiewicz t-conorm and t-
norm operators is used here, because this rule shows the
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Figure 4: TCN rule Performance for danger level estima-
tion.
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Figure 5: PCR5 rule Performance for danger level estima-
tion.

best performance amongst all defined TCN rules in sec-
tion III. Fig.4 shows the values of Pignistic Probabilities
of each mode (E, A, W) associated with three sound emit-
ters (1st source in Emode, (subplot on the top), 2nd source
in A mode (subplot in the middle), and 3rd source in W
mode, (subplot in the bottom)) during the all 30 scans.
Each source has been perturbed with noises in accordance
with the simulated Ground Truth, associated with particu-
lar sound source. These probabilities are obtained for each
source independently as a result of sequential data fusion
of mobs(.) sequence using TCN combinational rule. For a
completeness of study and for comparison purposes, the re-
spective performances of PCR5 and DS rule are presented
in fig.5 and fig.6.

TCN rule shows a stable, quite proper and effective be-
havior, following the performance of PCR5 rule. A special
feature of TCN rule performance are the smoothed esti-
mates and more cautious decisions taken at the particular
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Figure 6: Dempster’s rule Performance for danger level
estimation.

decisive scans.

The results obtained show the strong ability of PCR5
rule to take care in a coherent and stable way for the evo-
lution of all possible degrees of danger, related to all the lo-
calized sources. It is especially significant in case of sound
sources data discrepancies and conflicts, when the highest
priority mode Emergency occurs. PCR5 rule prevents to
produce a mistaken decision, that way prevents to avoid
the most dangerous case without immediate attention. A
similar adequate behavior of performance is established in
cases of lower danger priority. DS rule shows weakness
in resolving the cases examined. In Emergency case, DS
rule does not reflect at all new obtained informative obser-
vations supporting the Warning mode. This pathological
behavior reflects the dictatorial power of DS rule realized
by a given source (Dezert and Tchamova, 2014), which is
fundamental in Dempster-Shafer reasoning (Shafer, 1976).
In our particular case however, DS rule leads to a right fi-
nal decision by coincidence, but this decision could not be
accepted as coherent and reliable, because it is not built on
a consistent logical ground. In cases of lower dangers pri-
ority (perturbed Warning and Alarm mode), DS rule could
cause a false alarm and can deflect the attention from the
existing real dangerous source by assigning a wrong steer-
ing direction to the surveillance camera.

6.3 Performances obtained in asynchronous case.

The most probable scenario concerns the case, when sound
signals emitted from the localized sources start asyn-
chronously. The corresponding figures 7, 8, and 9 show the
values of Pignistic Probabilities of each mode (Emergency,
Alarm, Warning) associated with the same three emitters.
Source 1 starts emitting first, initializing scan 1, source 2
becomes active at scan no. 5 and source 3 starts emitting
at scan no. 10. The sampling period for decision-making
for video camera steering remains Tdecision = 10scans and
the camera is switched on as soon as a sound is received
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Figure 7: TCN rule Performance for danger level estima-
tion.
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Figure 8: PCR5 rule Performance for danger level estima-
tion.

(i.e. when source 1 starts to emit a signal). The decisions
will be established based on the estimation of modes of
source 1, source 2 and source 3 at scans 10, 20 and 30.

In this asynchronous scenario and from the figures 7, 8
and 9, one sees also the inadequate behavior of DS rule
which fails to correctly estimate the true modes of the dif-
ferent sources and this will generate wrong prioritization
of camera steering. In comparison, PCR5-based fusion ap-
proach allows also even in such case to get a better estima-
tion of modes of sources and thus to obtain a more reliable
alarm prioritization (as in the synchronous scenario).

7 CONCLUSIONS

In this paper, two tracking applications of a particular
fuzzy fusion rule, based on fuzzy t-Conorm/t-Norm oper-
ators are presented: (1) Tracking Object’s Type Changes,
supporting the process of identification; (2) Alarms iden-
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Figure 9: Dempster’s rule Performance for danger level
estimation.

tification and prioritization in terms of degree of danger
relating to a set of a priori defined, out of the ordinary
dangerous directions. The ability of TCN rule to as-
sure coherent and stable way of identification and to im-
prove decision-making process in temporal way are demon-
strated. Different types of t-conorm and t-norms, available
in fuzzy set/logic theory provide us with richness of pos-
sible choices to be used applying TCN fusion rule. The
attractive features of TCN rule is it’s easy implementation
and adequate data processing in case of conflicts between
the information granules.
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