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Extensions of Fuzzy Set/Logic, Intuitionistic Fuzzy 

Set/Logic, and Neutrosophic 

Set/Logic/Probability/Statistics to Plithogenic 

Set/Logic/Probability/Statistics 

(Preface) 

We introduce for the first time the concept of plithogeny in 
philosophy and, as a derivative, the concepts of plithogenic set / 
logic / probability / statistics in mathematics and engineering – and 
the degrees of contradiction (dissimilarity) between the attributes’ 
values that contribute to a more accurate construction of 
plithogenic aggregation operators and to the plithogenic 
relationship of inclusion (partial ordering). 

They resulted from practical needs in our everyday life, and 
we present several examples and applications of them. 

 
Plithogeny is the genesis or origination, creation, formation, 

development, and evolution of new entities from dynamics and 
organic fusions of contradictory and/or neutrals and/or non-
contradictory multiple old entities. 

Plithogeny pleads for the connections and unification of 
theories and ideas in any field. 

As “entities” in this study, we take the “knowledges” in 
various fields, such as soft sciences, hard sciences, arts and letters 
theories, etc.  
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Plithogeny is the dynamics of many types of opposites, 
and/or their neutrals, and/or non-opposites and their organic 
fusion. 

Plithogeny is a generalization of dialectics (dynamics of one 
type of opposites: <A> and <antiA>), neutrosophy (dynamics of 
one type of opposites and their neutrals: <A> and <antiA>  and 
<neutA>), since plithogeny studies the dynamics of many types of 
opposites and their neutrals and non-opposites (<A> and <antiA> 
and <neutA>, <B> and <antiB> and <neutB>, etc.), and many non-
opposites (<C>, <D>, etc.) all together. 

As application and particular derivative case of plithogeny is 
the Plithogenic Set, that we’ll present in the book, since it is an 
extension of crisp set, fuzzy set, intuitionistic fuzzy set, and 
neutrosophic set, and has many scientific applications.  

Plithogenic Set 

A plithogenic set P is a set whose elements are characterized 
by one or more attributes, and each attribute may have many 
values.  

Each attribute’s value v  has a corresponding (fuzzy, 
intuitionistic fuzzy, or neutrosophic) degree of appurtenance d(x, 
v) of the element x, to the set P, with respect to some given criteria. 

In order to obtain a better accuracy for the plithogenic 
aggregation operators, a (fuzzy, intuitionistic fuzzy, or 
neutrosophic) contradiction (dissimilarity) degree is defined 
between each attribute value and the dominant (most important) 
attribute value.  

{However, there are cases when such dominant attribute 
value may not be taking into consideration or may not exist, or 
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there may be many dominant attribute values. In such cases, either 
the contradiction degree function is suppressed, or another 
relationship function between attribute values should be designed 
by the experts according to the application they need to solve.} 

The plithogenic aggregation operators (intersection, union, 
complement, inclusion, equality) are linear combinations of the 
fuzzy operators tnorm and tconorm. 

Plithogenic set is a generalization of the crisp set, fuzzy set, 
intuitionistic fuzzy set, and neutrosophic set, since these four types 
of sets are characterized by a single attribute (appurtenance): 
which has one value (membership) – for the crisp set and for fuzzy 
set, two values (membership, and nonmembership) – for 
intuitionistic fuzzy set, or three values (membership, 
nonmembership, and indeterminacy) – for neutrosophic set. 

A plithogenic set, in general, may have its elements 
characterized by attributes with four or more attribute values. 

Plithogenic Logic 

A plithogenic logic proposition P is a proposition that is 
characterized by degrees of many truth-values with respect to the 
corresponding attributes’ values.  

With respect to each attribute’s value v  there  is a 
corresponding degree of truth-value d(P, v) of P with respect to the 
attribute value v.  

Plithogenic logic is a generalization of the classical logic, 
fuzzy logic, intuitionistic fuzzy logic, and neutrosophic logic, since 
these four types of logics are characterized by a single attribute 
value (truth-value): which has one value (truth) – for the classical 
logic and fuzzy logic, two values (truth, and falsehood) – for 
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intuitionistic fuzzy logic, or three values (truth, falsehood, and 
indeterminacy) – for neutrosophic logic. 

A plithogenic logic proposition P, in general, may be 
characterized by more than four degrees of truth-values resulted 
from under various attributes. 

Plithogenic Probability 

In the plithogenic probability each event E from a probability 
space U is characterized by many chances of the event to occur 
[not only one chance of the event to occur: as in classical 
probability, imprecise probability, and neutrosophic probability], 
chances of occurrence calculated with respect to the corresponding 
attributes’ values that characterize the event E. 

We present into the book the discrete/continuous 
finite/infinite n-attribute-values plithogenic probability spaces. 

The plithogenic aggregation probabilistic operators 
(conjunction, disjunction, negation, inclusion, equality) are based 
on contradiction degrees between attributes’ values, and the first 
two are linear combinations of the fuzzy logical operators’ tnorm 
and tconorm. 

Plithogenic probability is a generalization of the classical 
probability [ since a single event may have more crisp-probabilities 
of occurrence ], imprecise probability [ since a single event may 
have more subunitary subset-probabilities of occurrence ], and 
neutrosophic probability [ since a single event may have more 
triplets of: subunitary subset-probabilities of occurrence, 
subunitary subset-probabilities of indeterminacy (not clear if 
occurring or not occurring), and subunitary subset-probabilities of 
nonoccurring) ]. 
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Plithogenic Statistics 

As a generalization of classical statistics and neutrosophic 
statistics, the Plithogenic Statistics is the analysis of events 
described by the plithogenic probability. 

 
* 

 
Formal definitions of plithogenic set / logic / probability / 

statistics are presented into the book, followed by plithogenic 
aggregation operators, theorems, and then examples and 
applications of these new concepts into our everyday life.  

 
The Author 
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I. INTRODUCTION TO PLITHOGENY 

I.1. Etymology of Plithogeny 

Plitho-geny etymologically comes from:  
(Gr.) πλήθος (plithos) = crowd, large number of, multitude, 

plenty of,  
and   
-geny < (Gr.) -γενιά (-geniá) = generation, the production of 

something & γένeια (géneia) = generations, the production of 

something < -γένεση (-génesi) = genesis, origination, creation, 
development, 

according to Translate Google Dictionaries  
[ https://translate.google.com/ ] and Webster’s New World 
Dictionary of American English, Third College Edition, Simon & 
Schuster, Inc., New York, pp. 562-563, 1988. 

Therefore, plithogeny is the genesis or origination, creation, 
formation, development, and evolution of new entities from 
dynamics and organic fusions of contradictory and/or neutrals 
and/or non-contradictory multiple old entities. 

Plithogeny pleads for the connections and unification of 
theories and ideas in any field. 

As “entities” in this study we take the “knowledges” in 
various fields, such as soft sciences, hard sciences, arts and letters 
theories, etc.  

Plithogeny is the dynamics of many types of opposites, 
and/or their neutrals, and/or non-opposites and their organic 
fusion. 

https://translate.google.com/


19 

Plithogeny is a generalization of dialectics (dynamics of one 
type of opposites: <A> and <antiA>), neutrosophy (dynamics of 
one type of opposites and their neutrals: <A> and <antiA>  and 
<neutA>), since plithogeny studies the dynamics of many types of 
opposites and their neutrals and non-opposites (<A> and <antiA> 
and <neutA>, <B> and <antiB> and <neutB>, etc.), and many non-
opposites (<C>, <D>, etc.) all together. 

I.1.1. Etymology of Plithogenic 

While plithogenic means what is pertaining to plithogeny. 

I.2. Plithogenic Multidisciplinarity 

While Dialectics is the dynamics of opposites (<A> and 
<antiA>), Neutrosophy  is the dynamic of opposites and their 
neutrality (<A>, <neutA>, <antiA>), Plithogeny [as a 
generalization of the above two] is the dynamic and fusion of many 
opposites and their neutralities, as well as other non-opposites 
(<A>, <neutA>, <antiA>; <B>, <neutB>, <antiB>; <C>; 
<D>;…). 

Plithogeny organically melts opposites and neutrals and non-
opposites entities as a melting pot of hybrid or related ideas and 
concepts. 

Plithogeny is multidynamic. 
Plithogeny is a MetaScience. 
Plithogeny is a hyper-hermeneutics, consisting of hyper-

interpretation of literature and arts, soft and hard sciences, and so 
on. Unconventional research / theory / ideas… 

Of course, the dynamics and fusions do not work for all kind 
of opposites, neutrals, or non-opposites. 
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Plithogeny is referred to the fluctuation of opposites, 
neutrals, and non-opposites that all converge towards the same 
point, then diverge back, and so on. A continuum process of 
merging, and splitting, or integration and disintegration. 

Plithogeny is the basement of plithogenic set, plithogenic 
logic, plithogenic probability, and plithogenic statistics. 

I.3. Applications of Plithogeny 

Of a particular interest is the plithogenic set, that we’ll 
present next, since it is an extension of fuzzy set, intuitionistic fuzzy 
set, and neutrosophic set, and has many scientific applications. 

Similarly plithogenic logic, plithogenic probability and 
plithogenic statistics. 

Let ⊕  be a plithogenic aggregation operator [organic 
fusion]. 
I.3.1. Three entities: Religion (<A>) ⊕ Science (<antiA>) ⊕ 
Body (<B>).  

The religious prayer (part of <A>) has been proven be a 
psychological therapy (hence a scientific method that belongs to 
<antiA>), which means a non-empty intersection of <A> and 
<antiA>, or <neutA>, pleading to a spiritual health, which 
positively influences the physical body (<B>). Therefore, a fusion 
between <A>, <antiA>, and <B>, or better – a neutrosophic 
implication: <A> ∩ <antiA> ⇒ <B>. 
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I.3.2. Materialism (<A>) ⊕ Idealism (<antiA>) ⊕ Ontology 
(<B>).  

Materialism is a philosophical doctrine stating that the only 
reality is the matter. The emotions, the feelings, and the thoughts 
can also be explained in terms of matter.  

Idealism is a philosophical theory that things (reality) exist 
in our mind only, as ideas; they are dependent of our mind. The 
things are not material objects.  

According to Neutrosophy, the reality is the matter 
(independent of our mind) and our ideas, feelings and thoughts 
(dependent of our mind). Thus, the combination of <A> and 
<antiA> gives <neutA>.  

Ontology is a branch of metaphysics that studies the common 
traits and principles of being, of reality (ultimate substance). But, 
<A> ∩  <B>, which is the Materialist Ontology, studies the 
structure, determination and development of respective reality. 
While <antiA> ∩  <B>, which is Idealist Ontology (or 
Gnoseology), studies the knowledge process: its structure, general 
conditions, and validity. Whence <A> ∩ <antiA> ∩ <B> studies 
both the objective and subjective realities of being. 

Etymologically, Gnoseology < Germ. Gnoseologie < Gr. 
γνώσης (gnósis) = knowledge < Gr. γιγνώσκειν (gignóskein) = to 
look with wide open eyes, to goggle, to know.  

We introduce now for the first time this philosophical term 
from German and Romanian languages to English. 

Gnoseology is the theory of cognition; philosophical theory 
refereed to the human’s capacity of knowing the reality and getting 
to the truth. { Dicţionarul Explicativ al Limbii Române, Editura 
Academiei, Bucharest, p. 377, 1975. } 
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I.3.3. Conscious Motivation (<A>) ⊕ Aconscious Motivation 
(<neutA>) ⊕ Unconscious Motivation (<antiA>) ⊕ Optimism 
(<B>) ⊕ Pesimism (<antiB>). 

All above five concepts [Conscious Motivation, Aconscious 
Motivation, Unconscious Motivation, Optimism, and Pesimism] 
are from the neutrosophic philosophical assumptions and 
neutrosophic personality traits.  

The fusion of these five philosophical entities using 
plithogeny ends up in assuming:  a degree of optimism and a 
degree of pessimism regarding the motivation at each of the 
memory’s neutrosophic levels: conscious, aconscious, and 
unconscious. 

I.4. Notations for Crisp, Fuzzy, Intuitionistic Fuzzy, 

Neutrosophic, and Plithogenic Set/Logic/Probability 

Operators  

We use the notations for intersection, union, complement, 
less than or equal to, greater than or equal to, and equal to 
respectively - as follows: 

Crisp (Classical): , ,   ¬,  ≤,  ≥,  = 
Fuzzy: ∧𝐹 (𝑡𝑛𝑜𝑟𝑚), ∨𝐹 (𝑡𝑐𝑜𝑛𝑜𝑟𝑚), ¬𝐹, ≤F,  ≥F,  =F 
Refined Fuzzy: ∧𝑅𝐹 , ∨𝑅𝐹 , ¬𝑅𝐹, ≤RF,  ≥RF,  =RF 
Intuitionistic Fuzzy: ∧𝐼𝐹, ∨𝐼𝐹, ¬𝐼𝐹, ≤IF,  ≥IF,  =IF 

Refined Intuitionistic Fuzzy: ∧𝑅𝐼𝐹, ∨𝑅𝐼𝐹, ¬𝑅𝐼𝐹, ≤RIF,  ≥RIF,  =RIF 
Neutrosophic: ∧𝑁, ∨𝑁, ¬𝑁, ≤N, ≥N, =N 
Refined Neutrosophic: ∧𝑅𝑁, ∨𝑅𝑁, ¬𝑅𝑁, ≤RN, ≥RN, =RN 
Plithogenic: ∧𝑝, ∨𝑝, ¬𝑝, ≤P, ≥P, =P. 
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II. PLITHOGENIC SET 

II.1. Informal Definition of Plithogenic Set 

A plithogenic set P is a set whose elements are characterized 
by one or more attributes, and each attribute may have many 
values.  

Each attribute’s value v  h as a corresponding degree of 
appurtenance d(x, v) of the element x, to the set P, with respect to 
some given criteria. 

In order to obtain a better accuracy for the plithogenic 
aggregation operators, a contradiction (dissimilarity) degree is 
defined between each attribute value and the dominant (most 
important) attribute value.  

{However, there are cases when such dominant attribute 
value may not be taking into consideration or may not exist 
[therefore it is considered zero by default], or there may be many 
dominant attribute values. In such cases, either the contradiction 
degree function is suppressed, or another relationship function 
between attribute values should be established.} 

The plithogenic aggregation operators (intersection, union, 
complement, inclusion, equality) are based on contradiction 
degrees between attributes’ values, and the first two are linear 
combinations of the fuzzy operators’ tnorm and tconorm. 

Plithogenic set is a generalization of the crisp set, fuzzy set, 
intuitionistic fuzzy set, and neutrosophic set, since these four types 
of sets are characterized by a single attribute value (appurtenance): 
which has one value (membership) – for the crisp set and fuzzy set, 
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two values (membership, and nonmembership) – for intuitionistic 
fuzzy set, or three values (membership, nonmembership, and 
indeterminacy) – for neutrosophic set. 

A plithogenic set, in general, may have elements 
characterized by attributes with four or more attribute values. 

II.2. Formal Definition of Single (Uni-Dimensional) 

Attribute Plithogenic Set 

Let U be a universe of discourse, and P a non-empty set of 
elements, P ⊆ U. 

II.2.1. Attribute Value Spectrum 

Let A be a non-empty set of uni-dimensional attributes 
A = {α1, α2, …, αm},  

m ≥  1; and α ∈  A be a given attribute whose spectrum of all 
possible values (or states) is the non-empty set S, where S can be a 
finite discrete set, S = {s1, s2, …, sl}, 1  ≤ l  <∞, or infinitely 
countable set S = {s1, s2, …, s∞}, or infinitely uncountable 
(continuum) set S = ]𝑎, 𝑏[, a < b, where ]… [ is any open, semi-
open, or closed interval from the set of real numbers or from other 
general set. 

II.2.2. Attribute Value Range 

Let V be a non-empty subset of S, where V is the range of all 
attribute’s values needed by the experts for their application. Each 
element 𝑥 ∈ 𝑃 is characterized by all attribute’s values in V = {v1, 
v2, …, vn}, for n ≥ 1. 
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II.2.3. Dominant Attribute Value 

Into the attribute’s value set V, in general, there is a dominant 
attribute value, which is determined by the experts upon their 
application.  Dominant attribute value means the most important 
attribute value that the experts are interested in.  

{However, there are cases when such dominant attribute 
value may not be taking into consideration or not exist, or there 
may be many dominant (important) attribute values - when 
different approach should be employed.} 

II.2.4. Attribute Value Appurtenance Degree Function 

Each attributes value v ∈ V has a corresponding degree of 
appurtenance d(x, v) of the element x, to the set P, with respect to 
some given criteria. 

The degree of appurtenance may be: a fuzzy degree of 
appurtenance, or intuitionistic fuzzy degree of appurtenance, or 
neutrosophic degree of appurtenance to the plithogenic set. 

Therefore, the attribute value appurtenance degree function 
is: 

∀𝑥 ∈ P, d: P×V→ P ([0, 1]z),     (1) 
so d(x, v) is a subset of [0, 1]z, where P([0, 1] z) is the power set of 
the [0, 1] z, where z = 1 (for fuzzy degree of appurtenance), z = 2 
(for intuitionistic fuzzy degree of appurtenance), or z = 3 (for 
neutrosophic degree de appurtenance). 

II.2.5. Attribute Value Contradiction (Dissimilarity) 

Degree Function 

Let the cardinal |V| ≥ 1.  
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Let c: V×V  → [0, 1] be the attribute value contradiction 
degree function (that we introduce now for the first time) between 
any two attribute values v1 and v2, denoted by  

c(v1, v2), and satisfying the following axioms:  
c(v1, v1) = 0, the contradiction degree between the same 

attribute values is zero;  
c(v1, v2) = c(v2, v1), commutativity. 
For simplicity, we use a fuzzy attribute value contradiction 

degree function (c as above, that we may denote by cF in order to 
distinguish it from the next two), but an intuitionistic attribute 
value contradiction function (cIF : V×V → [0, 1]2), or more general 
a neutrosophic attribute value contradiction function (cN : V×V →
 [0, 1]3) may be utilized increasing the complexity of calculation 
but the accuracy as well. 

We mostly compute the contradiction degree between uni-
dimensional attribute values. For multi-dimensional attribute 
values we split them into corresponding uni-dimensional attribute 
values. 

The attribute value contradiction degree function helps the 
plithogenic aggregation operators, and the plithogenic inclusion 
(partial order) relationship to obtain a more accurate result. 

The attribute value contradiction degree function is designed 
in each field where plithogenic set is used in accordance with the 
application to solve. If it is ignored, the aggregations still work, but 
the result may lose accuracy. 

Several examples will be provided into this book. 
Then (𝑃, 𝑎, 𝑉, 𝑑, 𝑐) is called a plithogenic set: 

● where “P” is a set, “a” is a (multi-dimensional in general) 
attribute, “V” is the range of the attribute’s values, “d” is the degree 
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of appurtenance of each element x’s attribute value to the set P with 
respect to some given  criteria (x ∊ P), and “d”  stands for “𝑑𝐹” or 
“𝑑𝐼𝐹” or “𝑑𝑁”, when dealing with fuzzy degree of appurtenance, 
intuitionistic fuzzy degree of appurtenance, or neutrosophic degree 
of appurtenance respectively of an element x to the plithogenic set 
P; 
● and “c” stands for “cF” or “cIF” or “cN”, when dealing with fuzzy 
degree of contradiction, intuitionistic fuzzy degree of 
contradiction, or neutrosophic degree of contradiction between 
attribute values respectively.  

The functions 𝑑(∙,∙)  and 𝑐(∙,∙)  are defined in accordance 
with the applications the experts need to solve. 

One uses the notation: 
𝑥(𝑑(𝑥, 𝑉)),  

where 𝑑(𝑥, 𝑉) = {𝑑(𝑥, 𝑣), for all 𝑣 ∈ 𝑉}, ∀𝑥 ∈ 𝑃. 

II.2.6. About the Plithogenic Aggregation Set Operators 

The attribute value contradiction degree is calculated 
between each attribute value with respect to the dominant attribute 
value (denoted vD) in special, and with respect to other attribute 
values as well. 

The attribute value contradiction degree function c between 
the attribute’s values is used into the definition of plithogenic 
aggregation operators {Intersection (AND), Union (OR), 
Implication (  ), Equivalence (  ), Inclusion Relationship 
(Partial Order), and other plithogenic aggregation operators that 
combine two or more attribute value degrees - that tnorm and tconorm 
act upon}.  
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Most of the plithogenic aggregation operators are linear 
combinations of the fuzzy tnorm (denoted ∧F ), and fuzzy tconorm 
(denoted  ∨ F), but non-linear combinations may as well be 
constructed. 

If one applies the tnorm on dominant attribute value denoted 
by vD, and the contradiction between vD and v2 is c(vD, v2), then 
onto attribute value v2 one applies: 

[1 − c(vD, v2)]⋅tnorm(vD, v2) + c(vD, v2)⋅tconorm(vD, v2), (2) 
Or, by using symbols:  
[1 − c(vD, v2)]⋅(vD∧Fv2) + c(vD, v2)⋅(vD∨Fv2).  (3) 
Similarly, if one applies the tconorm on dominant attribute 

value denoted by vD, and the contradiction between vD and v2 is 
c(vD, v2), then onto attribute value v2 one applies: 

[1 − c(vD, v2)]⋅tconorm(vD, v2) + c(vD, v2)⋅tnorm(vD, v2), (4) 
Or, by using symbols:  
[1 − c(vD, v2)]⋅(vD∨Fv2) + c(vD, v2)⋅(vD∧Fv2).   (5) 

II.3. Plithogenic Set as Generalization of other Sets  

The plithogenic set is an extension of all: crisp set, fuzzy set, 
intuitionistic fuzzy set, and neutrosophic set. 

For examples:  
Let U be a universe of discourse, and a non-empty set P ⊆

 U. Let x ∈ P be a generic element. 

II.3.1. Crisp (Classical) Set (CCS) 

The attribute is α = “appurtenance”;  
the set of attribute values V = {membership, 

nonmembership}, with cardinal |V| = 2;  
the dominant attribute value = membership; 



29 

the attribute value appurtenance degree function:  
d: P×V→{0, 1},      (6) 

d(x, membership) = 1,  d(x, nonmembership) = 0,  
and the attribute value contradiction degree function: 
c: V×V→{0, 1},     (7) 
c(membership, membership) = c(nonmembership, 

nonmembership) = 0, 
c(membership, nonmembership) = 1. 

II.3.1.1. Crisp (Classical) Intersection 
a /\ b ∊ {0, 1}      (8) 

II.3.1.2. Crisp (Classical) Union 
a \/ b ∊ {0, 1}      (9) 

II.3.1.3. Crisp (Classical) Complement (Negation) 
 a ∊ {0, 1}.      (10) 

II.3.2. Single-Valued Fuzzy Set (SVFS) 

The attribute is α = “appurtenance”;  
the set of attribute values V = {membership}, whose 

cardinal |V| = 1;  
the dominant attribute value = membership; 
the appurtenance attribute value degree function:  

d: P×V→[0, 1],      (11) 
with d(x, membership) ∈ [0, 1];  
and the attribute value contradiction degree function: 
c: V×V→[0, 1],      (12) 
c(membership, membership) = 0. 

II.3.2.1. Fuzzy Intersection 
a /\F b ∊ [0, 1]      (13) 
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II.3.2.2. Fuzzy Union 
a \/F b ∊ [0, 1]      (14) 

II.3.2.3. Fuzzy Complement (Negation) 
 F a = 1 – a ∊ [0, 1].     (15) 

II.3.3. Single-Valued Intuitionistic Fuzzy Set (SVIFS) 

The attribute is α = “appurtenance”;  
the set of attribute values V = {membership, 

nonmembership}, whose cardinal |V| = 2;  
the dominant attribute value = membership; 
the appurtenance attribute value degree function:  
d: P×V→[0, 1],       (16) 

d(x, membership) ∈ [0, 1], d(x, nonmembership) ∈ [0, 1],  
with d(x, membership) + d(x, nonmembership) ≤ 1,  
and the attribute value contradiction degree function: 
c: V×V→[0, 1],      (17) 
c(membership, membership) = c(nonmembership, 

nonmembership) = 0, 
c(membership, nonmembership) = 1, 

which means that for SVIFS aggregation operators’ intersection 
(AND) and union (OR), if one applies the tnorm on membership 
degree, then one has to apply the tconorm on nonmembership degree 
– and reciprocally. 

Therefore: 
II.3.3.1. Intuitionistic Fuzzy Intersection 

(a1, a2) /\IFS (𝑏1, 𝑏2) = 1 1 2 2( , )F Fa b a b    (18) 
II.3.3.2. Intuitionistic Fuzzy Union 

(a1, a2) \/IFS (𝑏1, 𝑏2) = 1 1 2 2( , )F Fa b a b  ,   (19) 
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and 
II.3.3.3. Intuitionistic Fuzzy Complement (Negation) 

 IFS (a1, a2) = (a2, a1).     (20) 
where ∧F and ∨F are the fuzzy tnorm and fuzzy tconorm respectively. 
II.3.3.4. Intuitionistic Fuzzy Inclusions (Partial Orders) 
II.3.3.4.1. Simple Intuitionistic Fuzzy Inclusion (the most used by 
the intuitionistic fuzzy community): 

(a1, a2) ≤IFS (𝑏1, 𝑏2)      (21) 
iff a1 ≤ b1 and a2 ≥ b2. 

II.3.3.4.2. Plithogenic (Complete) Intuitionistic Fuzzy Inclusion 
(that we now introduce for the first time): 

(a1, a2) ≤P (𝑏1, 𝑏2)      (22) 
iff 1 1 2 2,(1 ) (1 )v va c b a c b      ,  

where cv ∊ [0, 0.5) is the contradiction degree between the attribute 
dominant value and the attribute value v { the last one whose 
degree of appurtenance with respect to Expert A is (a1, a2), while 
with respect to Expert B is (b1, b2) }. If cv does not exist, we take 
it by default as equal to zero. 

II.3.4. Single-Valued Neutrosophic Set (SVNS) 

The attribute is α = “appurtenance”;  
the set of attribute values V = {membership, indeterminacy, 

nonmembership}, whose cardinal |V| = 3;  
the dominant attribute value = membership; 
the attribute value appurtenance degree function:  
d: P×V→[0, 1],      (23) 
d(x, membership) ∈ [0, 1], d(x, indeterminacy) ∈ [0, 1], 
d(x, nonmembership) ∈ [0, 1],  
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with 0 ≤ d(x, membership) + d(x, indeterminacy) + d(x, 
nonmembership) ≤ 3;  

and the attribute value contradiction degree function: 
c: V×V→[0, 1],      (24) 
c(membership, membership) = c(indeterminacy, indeterminacy) 

= c(nonmembership, nonmembership) = 0, 
c(membership, nonmembership) = 1, 
c(membership, indeterminacy) = c(nonmembership, 

indeterminacy) = 0.5, 
which means that for the SVNS aggregation operators 
(Intersection, Union, Complement etc.), if one applies the tnorm on 
membership, then one has to apply the tconorm on nonmembership 
{and reciprocally), while on indeterminacy one applies the average 
of tnorm and tconorm, as follows: 
II.3.4.1. Neutrosophic Intersection: 
II.3.4.1.1. Simple Neutrosophic Intersection (the most used by the 
neutrosophic community): 

(a1, a2, a3) ∧NS (𝑏1, 𝑏2, 𝑏3) =  11 2 2 3 3, , F F Fa b a b a b    (25) 

II.3.4.1.2. Plithogenic Neutrosophic Intersection 
 (a1, a2, a3) ∧P (𝑏1, 𝑏2, 𝑏3) = 

   1 1 2 2 2 2 3 3
1, , 
2F F F Fa b a b a b a b 

       
    (26) 

II.3.4.2. Neutrosophic Union: 
II.3.4.2.1. Simple Neutrosophic Union (the most used by the 
neutrosophic community): 

(a1, a2, a3) ∨NS (𝑏1, 𝑏2, 𝑏3) = 
 11 2 2 3 3, , F F Fa b a b a b       (27) 
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II.3.4.2.2. Plithogenic Neutrosophic Union 
(a1, a2, a3) ∨P (𝑏1, 𝑏2, 𝑏3) 

=    1 1 2 2 2 32 3
1, , 
2F F F Fa b a b a b a b 

       
 

. (28) 

In other way, with respect to what one applies on the 
membership, one applies the opposite on non-membership, while 
on indeterminacy one applies the average between them. 
II.3.4.3. Neutrosophic Complement (Negation): 

NS (𝑎1, 𝑎2, 𝑎3) = (𝑎3, 𝑎2, 𝑎1).   (29) 

II.3.4.4. Neutrosophic Inclusions (Partial-Orders) 
II.3.4.4.1. Simple Neutrosophic Inclusion (the most used by the 
neutrosophic community): 

(a1, a2, a3) ≤NS (𝑏1, 𝑏2, 𝑏3)     (30) 
iff a1 ≤ b1 and a2 ≥ b2, a3 ≥ b3. 
II.3.4.4.2. Plithogenic Neutrosophic Inclusion (defined now for 
the first time): 

Since the degrees of contradiction are 
c(a1, a2) = c(a2, a3) = c(b1, b2) = c(b2, b3) = 0.5, (31) 

one applies: a2 ≥ [1- c(a1, a2)]b2  or  a2 ≥ (1-0.5)b2  or  a2 ≥ 0.5∙b2 
while  

c(a1, a3) = c(b1, b3) = 1     (32) 
{having a1 ≤ b1 one does the opposite for a3 ≥ b3}, 

whence 
(a1, a2, a3) ≤P (𝑏1, 𝑏2, 𝑏3)     (33) 
iff a1 ≤ b1 and a2 ≥ 0.5∙b2, a3 ≥ b3. 
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II.3.5. Single-Valued Refined Fuzzy Set (SVRFS) 

For the first time the fuzzy set was refined by Smarandache 
[2] in 2016 as follows: 

A SVRFS number has the form: 
(T1, T2, …, Tp), 

where p ≥ 2 is an integer, and all Tj ∈ [0, 1], for j ∈ {1, 2, …, p}. 
The attribute α = “appurtenance”;  
the set of attribute values V = {m1, m2, …, mp}, where “m” 

means submembership; 
the dominant attribute values = m1, m2, …, mp; 
the attribute value appurtenance degree function:  
d: P×V→[0, 1],       (34) 
d(x, mj) ∈ [0, 1], for all j,  
and ∑ 𝑑𝑥(𝑚𝑗) ≤ 1

𝑝
𝑗=1 ;     (35) 

and the attribute value contradiction degree function: 
𝑐(𝑚𝑗1 , 𝑚𝑗2) = 0,      (36) 
for all j1, j2 ∈ {1, 2, …, p}. 
Aggregation operators on SVRFS: 
Let (𝑎𝑗 , 1 ≤ 𝑗 ≤ 𝑝), with all aj ∊ [0, 1], be a SVRFS number, 

which means that the sub-truths Tj = aj for all 1 ≤ 𝑗 ≤ 𝑝. 
II.3.5.1. Refined Fuzzy Intersection: 

(𝑎𝑗 , 1 ≤ 𝑗 ≤ 𝑝) ∧RFS (𝑏𝑗 , 1 ≤ 𝑗 ≤ 𝑝) 

=  ,1 j F ja b j p   .     (37) 

II.3.5.2. Refined Fuzzy Union: 
(𝑎𝑗 , 1 ≤ 𝑗 ≤ 𝑝) ∨RFS (𝑏𝑗 , 1 ≤ 𝑗 ≤ 𝑝) 

=  ,1 j F ja b j p   .     (38) 
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II.3.5.3. Refined Fuzzy Complement (Negation): 

RFS (𝑇𝑗 = 𝑎𝑗 , 1 ≤ 𝑗 ≤ 𝑝) = (𝐹𝑗 = 𝑎𝑗 , 1 ≤ 𝑗 ≤ 𝑝),  (39) 

where Fj are the sub-falsehoods, for all 1 ≤ 𝑗 ≤ 𝑝. 
II.3.5.4. Refined Fuzzy Inclusion (Partial-Order) 

(𝑎𝑗 , 1 ≤ 𝑗 ≤ 𝑝) ≤RFS (𝑏𝑗 , 1 ≤ 𝑗 ≤ 𝑝)    (40) 
iff aj ≤ 𝑏𝑗 for all 1 ≤ 𝑗 ≤ 𝑝. 

II.3.6. Single-Valued Refined Intuitionistic Fuzzy Set 

(SVRIFS) 

For the first time, the intuitionistic fuzzy set was refined by 
Smarandache [2] in 2016, as follows: 

A SVRIFS number has the form: 
(T1, T2, …, Tp; F1, F2, …, Fs), 

where p, r ≥ 1 are integers, and p + r ≥ 3, and all Tj, Fl ∈[0, 1], for 
j ∈{1, 2, …, p} and l ∈{1, 2, …, s}. 

The attribute α = “appurtenance”;  
the set of attribute values V = {m1, m2, …, mp; nm1, nm2, …, 

nmp}, where “m” means submembership, and “nm” 
subnonmembership; 

the dominant attribute values = m1, m2, …, mp; 
the attribute value appurtenance degree function: 
d: P×V→[0, 1],      (41) 
d(x, mj) ∈ [0, 1], for all j, and d(x, nml) ∈ [0, 1], for all l, 
where 
∑ 𝑑𝑥(𝑚𝑗)
𝑝
𝑗=1 + ∑ 𝑑𝑥(𝑛𝑚𝑙) ≤ 1

𝑠
𝑙=1 ;   (42) 

and the attribute value contradiction degree function: 
𝑐(𝑚𝑗1 , 𝑚𝑗2) =  𝑐(𝑛𝑚𝑙1 , 𝑛𝑚𝑙2) = 0,    (43) 
for all 𝑗1, 𝑗2 ∈ {1, 2, …, p}, and 𝑙1, 𝑙2 ∈ {1, 2, …, s}, 
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while 𝑐(𝑚𝑗 , 𝑛𝑚𝑙) = 1 for all j and l. 
Aggregation operators on SVRIFS: 

II.3.6.1. Refined Intuitionistic Set Intersection: 
(𝑎𝑗 , 1 ≤ 𝑗 ≤ 𝑝; 𝑏𝑙 , 1 ≤ 𝑙 ≤ 𝑠) RIFS  

(𝑐𝑗 , 1 ≤ 𝑗 ≤ 𝑝; 𝑑𝑙 , 1 ≤ 𝑙 ≤ 𝑠) =

 ,1 ; ,1j F j l F la c j p b d l s      .   (44) 

II.3.6.2. Refined Intuitionistic Set Union 
(𝑎𝑗 , 1 ≤ 𝑗 ≤ 𝑝; 𝑏𝑙 , 1 ≤ 𝑙 ≤ 𝑠) RIFS  

(𝑐𝑗 , 1 ≤ 𝑗 ≤ 𝑝; 𝑑𝑙 , 1 ≤ 𝑙 ≤ 𝑠) =

 ,1 ; ,1j F j l F la c j p b d l s      .   (45) 

II.3.6.3. Refined Intuitionistic Complement (Negation) 

RIFS (𝑇𝑗 = 𝑎𝑗 , 1 ≤ 𝑗 ≤ 𝑝; 𝐹𝑗 = 𝑏𝑙 , 1 ≤ 𝑙 ≤ 𝑠) =  

(𝑇𝑗 = 𝑏𝑙 , 1 ≤ 𝑙 ≤ 𝑠; 𝐹𝑗 = 𝑎𝑗 , 1 ≤ 𝑗 ≤ 𝑝).  (46) 

II.3.6.4. Refined Intuitionistic Inclusions (Partial Orders) 
II.3.6.4.1. Simple Refined Intuitionistic Inclusion 
(𝑎𝑗 , 1 ≤ 𝑗 ≤ 𝑝; 𝑏𝑙 , 1 ≤ 𝑙 ≤ 𝑠) RIFS  

(𝑢𝑗 , 1 ≤ 𝑗 ≤ 𝑝; 𝑤𝑙 , 1 ≤ 𝑙 ≤ 𝑠)    (47) 
iff  
aj ≤ uj for all 1 ≤ 𝑗 ≤ 𝑝 and wl ≥ dl for all 1 ≤ 𝑙 ≤ 𝑠. 

II.3.6.4.2. Plithogenic Refined Intuitionistic Inclusion 

 

 

,1 ; ,1  

,1 ; ,1 

j l P

j l

a j p b l s

u j p w l s

    

   
     (48) 

iff (1 )j v ja c u    for all 1 ≤ 𝑗 ≤ 𝑝  and (1 )l v lb c w    

for all 1 ≤ 𝑙 ≤ 𝑠, 
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where similarly cv ∊ [0, 0.5) is the contradiction degree between 
the attribute dominant value and the attribute value v. If cv does not 
exist, we take it by default as equal to zero. 

II.3.7. Single-Valued Finitely Refined Neutrosophic Set 

(SVFRNS) 

The Single-Valued Refined Neutrosophic Set and Logic 
were first defined by Smarandache [3] in 2013.  

A SVFRNS number has the form: 
(T1, T2, …, Tp; I1, I2, …, Ir; F1, F2, …, Fs), 
where p, r, s ≥1 are integers, with p + r + s ≥ 4, 
and all Tj, Ik, Fl ∈[0, 1], for j ∈ {1, 2, …, p}, k ∈ {1, 2, …, 

r}, and l ∈ {1, 2, …, s}. 
The attribute α = “appurtenance”;  
the set of attribute values V = {m1, m2, …, mp; i1, i2, …, ir; 

f1, f2, …, fs}, where “m” means submembership, “i” 
subindeterminacy, and “f” sub-nonmembership; 

the dominant attribute values = m1, m2, …, mp; 
the attribute value appurtenance degree function: 
d: P×V→[0, 1],      (49) 
d(x, mj) ∈ [0, 1], d(x, ik) ∈ [0, 1], d(x, fl) ∈ [0, 1], for all j, k, l,  
with 
0 ≤ ∑ 𝑑𝑥(𝑚𝑗)

𝑝
𝑗=1 + ∑ 𝑑𝑥(𝑖𝑘)

𝑟
𝑘=1 + ∑ 𝑑𝑥(𝑓𝑙) ≤ 𝑝 + 𝑟 + 𝑠;

𝑠
𝑙=1  

        (50) 
and the attribute value contradiction degree function: 
𝑐(𝑚𝑗1 , 𝑚𝑗2) =  𝑐(𝑖𝑘1 , 𝑖𝑘2) =  𝑐(𝑓𝑙1 , 𝑓𝑙2) = 0,   (51) 
for all j1, j2 ∈ {1, 2, …., p}, 𝑘1, 𝑘2 ∈ {1, 2, …., r}, and 𝑙1, 

𝑙2 ∈ {1, 2, …., s}; 
𝑐(𝑚𝑗 , 𝑓𝑙) = 1,       (52) 
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𝑐(𝑚𝑗 , 𝑖𝑘) = 𝑐(𝑓𝑙 , 𝑖𝑘) = 0.5,    (53) 
for all j, k, l. 
Aggregation operators on SVFRNS: 

II.3.7.1. Refined Neutrosophic Set Intersection: 
(𝑎𝑗 , 1 ≤ 𝑗 ≤ 𝑝; 𝑏𝑘, 1 ≤ 𝑘 ≤ 𝑟; 𝑔𝑙 , 1 ≤ 𝑙 ≤ 𝑠 ) RNS  

(𝑢𝑗 , 1 ≤ 𝑗 ≤ 𝑝; 𝑜𝑘, 1 ≤ 𝑘 ≤ 𝑟; 𝑤𝑙 , 1 ≤ 𝑙 ≤ 𝑠) =

   
1,1 ; , ,
2

1

j F j k F k k F k l F la u j p b o b o g w

l s

 
         

 
  

; 

        (54) 
and  

II.3.7.2. Refined Neutrosophic Set Union: 
(𝑎𝑗 , 1 ≤ 𝑗 ≤ 𝑝; 𝑏𝑘, 1 ≤ 𝑘 ≤ 𝑟; 𝑔𝑙 , 1 ≤ 𝑙 ≤ 𝑠 ) RNS  

(𝑢𝑗 , 1 ≤ 𝑗 ≤ 𝑝; 𝑜𝑘, 1 ≤ 𝑘 ≤ 𝑟; 𝑤𝑙 , 1 ≤ 𝑙 ≤ 𝑠) =

   
1,1 ; ,
2

1 ; ,1

j F j k F k k F k

l F l

a u j p b o b o

k r g w l s

 
        

 
     

.  (55) 

II.3.7.3. Refined Neutrosophic Complement (Negation): 

NS (
𝑇𝑗 = 𝑎𝑗 , 1 ≤ 𝑗 ≤ 𝑝; 𝐼𝑘 = 𝑏𝑘,

1 ≤ 𝑘 ≤ 𝑟; 𝐹𝑙 = 𝑔𝑙 , 1 ≤ 𝑙 ≤ 𝑠 
)
 = 

= (
𝑇𝑗 = 𝑔𝑙 , 1 ≤ 𝑙 ≤ 𝑠 ; 𝐼𝑘 = 𝑏𝑘, 1 ≤ 𝑘 ≤ 𝑟; 

𝑔𝑙 , 1 ≤ 𝑙 ≤ 𝑠; 𝐹𝑙 = 𝑎𝑗 , 1 ≤ 𝑗 ≤ 𝑝 
), (56) 

where all Tj = sub-truths, all Ik = sub-indeterminacies, and all Fl = 
sub-falsehoods. 
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II.3.7.4. Refined Neutrosophic Inclusions (Partial-Orders): 
II.3.7.4.1. Simple Refined Neutrosophic Inclusion 
(𝑎𝑗 , 1 ≤ 𝑗 ≤ 𝑝; 𝑏𝑘, 1 ≤ 𝑘 ≤ 𝑟; 𝑔𝑙 , 1 ≤ 𝑙 ≤ 𝑠 ) RNS  

(𝑢𝑗 , 1 ≤ 𝑗 ≤ 𝑝; 𝑜𝑘, 1 ≤ 𝑘 ≤ 𝑟; 𝑤𝑙 , 1 ≤ 𝑙 ≤ 𝑠)  (57) 
iff all aj ≤ uj, all bk ≥ok and all gl ≥ wl. 

II.3.7.4.2. Plithogenic Refined Neutrosophic Inclusion 

 

 

,1 ; ,1 ; ,1  

,1 ; ,1 ; ,1

j k l

P j k l

a j p b k r g l s

u j p o k r w l s

     

      
   (58) 

iff all aj ≤ (1-cv)∙uj, all bk ≥ (1-cv)∙ok and all gl ≥ (1-cv)∙wl,  
where cv ∊ [0, 0.5) is the contradiction degree between the attribute 
dominant value and the attribute value v. If cv does not exist, we 
take it by default as equal to zero. 

II.4. One-Attribute-Value Plithogenic Single-Valued 

Set Operators 

If onto the dominant attribute value 𝑣𝐷  one applies the 
plithogenic tnorm, then on an attribute value 𝑣1 whose contradiction 
degree with respect to 𝑣𝐷 is 1, one applies the opposite, i.e. the 
plithogenic tconorm. 

While onto an attribute value 𝑣2 whose contradiction degree 
with respect to 𝑣𝐷  belongs to (0, 1), one applies a linear 
combination of the tnorm and tconorm: 

𝛼 ∙ tnorm[𝑑𝐴(𝑣2), 𝑑𝐵(𝑣2)] + 𝛽 ∙ tconorm[𝑑𝐴(𝑣2), 𝑑𝐵(𝑣2)], (59) 
with 𝛼, 𝛽 ∈ (0, 1), and 𝛼 + 𝛽 = 1. 
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When doing a plithogenic intersection: the closer is 
𝑐(𝑣𝐷, 𝑣2) to 0, the larger is the percentage of tnorm added and the 
smaller is the percentage of tconorm added. 

And reciprocally, when doing a plithogenic union: the closer 
is 𝑐(𝑣𝐷, 𝑣2) to 0, the smaller is the percentage of tnorm added and 
the bigger is the percentage of tconorm added. 

If 𝑐(𝑣𝐷, 𝑣2) =
1

2
, then the plithogenic intersection coincides 

with the plithogenic union: 
𝑑𝐴(𝑣2) ∧𝑝 𝑑𝐵(𝑣2) = 

1

2
⋅ [𝑑𝐴(𝑣2) ∧𝐹 𝑑𝐵(𝑣2)] +

1

2
⋅ [𝑑𝐴(𝑣2) ∨𝐹 𝑑𝐵(𝑣2)], (60) 

while 
𝑑𝐴(𝑣2) ∨𝑝 𝑑𝐵(𝑣2) = 

1

2
⋅ [𝑑𝐴(𝑣2) ∨𝐹 𝑑𝐵(𝑣2)] +

1

2
⋅ [𝑑𝐴(𝑣2) ∧𝐹 𝑑𝐵(𝑣2)]. (61) 

If onto 𝑣𝐷  one applies ∧𝑝, then on all v’s with 𝑐(𝑣𝐷, 𝑣) <
0.5 one also applies ∧𝑝 , while on those v’s with 𝑐(𝑣𝐷, 𝑣) ≥ 0.5 
one applies the opposite (∨𝑝). 

And reciprocally: if on 𝑣𝐷  one applies ∨𝑝 , then on all v’s 
with 𝑐(𝑣𝐷, 𝑣) < 0.5 one also applies ∨𝑝, while on those v’s with 
𝑐(𝑣𝐷, 𝑣) ≥ 0.5 one applies the opposite (∧𝑝). 

II.4.1. One-Attribute-Value Plithogenic Single-Valued 

Fuzzy Set Operators 

Let U be a universe of discourse, and a subset of it P be a 
plithogenic set, and 𝑥 ∈ 𝑃 an element. Let α be a uni-dimensional 
attribute that characterize x, and v an attribute value, 𝑣 ∈ 𝑉, where 
V is set of all attribute’s α values used into solving an application. 
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The degree of contradiction 𝑐(𝑣𝐷, 𝑣) = 𝑐0 ∈ [0, 1] between 
the dominant attribute value 𝑣𝐷 and the attribute value v. 

Let’s consider two experts, A and B, each evaluating the 
single-valued fuzzy degree of appurtenance of attribute value v of 
x to the set P with respect to some given criteria: 

𝑑𝐴
𝐹(𝑣) = 𝑎 ∈ [0, 1], and 
𝑑𝐵
𝐹(𝑣) = 𝑏 ∈ [0, 1]. 

Let ∧𝐹 and ∨𝐹 be a fuzzy tnorm and respectively fuzzy tconorm. 

II.4.2. One-Attribute-Value Plithogenic Single-Valued 

Fuzzy Set Intersection 

𝑎 ∧𝑝 𝑏 = (1 − 𝑐0) ∙ [𝑎 ∧𝐹 𝑏] + 𝑐0 ∙ [𝑎 ∨𝐹 𝑏].  (62) 
If 𝑐(𝑣𝐷, 𝑣) = 𝑐0 ∊ [0, 0.5) then more weight is assigned onto 

the tnorm(a, b)= 𝑎 ∧𝐹 𝑏  than onto tconorm(a,b) =  𝑎 ∨𝐹 𝑏 ; this is a 
proper plithogenic intersection. 

If 𝑐(𝑣𝐷, 𝑣) = 𝑐0 ∊ (0.5, 1] then less weight is assigned onto 
the tnorm(a, b)= 𝑎 ∧𝐹 𝑏 than onto tconorm(a,b) = 𝑎 ∨𝐹 𝑏; this becomes 
(rather) an improper plithogenic union. 

If 𝑐(𝑣𝐷, 𝑣) = 𝑐0 ∊ 0.5 then the same weight {0.5} is assigned 
onto the  

tnorm(a, b)= 𝑎 ∧𝐹 𝑏 and on tconorm(a,b) = 𝑎 ∨𝐹 𝑏. 

II.4.3. One-Attribute-Value Plithogenic Single-Valued 

Fuzzy Set Union 

𝑎 ∨𝑝 𝑏 = (1 − 𝑐0) ∙ [𝑎 ∨𝐹 𝑏] + 𝑐0 ∙ [𝑎 ∧𝐹 𝑏].  (63) 
If 𝑐(𝑣𝐷, 𝑣) = 𝑐0 ∊ [0, 0.5) then more weight is assigned onto 

the tconorm(a, b)= 𝑎 ∨𝐹 𝑏  than onto tnorm(a,b) =  𝑎 ∧𝐹 𝑏 ; this is a 
proper plithogenic union. 
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If 𝑐(𝑣𝐷, 𝑣) = 𝑐0 ∊ (0.5, 1] then less weight is assigned onto 
the tconorm(a, b)= 𝑎 ∨𝐹 𝑏  than onto tnorm(a,b) =  𝑎 ∧𝐹 𝑏 ; this is 
(rather) an improper plithogenic intersection. 

If 𝑐(𝑣𝐷, 𝑣) = 𝑐0 ∊ 0.5 then the same weight {0.5} is assigned 
onto the  

tconorm(a, b)= 𝑎 ∧𝐹 𝑏 and on tnorm(a,b) = 𝑎 ∨𝐹 𝑏. 

II.4.4. One-Attribute-Value Plithogenic Single-Valued 

Fuzzy Set Complements (Negations) 

II.4.4.1. Denying the Attribute Value 
¬𝑝(𝑣) = 𝑎𝑛𝑡𝑖(𝑣),      (64) 
i.e. the opposite of v, where 𝑎𝑛𝑡𝑖(𝑣) ∈ 𝑉  or 𝑎𝑛𝑡𝑖(𝑣) ∈

𝑅𝑒𝑓𝑖𝑛𝑒𝑑𝑉 (refined set of V). 
So, we get: 
𝑑𝐴
𝐹(𝑎𝑛𝑡𝑖(𝑣)) = 𝑎.     (65) 

II.4.4.2. Denying the Attribute Value Degree 
¬𝑝(𝑎) = 1 − 𝑎, or ¬𝑝𝑑𝐴𝐹(𝑣) = 1 − 𝑎.  (66) 

(
𝑣
𝑎
)
𝑛𝑒𝑔𝑎𝑡𝑖𝑜𝑛
→      (

𝑎𝑛𝑡𝑖(𝑣)
𝑎

) or ( 
𝑣

1 − 𝑎
).   (67) 

II.5. One-Attribute-Value Plithogenic Single-Valued 

Intuitionistic Fuzzy Set Operators 

Let’s consider the single-valued intuitionistic fuzzy degree 
of appurtenance of attribute value v of x to the set P with respect 
to some given criteria: 

𝑑𝐴
𝐼𝐹(𝑣) = (𝑎1, 𝑎2) ∈ [0, 1]

2,     (68) 
and 
𝑑𝐵
𝐼𝐹(𝑣) = (𝑏1, 𝑏2) ∈ [0, 1]

2.    (69) 
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II.5.1. One-Attribute-Value Plithogenic Single-Valued 

Intuitionistic Fuzzy Set Intersection 

(𝑎1, 𝑎2) ∧𝑝 (𝑏1, 𝑏2) = (𝑎1 ∧𝑝 𝑎2, 𝑏1 ∨𝑝 𝑏2 ).  (70) 

II.5.2. One-Attribute-Value Plithogenic Single-Valued 

Intuitionistic Fuzzy Set Union 

(𝑎1, 𝑎2) ∨𝑝 (𝑏1, 𝑏2) = (𝑎1 ∨𝑝 𝑎2, 𝑏1 ∧𝑝 𝑏2 ).  (71) 

II.5.3. One-Attribute-Value Plithogenic Single-Valued 

Intuitionistic Complements Set (Negations) 

¬𝑝(𝑎1, 𝑎2) = (𝑎2, 𝑎1)     (72) 
¬𝑝(𝑎1, 𝑎2) = (1 − 𝑎1, 1 − 𝑎2)   (73) 
Etc. 

II.5.4. One-Attribute-Value Plithogenic Single-Valued 

Intuitionistic Fuzzy Set Inclusions (Partial Orders) 

(𝑎1, 𝑎2) ≤𝑝 (𝑏1, 𝑏2)  if a1 ≤ (1-cv)∙b1, a2 ≥ (1-cv)∙b2,  (74) 
where cv ∊ [0, 0.5) is the contradiction degree between the attribute 
dominant value and the attribute value v. 

II.5.5. One-Attribute-Value Plithogenic Single-Valued 

Intuitionistic Fuzzy Set Equality 

(𝑎1, 𝑎2) =𝑝 (𝑏1, 𝑏2)  if (𝑎1, 𝑎2) ≤𝑝 (𝑏1, 𝑏2)   (75) 
and  
(𝑏1, 𝑏2) ≤𝑝 (𝑎1, 𝑎2).     (76) 
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II.6. One-Attribute Value Plithogenic Single-Valued 

Neutrosophic Set Operators 

Let’s consider the single-valued neutrosophic degree of 
appurtenance of attribute value v of x to the set P with respect to 
some given criteria: 

𝑑𝐴
𝑁(𝑣) = (𝑎1, 𝑎2, 𝑎3) ∈ [0, 1]

3,    (77) 
and 
𝑑𝐵
𝑁(𝑣) = (𝑏1, 𝑏2, 𝑏3) ∈ [0, 1]

3.   (78) 

II.6.1. One-Attribute-Value Plithogenic Single-Valued 

Neutrosophic Set Intersection 

(𝑎1, 𝑎2, 𝑎3) ∧𝑝 (𝑏1, 𝑏2, 𝑏3) = 

= (𝑎1 ∧𝑝 𝑏1,
1

2
(𝑎2 ∧𝐹 𝑏2 + 𝑎2 ∧𝐹 𝑏2), 𝑎3 ∨𝑝 𝑏3). (79) 

II.6.2. One-Attribute-Value Plithogenic Single-Valued 

Neutrosophic Set Union 

(𝑎1, 𝑎2, 𝑎3) ∨𝑝 (𝑏1, 𝑏2, 𝑏3) = 

(𝑎1 ∨𝑝 𝑏1,
1

2
(𝑎2 ∧𝐹 𝑏2 + 𝑎2 ∨𝐹 𝑏2), 𝑎3 ∧𝑝 𝑏3 ). (80) 

II.6.3. One-Attribute-Value Plithogenic Single-Valued 

Neutrosophic Set Complements (Negations) 

¬𝑝(𝑎1, 𝑎2, 𝑎3) = (𝑎3, 𝑎2, 𝑎1)    (81) 
¬𝑝(𝑎1, 𝑎2, 𝑎3) = (𝑎3, 1 − 𝑎2, 𝑎1)   (82) 
¬𝑝(𝑎1, 𝑎2, 𝑎3) = (1 − 𝑎1, 𝑎2, 1 − 𝑎3)   (83) 
Etc. 
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II.6.4. One-Attribute-Value Plithogenic Single-Valued 

Neutrosophic Inclusions Set (Partial Orders) 

II.6.4.1. Simple Neutrosophic Inclusion 
(𝑎1, 𝑎2, 𝑎3) ≤𝑁 (𝑏1, 𝑏2, 𝑏3)      (84) 
if a1 ≤ b1, a2 ≥ b2, a3 ≥ b3.  

II.6.4.2. Complete Neutrosophic Inclusion 
(𝑎1, 𝑎2, 𝑎3) ≤𝑝 (𝑏1, 𝑏2, 𝑏3)      (85) 
if a1 ≤ b1, a2 ≥ 0.5∙b2, a3 ≥ b3. 

II.6.5. One-Attribute-Value Plithogenic Single-Valued 

Neutrosophic Set Equality  

(𝑎1, 𝑎2, 𝑎3) =𝑁 (𝑏1, 𝑏2, 𝑏3)   (86) 
if (𝑎1, 𝑎2, 𝑎3) ≤𝑁 (𝑏1, 𝑏2, 𝑏3)  
and (𝑏1, 𝑏2, 𝑏3) ≤𝑁 (𝑎1, 𝑎2, 𝑎3). 
And similarly: 
(𝑎1, 𝑎2, 𝑎3) =𝑝 (𝑏1, 𝑏2, 𝑏3)    (87) 
if (𝑎1, 𝑎2, 𝑎3) ≤𝑝 (𝑏1, 𝑏2, 𝑏3)  
and (𝑏1, 𝑏2, 𝑏3) ≤𝑝 (𝑎1, 𝑎2, 𝑎3). 

II.7. n-Attribute-Values Plithogenic Single-Valued 

Set Operators 

The easiest way to apply the plithogenic operators on a 
multi-attribute plithogenic set is to split back the m-dimensional 
attribute, 𝑚 ≥ 1, into m uni-dimensional attributes, and separately 
apply the plithogenic operators on the set of all values (needed by 
the application to solve) of each given attribute. 
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Therefore, let α be a given attribute, characterizing each 
element 𝑥 ∈ 𝑃, whose set of values are: 

𝑉 = {𝑣1, 𝑣2, … , 𝑣𝑛} ≡ {𝑣𝐷, 𝑣2, … , 𝑣𝑛}, 𝑛 ≥ 1,  (88) 
where 𝑣𝐷 = dominant attribute value, and 𝑐(𝑣𝐷, 𝑣𝑖) = 𝑐𝑖 ∈ [0, 1] 
the contradiction degrees. Without restricting the generality, we 
consider the values arranged in an increasing order with respect to 
their contradiction degrees, i.e.: 

𝑐(𝑣𝐷, 𝑣𝐷) = 0 ≤ 𝑐1 ≤ 𝑐2 ≤ ⋯ ≤ 𝑐𝑖0 <
1

2
≤ 

≤ 𝑐𝑖0+1 ≤ ⋯ ≤ 𝑐𝑛 ≤ 1.    (89) 

II.7.1. n-Attribute-Values Plithogenic Single-Valued 

Fuzzy Set Operators 

Let’s consider two experts, A and B, which evaluate an 
element x, with respect to the fuzzy degree of the values 𝑣1, … , 𝑣𝑛 
of appurtenance to the set P, upon some given criteria: 

𝑑𝐴
𝐹: 𝑃 × 𝑉 → [0, 1], 𝑑𝐴𝐹(𝑥, 𝑣𝑖) = 𝑎𝑖 ∈ [0, 1],  (90) 
𝑑𝐵
𝐹: 𝑃 × 𝑉 → [0, 1], 𝑑𝐵𝐹(𝑥, 𝑣𝑖) = 𝑏𝑖 ∈ [0, 1],  (91) 

for all 𝑖 ∈ {1, 2, … , 𝑛}. 

II.7.2. n-Attribute-Values Plithogenic Single-Valued 

Fuzzy Set Intersection 

(𝑎1, 𝑎2, … , 𝑎𝑖0 , 𝑎𝑖0+1, … , 𝑎𝑛) ∧𝑝 (𝑏1, 𝑏2, … , 𝑏𝑖0 , 𝑏𝑖0+1, … , 𝑏𝑛) = 

(
𝑎1 ∧𝑝 𝑏1, 𝑎2 ∧𝑝 𝑏2, … , 𝑎𝑖0 ∧𝑝 𝑏𝑖0 ,

𝑎𝑖0+1 ∧𝑝 𝑏𝑖0+1, … , 𝑎𝑛 ∧𝑝 𝑏𝑛 
)  (92) 

The first 𝑖0 intersections are proper plithogenic intersections 
(the weights onto the tnorm’s are bigger than onto tconorm’s): 

𝑎1 ∧𝑝 𝑏1, 𝑎2 ∧𝑝 𝑏2, … , 𝑎𝑖0 ∧𝑝 𝑏𝑖0   (93) 
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whereas the next n - 𝑖0 intersections 
𝑎𝑖0+1 ∧𝑝 𝑏𝑖0+1, … , 𝑎𝑛 ∧𝑝 𝑏𝑛    (94) 
are improper plithogenic unions (since the weights onto the 

tnorm’s are less than onto tconorm’s): 

II.7.3. n-Attribute-Values Plithogenic Single-Valued 

Fuzzy Set Union 

(𝑎1, 𝑎2, … , 𝑎𝑖0 , 𝑎𝑖0+1, … , 𝑎𝑛) ∨𝑝 (𝑏1, 𝑏2, … , 𝑏𝑖0 , 𝑏𝑖0+1, … , 𝑏𝑛)

= (𝑎1 ∨𝑝 𝑏1, 𝑎2 ∨𝑝 𝑏2, … , 𝑎𝑖0 ∨𝑝 𝑏𝑖0 , 𝑎𝑖0+1 ∨𝑝 𝑏𝑖0+1, … , 𝑎𝑛 ∨𝑝 𝑏𝑛 ) 
        (95) 
The first 𝑖0 unions are proper plithogenic unions (the weights 

onto the tconorm’s are bigger than onto tnorm’s): 
𝑎1 ∨𝑝 𝑏1, 𝑎2 ∨𝑝 𝑏2, … , 𝑎𝑖0 ∨𝑝 𝑏𝑖0   (96) 
whereas the next n - 𝑖0 unions 
𝑎𝑖0+1 ∨𝑝 𝑏𝑖0+1, … , 𝑎𝑛 ∨𝑝 𝑏𝑛    (97) 
are improper plithogenic intersections (since the weights 

onto the tconorm’s are less than onto tnorm’s): 

II.7.4. n-Attribute-Values Plithogenic Single-Valued 

Fuzzy Set Complements (Negations) 

In general, for a generic 𝑥 ∈ 𝑃 , characterized by the uni-
dimensional attribute α, whose values are 𝑉 = (𝑣𝐷, 𝑣2, … , 𝑣𝑛), 𝑛 ≥
2, whose attribute value contradiction degrees (with respect to the 
dominant attribute value 𝑣𝐷 ) are respectively: 0 ≤ 𝑐2 ≤ ⋯ ≤
𝑐𝑛−1 ≤ 𝑐𝑛 ≤ 1, and their attribute value degrees of appurtenance 
to the set 𝑃 are respectively 𝑎𝐷 , 𝑎2, … , 𝑎𝑛−1, 𝑎𝑛 ∈ [0, 1], then the 
plithogenic fuzzy complement (negation) of 𝑥 is: 
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¬𝑝[ 𝑥 (
0
𝑣𝐷
𝑎𝐷

,

𝑐2
𝑣2
𝑎2
, … ,

𝑐𝑛−1
𝑣𝑛−1
𝑎𝑛−1

,

𝑐𝑛
𝑣𝑛
𝑎𝑛
) ] =

¬𝑝𝑥 (

1 − 𝑐𝑛
𝑎𝑛𝑡𝑖(𝑣𝑛)
𝑎𝑛

 

1 − 𝑐𝑛−1
𝑎𝑛𝑡𝑖(𝑣𝑛−1)
𝑎𝑛−1

 …

1 − 𝑐2
𝑎𝑛𝑡𝑖(𝑣2)
𝑎2

 

1 − 𝑐𝐷
𝑎𝑛𝑡𝑖(𝑣𝐷)
𝑎𝐷

). (98) 

Some 𝑎𝑛𝑡𝑖(𝑉𝑖) may coincide with some 𝑉𝑗 , whereas other 
𝑎𝑛𝑡𝑖(𝑉𝑖) may fall in between two consecutive [𝑣𝑘, 𝑣𝑘+1] or we 
may say that they belong to the Refined set V; 

or 

= {
𝑣𝑛 𝑣𝑛−1… … 𝑣1
𝑎1, 𝑎2, … , , … , 𝑎𝑛

}     (99) 

 {This version gives an exact result when the contradiction 
degrees are equi-distant (for example: 0, 0.25, 0.50, 0.75, 1) or 
symmetric with respect to the center 0.5 (for example: 0, 0.4, 0.6, 
1), and an approximate result when they are not equi-distant and 
not symmetric to the center (for example: 0, 0.3, 0.8, 0.9, 1);} 

or  

{
𝑣1          𝑣2     …     𝑣𝑖0       𝑣𝑖0+1      …     𝑣𝑛

1 − 𝑎1   1 − 𝑎2…1 − 𝑎𝑖0   1 − 𝑎𝑖0+1  …  1 − 𝑎𝑛
} (100) 

where 𝑎𝑛𝑡𝑖(𝑣𝑖) ∈ 𝑉  or 𝑎𝑛𝑡𝑖(𝑣𝑖) ∈ 𝑅𝑒𝑓𝑖𝑛𝑒𝑑𝑉 , for all 𝑖 ∈
{1, 2, … , 𝑛}. 

II.7.5. n-Attribute-Values Plithogenic Single-Valued 

Fuzzy Set Inclusions (Partial Orders) 

II.7.5.1. Simple Inclusion (Partial Order) 
(𝑎1, 𝑎2, … , 𝑎𝑖0 , 𝑎𝑖0+1, … , 𝑎𝑛) ≤𝑁 

(𝑏1, 𝑏2, … , 𝑏𝑖0 , 𝑏𝑖0+1, … , 𝑏𝑛)      (101) 
if 
𝑎1 ≤ 𝑏1, 𝑎2 ≤ 𝑏2, …, 
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𝑎𝑖0 ≤ 𝑏𝑖0 , 𝑎𝑖0+1 ≥ 𝑏𝑖0+1, … , 𝑎𝑛 ≥ 𝑏𝑛.   (102) 

II.7.5.2. Plithogenic Inclusion (Partial Order) 
(𝑎1, 𝑎2, … , 𝑎𝑖0 , 𝑎𝑖0+1, … , 𝑎𝑛) ≤𝑝 

(𝑏1, 𝑏2, … , 𝑏𝑖0 , 𝑏𝑖0+1, … , 𝑏𝑛)   (103) 
if 
a1 ≤ (1-c1)∙ 𝑏1,  
a2 ≤ (1-c2)∙ 𝑏2,…,  

0 0 0

0 0 01 1 1

(1 ) ,

(1 ) , ,

(1 )

i i i

i i i

n n n

a c b

a c b

a c b
  

  

   

  

. 

II.7.6. n-Attribute-Values Plithogenic Single-Valued 

Fuzzy Set Equality 

(𝑎1, 𝑎2, … , 𝑎𝑖0 , 𝑎𝑖0+1, … , 𝑎𝑛) =𝑝 

(𝑏1, 𝑏2, … , 𝑏𝑖0 , 𝑏𝑖0+1, … , 𝑏𝑛)    (104) 
if  

(𝑎1, 𝑎2, … , 𝑎𝑖0 , 𝑎𝑖0+1, … , 𝑎𝑛) ≤𝑝 

(𝑏1, 𝑏2, … , 𝑏𝑖0 , 𝑏𝑖0+1, … , 𝑏𝑛)     (105) 
and 
(𝑏1, 𝑏2, … , 𝑏𝑖0 , 𝑏𝑖0+1, … , 𝑏𝑛) ≤𝑝 

(𝑎1, 𝑎2, … , 𝑎𝑖0 , 𝑎𝑖0+1, … , 𝑎𝑛).     (106) 
Similarly for “=N”. 

II.8. n-Attribute-Values Plithogenic Single-Valued 

Intuitionistic Fuzzy Set Operators 

Let the intuitionistic fuzzy degree functions be: 
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𝑑𝐴
𝐼𝐹: 𝑃 × 𝑉 → [0, 1]2, 𝑑𝐴𝐼𝐹(𝑥, 𝑣𝑖) = (𝑎𝑖1 , 𝑎𝑖2) ∈ [0, 1]

2,  (107) 
𝑑𝐵
𝐼𝐹: 𝑃 × 𝑉 → [0, 1]2, 𝑑𝐵𝐼𝐹(𝑥, 𝑣𝑖) = (𝑏𝑖1 , 𝑏𝑖2) ∈ [0, 1]

2,  (108) 
for all 𝑖 ∈ {1, 2, … , 𝑛}. 

II.8.1. n-Attribute-Values Plithogenic Single-Valued 

Intuitionistic Fuzzy Set Intersection 

((𝑎11, 𝑎12), (𝑎21, 𝑎22), … , (𝑎𝑖01, 𝑎𝑖02), (𝑎𝑖0+1,1, 𝑎𝑖0+1,2), … , (𝑎𝑛1, 𝑎𝑛2))  ∧𝑝 

((𝑏11, 𝑏12), (𝑏21, 𝑏22), … , (𝑏𝑖01, 𝑏𝑖02), (𝑏𝑖0+1,1, 𝑏𝑖0+1,2), … , (𝑏𝑛1, 𝑏𝑛2)) = 

(

(𝑎11 ∧𝑝 𝑏11, 𝑎12 ∨𝑝 𝑏12), (𝑎21 ∧𝑝 𝑏21, 𝑎22 ∨𝑝 𝑏22), … ,

(𝑎𝑖01 ∧𝑝 𝑏𝑖01, 𝑎𝑖02 ∨𝑝 𝑏𝑖02), (𝑎𝑖0+1,1 ∧𝑝 𝑏𝑖0+1,1, 𝑎𝑖01,2 ∨𝑝 𝑏𝑖01,2), … ,

(𝑎𝑛1 ∧𝑝 𝑏𝑛1, 𝑎𝑛2 ∨𝑝 𝑏𝑛2)

). 

(109) 
Similarly, the first 𝑖0  intersections (of first duplet 

components) are proper plithogenic intuitionistic fuzzy 
intersections 

 (𝑎11 ∧𝑝 𝑏11, 𝑎12 ∨𝑝 𝑏12), (𝑎21 ∧𝑝 𝑏21, 𝑎22 ∨𝑝 𝑏22), …, 

(𝑎𝑖01 ∧𝑝 𝑏𝑖01, 𝑎𝑖02 ∨𝑝 𝑏𝑖02),    (110) 
since for each duplet, for the first component, the weights 

onto the tnorm’s are bigger than onto tconorm’s, while for the second 
component the weights onto the tnorm’s are smaller than onto 
tconorm’s, 

And the next n - 𝑖0 intersections (of first duplet components) 
are rather plithogenic intuitionistic fuzzy unions: 
(𝑎𝑖0+1,1 ∧𝑝 𝑏𝑖0+1,1, 𝑎𝑖01,2 ∨𝑝 𝑏𝑖01,2),… , (𝑎𝑛1 ∧𝑝 𝑏𝑛1, 𝑎𝑛2 ∨𝑝 𝑏𝑛2) 

        (111) 
since for each duplet, for the first component, the weights 

onto the tnorm’s are smaller than onto tconorm’s, while for the second 
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component the weights onto the tnorm’s are bigger than onto 
tconorm’s, 

II.8.2. Attribute-Values Plithogenic Single-Valued 

Intuitionistic Fuzzy Set Union 

Let’s use simpler notations of the elements: 
((𝑎𝑖1, 𝑎𝑖2), 1 ≤ 𝑖 ≤ 𝑛) ∨𝑝 ((𝑏𝑖1, 𝑏𝑖2), 1 ≤ 𝑖 ≤ 𝑛) = 

((𝑎𝑖1 ∨𝑝 𝑏𝑖1, 𝑎𝑖2 ∧𝑝 𝑏𝑖2), 1 ≤ 𝑖 ≤ 𝑛).     (112) 

Analogously, the first 𝑖0  unions are proper plithogenic 
intuitionistic fuzzy unions, since for each duplet, for the first duplet 
component, the weights onto the tconorm’s are bigger than onto 
tnorm’s, while for the second duplet component the weights onto the 
tconorm’s are smaller than onto tnorm’s, 

And the next n -  𝑖0  unions are improper plithogenic 
intuitionistic fuzzy intersections, since for each duplet, for the first 
duplet component, the weights onto the tconorm’s are smaller than 
onto tnorm’s, while for the second duplet component the weights 
onto the tconorm’s are bigger than onto tnorm’s, 

II.8.3. n-Attribute-Values Plithogenic Single-Valued 

Intuitionistic Fuzzy Set Complements (Negations) 

¬𝑝 {
𝑣𝑖

(𝑎𝑖1, 𝑎𝑖2)
|𝑖 ∈ {1, 2, … , 𝑛}} = {

𝑎𝑛𝑡𝑖(𝑣𝑖)

(𝑎𝑖1, 𝑎𝑖2)
|𝑖 ∈ {1, 2, … , 𝑛}} 

(113) 

or {
𝑣𝑖

(𝑎𝑖2, 𝑎𝑖1)
|𝑖 ∈ {1, 2, … , 𝑛}}    (114) 

or {
𝑣𝑖

(1 − 𝑎𝑖1, 1 − 𝑎𝑖2)
|𝑖 ∈ {1, 2, … , 𝑛}}.    (115) 
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II.8.4. n-Attribute-Values Plithogenic Single-Valued 

Intuitionistic Fuzzy Set Inclusions (Partial Orders) 

Let 

 A = (
(𝑎11, 𝑎12), (𝑎21, 𝑎22), … , (𝑎𝑖01, 𝑎𝑖02),

(𝑎𝑖0+1,1, 𝑎𝑖0+1,2),… , (𝑎𝑛1, 𝑎𝑛2)
)  (116) 

and  

B =  (
(𝑏11, 𝑏12), (𝑏21, 𝑏22), … , (𝑏𝑖01, 𝑏𝑖02),

(𝑏𝑖0+1,1, 𝑏𝑖0+1,2),… , (𝑏𝑛1, 𝑏𝑛2)
).  (117) 

II.8.4.1. Simple Intuitionistic Fuzzy Inclusion 
A ≤𝐼𝐹 B       (118) 
iff (𝑎𝑖1, 𝑎𝑖2) ≤IF (𝑏𝑖1, 𝑏𝑖2) for 1 ≤ 𝑖 ≤ i0,  
and  (𝑏𝑗1, 𝑏𝑗2) ≤𝐼𝐹 (𝑎𝑗1, 𝑎𝑗2) for i0 + 1 ≤ j ≤ n. 

II.8.4.2. Plithogenic Intuitionistic Fuzzy Inclusion 
A ≤𝑃 B        (119) 
iff (𝑎𝑖1, 𝑎𝑖2) ≤P (𝑏𝑖1, 𝑏𝑖2) for 1 ≤ 𝑖 ≤ i0,  
and  (𝑏𝑗1, 𝑏𝑗2) ≤𝑝 (𝑎𝑗1, 𝑎𝑗2) for i0 + 1 ≤ j ≤ n. 

II.8.5. n-Attribute-Values Plithogenic Single-Valued 

Intuitionistic Fuzzy Set Equality 

II.8.5.1. Simple Intuitionistic Fuzzy Equality 
A =𝐼𝐹 B iff A ≤𝐼𝐹 𝐵 and B ≤𝐼𝐹 A.   (120) 

II.8.5.2. Plithogenic-mple Intuitionistic Fuzzy Equality 
A =𝑃 B iff A ≤𝑃 𝐵 and B ≤𝑃 A.   (121) 
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II.9. n-Attribute-Values Plithogenic Single-Valued 

Neutrosophic Set Operators 

Let the neutrosophic degree functions be: 
𝑑𝐴
𝑁: 𝑃 × 𝑉 → [0, 1]3, 𝑑𝐴𝑁(𝑥, 𝑣𝑖) = (𝑎𝑖1 , 𝑎𝑖2 , 𝑎𝑖3) ∈ [0, 1]

3, (122) 
𝑑𝐵
𝑁: 𝑃 × 𝑉 → [0, 1]3, 𝑑𝐵𝑁(𝑥, 𝑣𝑖) = (𝑏𝑖1 , 𝑏𝑖2 , 𝑏𝑖3) ∈ [0, 1]

3, (123) 
for all 𝑖 ∈ {1, 2, … , 𝑛}. 

II.9.1. n-Attribute-Values Plithogenic Single-Valued 

Neutrosophic Set Intersection 

 

 
0 0 0 0 0 0

0 0 0 0 0 0

11 12 13 21 22 23 1 2 3 1,1 1,2 1,3 1 2 3

11 12 13 21 22 23 1 2 3 1,1 1,2 1,3 1 2 3

11 12 13

( , , ),( , , ),..., ( , , ),( , , ),..., ( , , )

( , , ),( , , ),..., ( , , ),( , , ),..., ( , , )

( , , )

i i i i i i n n n P

i i i i i i n n n

a a a a a a a a a a a a a a a

b b b b b b b b b b b b b b b

a a a

  

  





0 0 0 0 0 0

0 0 0 0 0 0

11 12 13 21 22 23 21 22 23 1 2 3 1 2 3

1,1 1,2 1,3 1,1 1,2 1,3 1 2 3 1 2 3

( , , ),( , , ) ( , , ),..., ( , , ) ( , , ),

( , , ) ( , , ),..., ( , , ) ( , , )
P P i i i P i i i

i i i P i i i n n n P n n n

b b b a a a b b b a a a b b b

a a a b b b a a a b b b     

   
      

(124) 
With simpler notations:  

((𝑎𝑖1, 𝑎𝑖2, 𝑎𝑖3), 1 ≤ 𝑖 ≤ 𝑛) ∧𝑝 ((𝑏𝑖1, 𝑏𝑖2, 𝑏𝑖3), 1 ≤ 𝑖 ≤ 𝑛)

= ((𝑎𝑖1 ∧𝑝 𝑏𝑖1,
1

2
(𝑎𝑖2 ∧𝐹 𝑏𝑖2) +

1

2
(𝑎𝑖2 ∨𝐹 𝑏𝑖2), 𝑎𝑖3 ∨𝑝 𝑏𝑖3) ,

1 ≤ 𝑖 ≤ 𝑛
). 

(125) 
Analogously, the first 𝑖0 intersections are proper plithogenic 

intersections, since for each triplet, for the first triplet component, 
the weights onto the tnorm’s are bigger than onto tconorm’s, while for 
the third triplet component the weights onto the tnorm’s are smaller 
than onto tconorm’s. 

And the next n - 𝑖0  intersections are improper plithogenic 
unions, since for each triplet, for the first triplet component, the 
weights onto the tnorm’s are smaller than onto tconorm’s, while for the 
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third triplet component the weights onto the tnorm’s are bigger than 
onto tconorm’s, 

II.9.2. n-Attribute-Values Plithogenic Single-Valued 

Neutrosophic Set Union 

 

 
0 0 0 0 0 0

0 0 0 0 0 0

11 12 13 21 22 23 1 2 3 1,1 1,2 1,3 1 2 3

11 12 13 21 22 23 1 2 3 1,1 1,2 1,3 1 2 3

11 12 13

( , , ),( , , ),..., ( , , ),( , , ),..., ( , , )

( , , ),( , , ),..., ( , , ),( , , ),..., ( , , )

( , , )

i i i i i i n n n P

i i i i i i n n n

a a a a a a a a a a a a a a a

b b b b b b b b b b b b b b b

a a a

  

  





0 0 0 0 0 0

0 0 0 0 0 0

11 12 13 21 22 23 21 22 23 1 2 3 1 2 3

1,1 1,2 1,3 1,1 1,2 1,3 1 2 3 1 2 3

( , , ),( , , ) ( , , ),..., ( , , ) ( , , ),

( , , ) ( , , ),..., ( , , ) ( , , )
P P i i i P i i i

i i i P i i i n n n P n n n

b b b a a a b b b a a a b b b

a a a b b b a a a b b b     

   
       

(126) 
With simpler notations: 

((𝑎𝑖1, 𝑎𝑖2, 𝑎𝑖3), 1 ≤ 𝑖 ≤ 𝑛) ∨𝑝 ((𝑏𝑖1, 𝑏𝑖2, 𝑏𝑖3), 1 ≤ 𝑖 ≤ 𝑛)

= ((𝑎𝑖1 ∨𝑝 𝑏𝑖1,
1

2
(𝑎𝑖2 ∧𝐹 𝑏𝑖2) +

1

2
(𝑎𝑖2 ∨𝐹 𝑏𝑖2), 𝑎𝑖3 ∧𝑝 𝑏𝑖3) ,

1 ≤ 𝑖 ≤ 𝑛
). 

(127) 
Analogously, the first 𝑖0  unions are proper plithogenic 

unions, since for each triplet, for the first triplet component, the 
weights onto the tconorm’s are bigger than onto tnorm’s, while for the 
third triplet component the weights onto the tconorm’s are smaller 
than onto tnorm’s. 

And the next n -  𝑖0  unions are rather plithogenic 
intersections, since for each triplet, for the first triplet component, 
the weights onto the tconorm’s are smaller than onto tnorm’s, while for 
the third triplet component the weights onto the tconorm’s are bigger 
than onto tnorm’s, 
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II.9.3. n-Attribute-Values Plithogenic Single-Valued 

Neutrosophic Set Complements (Negations) 

¬𝑝{(𝑎𝑖1, 𝑎𝑖2, 𝑎𝑖3), 1 ≤ 𝑖 ≤ 𝑛} = {
𝑎𝑛𝑡𝑖(𝑣𝑖)

(𝑎𝑖1, 𝑎𝑖2, 𝑎𝑖3)
|𝑖 ∈ {1, , 2, … , 𝑛}} 

(128) 
or 

{
𝑣𝑖

(𝑎𝑖3, 𝑎𝑖2, 𝑎𝑖1)
|𝑖 ∈ {1, , 2, … , 𝑛}}    (129) 

or 

{
𝑣𝑖

(𝑎𝑖3, 1 − 𝑎𝑖2, 𝑎𝑖1)
|𝑖 ∈ {1, , 2, … , 𝑛}}   (130) 

Etc. 

II.9.4. n-Attribute-Values Plithogenic Single-Valued 

Neutrosophic Set Inclusions (Partial Orders) 

II.9.4.1. Simple Neutrosophic Inclusion  
 

 
0 0 0 0 0 0

0 0 0 0 0 0

11 12 13 21 22 23 1 2 3 1,1 1,2 1,3 1 2 3

11 12 13 21 22 23 1 2 3 1,1 1,2 1,3 1 2 3

( , , ), ( , , ),..., ( , , ), ( , , ),..., ( , , )

( , , ), ( , , ),..., ( , , ), ( , , ),..., ( , , )

i i i i i i n n n N

i i i i i i n n n

a a a a a a a a a a a a a a a

b b b b b b b b b b b b b b b

  

  



 
(131) 

iff 
0 0 0 0 0 0

0 0 0 0 0 0

11 12 13 11 12 13 21 22 23 21 22 23 1 2 3 1 2 3

1,1 1,2 1,3 1,1 1,2 1,3 1 2 3 1 2 3

( , , ) ( , , ), ( , , ) ( , , ),..., ( , , ) ( , , ),

( , , ) ( , , ),..., ( , , ) ( , , ).
N N i i i N i i i

i i i N i i i n n n N n n n

a a a b b b a a a b b b a a a b b b

a a a b b b a a a b b b     

  

   
(132) 

II.9.4.2. Plithogenic Neutrosophic Inclusion 

 

 
0 0 0 0 0 0

0 0 0 0 0 0

11 12 13 21 22 23 1 2 3 1,1 1,2 1,3 1 2 3

11 12 13 21 22 23 1 2 3 1,1 1,2 1,3 1 2 3

( , , ),( , , ),...,( , , ),( , , ),...,( , , )

( , , ),( , , ),...,( , , ),( , , ),...,( , , )

i i i i i i n n n P

i i i i i i n n n

a a a a a a a a a a a a a a a

b b b b b b b b b b b b b b b

  

  



 
(133) 

iff 
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0 0 0 0 0 0

0 0 0 0 0 0

11 12 13 11 12 13 21 22 23 21 22 23 1 2 3 1 2 3

1,1 1,2 1,3 1,1 1,2 1,3 1 2 3 1 2 3

( , , ) ( , , ),( , , ) ( , , ),..., ( , , ) ( , , ),

( , , ) ( , , ),..., ( , , ) ( , , )
P P i i i P i i i

i i i P i i i n n n P n n n

a a a b b b a a a b b b a a a b b b

a a a b b b a a a b b b     

  

   
(134) 

II.9.5. n-Attribute-Values Plithogenic Single-Valued 

Neutrosophic Set Equality 

 

 
0 0 0 0 0 0

0 0 0 0 0 0

11 12 13 21 22 23 1 2 3 1,1 1,2 1,3 1 2 3

11 12 13 21 22 23 1 2 3 1,1 1,2 1,3 1 2 3

( , , ),( , , ),...,( , , ),( , , ),...,( , , )

( , , ),( , , ),...,( , , ),( , , ),...,( , , )

i i i i i i n n n P

i i i i i i n n n

a a a a a a a a a a a a a a a

b b b b b b b b b b b b b b b

  

  



 
(135) 

if 

 

 
0 0 0 0 0 0

0 0 0 0 0 0

11 12 13 21 22 23 1 2 3 1,1 1,2 1,3 1 2 3

11 12 13 21 22 23 1 2 3 1,1 1,2 1,3 1 2 3

( , , ),( , , ),...,( , , ),( , , ),...,( , , )

( , , ),( , , ),...,( , , ),( , , ),...,( , , )

i i i i i i n n n P

i i i i i i n n n

a a a a a a a a a a a a a a a

b b b b b b b b b b b b b b b

  

  



 
(136) 

and 

 

 
0 0 0 0 0 0

0 0 0 0 0 0

11 12 13 21 22 23 1 2 3 1,1 1,2 1,3 1 2 3

11 12 13 21 22 23 1 2 3 1,1 1,2 1,3 1 2 3

( , , ),( , , ),...,( , , ),( , , ),...,( , , )

( , , ),( , , ),...,( , , ),( , , ),...,( , , )

i i i i i i n n n P

i i i i i i n n n

b b b b b b b b b b b b b b b

a a a a a a a a a a a a a a a

  

  



 
(137) 

And similarly for ”=N”. 

II.10. Theorems Related to One-Attribute-Value 

Plithogenic Single-Valued Fuzzy Set Intersections 

and Unions 

Let 𝑣𝐷  be an attribute dominant value, and 𝑣 any attribute 
value. 
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II.10.1. Theorem 1. 

If 𝑐(𝑣𝐷, 𝑣) = 0, then: 
1.1. if on 𝑣𝐷 one applies the 𝑡𝑛𝑜𝑟𝑚, on 𝑣 one also applies the 

𝑡𝑛𝑜𝑟𝑚; 
1.2. if on 𝑣𝐷 one applies the 𝑡𝑐𝑜𝑛𝑜𝑟𝑚, on 𝑣 one also applies 

the 𝑡𝑐𝑜𝑛𝑜𝑟𝑚. 

II.10.2. Theorem 2. 

If 𝑐(𝑣𝐷, 𝑣) = 1, then: 
2.1. if on 𝑣𝐷  one applies the 𝑡𝑛𝑜𝑟𝑚 , on 𝑣  one applies the 

𝑡𝑐𝑜𝑛𝑜𝑟𝑚; 
2.2. if on 𝑣𝐷 one applies the 𝑡𝑐𝑜𝑛𝑜𝑟𝑚, on 𝑣 one applies the 

𝑡𝑛𝑜𝑟𝑚. 

II.10.3. Theorem 3. 

If 0 < 𝑐(𝑣𝐷, 𝑣) < 1 , then on 𝑣  one applies a linear 
combination of 𝑡𝑛𝑜𝑟𝑚 and 𝑡𝑐𝑜𝑛𝑜𝑟𝑚. 

II.10.4. Theorem 4. 

Let 𝑎, 𝑏 be the fuzzy degrees of appurtenance of the attribute 
value 𝑣 with respect to Experts A and B. Then: 

𝑎 ∧𝑝 𝑏 + 𝑎 ∨𝑝 𝑏 = 𝑎 ∧𝐹 𝑏 + 𝑎 ∨𝐹 𝑏.   (138) 

Proof. 
Let 𝑐0 = 𝑐(𝑣𝐷, 𝑣) ∈ [0, 1]. Then 
𝑎 ∧𝑝 𝑏 + 𝑎 ∨𝑝 𝑏

=    0 0(1 ) F Fc a b c a b    

+    0 0(1 ) F Fc a b c a b      

= 𝑎 ∧𝐹 𝑏 + 𝑎 ∨𝐹 𝑏.      (139) 
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II.10.5. Theorem 5. 

Let 𝑎, 𝑏 be the fuzzy degrees of appurtenance of the attribute 
value 𝑣 with respect to Experts A and B.  

If the degree of contradiction of 𝑎 and 𝑏, with respect to their 
corresponding dominant attribute values is equal to 0.5, then 

 𝑎 ∧𝑝 𝑏 = 𝑎 ∨𝑝 𝑏.     (140) 

Proof: 
Since 𝑐0  = 0.5, then 1 - 𝑐0  = 𝑐0 =  0.5 and therefore the 

definitions of 𝑎 ∧𝑝 𝑏 and 𝑎 ∨𝑝 𝑏 become the same. 

II.10.6. Theorem 6. 

Let 𝑎, 𝑏 be the fuzzy degrees of appurtenance of the attribute 
value 𝑣  with respect to Experts A and B respectively, and the 
contradiction degree of attribute value v with the attribute 
dominant value vD by 𝑐0.  

Let 𝑎′, 𝑏′  be the fuzzy degrees of appurtenance of the 
attribute value 𝑣′ with respect to Experts A and B respectively, 
where a’ = a and b’ = b, and the contradiction degree of attribute 
value v’ with the attribute dominant value vD be 1 − 𝑐0.  

Then: 
𝑎 ∧𝑝 𝑏 = 𝑎′ ∨𝑝 𝑏′.     (141) 

Proof: 

 𝑎 ∧𝑝 𝑏  =    0 0(1 ) F Fc a b c a b      =  

   

   
0 0

0 0

(1 )

[1 (1 )] (1 )
F F

F F

c a b c a b

c a b c a b





     

       
 

   0 0)][1 (1 ' ' (1 ) ' 'F Fc a b c a b        =  

{ since a = a’ and b = b’} 
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= 𝑎′ ∨𝑝 𝑏′       (142) 
{ since the contradiction degree between v’ and vD is 1 - c0 }. 

II.10.7. Theorem 7. 

Let’s consider a plithogenic neutrosophic set P, and x an 
element from P. The neutrosophic degrees of appurtenance of the 
element x’s attribute values 𝑣 with respect to Experts A and B are 
respectively (𝑇1, 𝐼1, 𝐹1)  and (𝑇2, 𝐼2, 𝐹2) . The interior degrees of 
contradiction between the neutrosophic components 𝑇, 𝐼, 𝐹 , or 
truth, indeterminacy, and falsehood respectively, are:  

𝑐(𝑇, 𝐼) =
1

2
, 𝑐(𝐼, 𝐹) = 1

2
 and 𝑐(𝑇, 𝐹) = 1,  

where 𝑇 is considered the dominant neutrosophic component. 
If one applies the 𝑡𝑛𝑜𝑟𝑚 on 𝑇1 and 𝑇2, then one has to apply 

the opposite, i.e. the 𝑡𝑐𝑜𝑛𝑜𝑟𝑚  on 𝐹1  and 𝐹2  - since 𝑇  and 𝐹  are 
100% opposite. Similarly, if one applies the 𝑡𝑐𝑜𝑛𝑜𝑟𝑚 on 𝑇1 and 𝑇2, 
then one has to apply the opposite, i.e. the 𝑡𝑛𝑜𝑟𝑚 on 𝐹1 and 𝐹2. 

But 𝐼 is only half (50%) opposite to both 𝑇 and 𝐹, therefore 
no matter if tnorm or tconorm were applied on T1 and T2, on 𝐼1 and 𝐼2 
one applies: 

1

2
(𝐼1 ∧𝑝 𝐼2) +

1

2
(𝐼1 ∨𝑝 𝐼2) =

1

2
(𝐼1 ∨𝑝 𝐼2 + 𝐼1 ∧𝑝 𝐼2) = 

1

2
(𝐼1 ∧𝐹 𝐼2 + 𝐼1 ∨𝐹 𝐼2).      (143) 

If the exterior degree of contradiction between 𝑣  and its 
corresponding dominant attribute value 𝑣𝐷 is 𝑐(𝑣𝐷, 𝑣) = 𝑐0, then 
again one applies it on the above ∧𝑝 and ∨𝑝 plithogenic operators. 
But, according to Theorem 4 (where it was proved that: for 
any  𝑐(𝑣𝐷, 𝑣)  one has 𝑎 ∧𝑝 𝑏 + 𝑎 ∨𝑝 𝑏 = 𝑎 ∧𝐹 𝑏 + 𝑎 ∨𝐹 𝑏 ), no 
matter the exterior contradiction degree, we always get: 
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(𝑇1, 𝐼1, 𝐹1) ∧𝑝 (𝑇2, 𝐼2, 𝐹2) = 

(𝑇1 ∧𝑝 𝑇2,
1

2
(𝐼1 ∧𝐹 𝐼2 + 𝐼1 ∨𝐹 𝐼2), 𝐹1 ∨𝑝 𝐹2 ),   (144) 

and respectively 
(𝑇1, 𝐼1, 𝐹1) ∨𝑝 (𝑇2, 𝐼2, 𝐹2) = 

(𝑇1 ∨𝑝 𝑇2,
1

2
(𝐼1 ∧𝐹 𝐼2 + 𝐼1 ∨𝐹 𝐼2), 𝐹1 ∧𝑝 𝐹2 ).   (145) 

II.11. First Classification of the Plithogenic Set 

II.11.1. Refined Plithogenic Set 

If at least one of the attribute’s values vk ∈ 𝑉 is split (refined) 
into two or more attribute sub-values: vk1, vk2, … ∈ 𝑉, with the 
attribute sub-value appurtenance degree function: d(x, vki) ∈ P ([0, 
1]), for i = 1, 2, …, then (Pr, α, V, d, c) is called a Refined 
Plithogenic Set, where “r” stands for “refined”. 

II.11.2. Plithogenic Overset / Underset / Offset 

If for at least one of the attribute’s values vk ∈ V, of at least 
one element  

x ∈ P, has the attribute value appurtenance degree function 
d(x, vk) exceeding 1, then (Po, α, V, d, c) is called a Plithogenic 
Overset, where “o” stands for “overset”; but if d(x, vk) is below 0, 
then (Pu, α, V, d, c) is called a Plithogenic Underset, where “u” 
stands for “underset”; while if d(x, vk) exceeds 1, and d(y, sj) is 
below 0 for the attribute values vk, vj ∈ V that may be the same or 
different attribute values corresponding to the same element or to 
two different elements x, y ∈ P, then  
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(Poff, α, V, d, c) is called a Plithogenic Offset, where “off” 
stands for “offset” (or  plithogenic set that is both overset and 
underset). 

II.11.3. Plithogenic Multiset 

A plithogenic set 𝑃 that has at least an element 𝑥 ∈ 𝑃, which 
repeats into the set P with the same plithogenic components 

𝑥(𝑎1, 𝑎2, … , 𝑎𝑚), 𝑥(𝑎1, 𝑎2, … , 𝑎𝑚)    (146) 
or with different plithogenic components 
𝑥(𝑎1, 𝑎2, … , 𝑎𝑚), 𝑥(𝑏1, 𝑏2, … , 𝑏𝑚),   (147) 
then (Pm, α, V, d, c) is called a Plithogenic Multiset, where 

“m” stands for “multiset”. 

II.11.4. Plithogenic Bipolar Set 

If ∀x ∈ P, d: P×V→ {P([-1, 0]) × P([0, 1])}z, then (Pb, α, V, 
d, c) is called a Plithogenic Bipolar Set, since d(x, v), for v ∈ V, 
associates an appurtenance negative degree (as a subset of [-1, 0]) 
and a positive degree (as a subset of [0, 1]) to the value v; where z 
= 1 for fuzzy degree, z = 2 for intuitionistic fuzzy degree, and z = 
3 for neutrosophic fuzzy degree. 

II.11.5-6. Plithogenic Tripolar Set & Plitogenic 

Multipolar Set 

Similar definitions for Plithogenic Tripolar Set and 
Plitogenic Multipolar Set (extension from Neutrosophic Tripolar 
Set and respectively Neutrosophic Multipolar Set {[4], 123-125}. 
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II.11.7. Plithogenic Complex Set 

If, for any 𝑥 ∈ P, d: P×V→ {P([0, 1]) × P([0, 1])}z, and for 

any v ∈ V, d(x, v) is a complex value, i.e. d(x, v) = M1∙ 𝑒𝑗𝑀2, where 
M1 ⊆ [0, 1] is called amplitude, and M2 ⊆ [0, 1] is called phase, 
and the appurtenance degree may be fuzzy (z = 1), intuitionistic 
fuzzy (z = 2), or neutrosophic (z = 3), then (Pcom, α, V, d, c) is 
called a Plithogenic Complex Set. 

II.12. Second Classification of Multi-Attribute 

Plithogenic Fuzzy Sets 

Upon the values of the appurtenance degree function, one 
has: 

II.12.1. Single-Valued Plithogenic Fuzzy Set, if 

∀𝑥 ∈ P, d: P×V→[0, 1],    (148) 
and ∀v ∈ V, d(x, v) is a single number in [0, 1]. 

II.12.2. Hesitant Plithogenic Fuzzy Set, if 

∀𝑥 ∈ P, d: P×V→ P([0, 1]),    (149) 

and ∀v ∈ V, d(x, v) is a discrete finite set of the form {n1, n2, 
…, np}, where  

1≤ p < ∞, included in [0, 1]. 

II.12.3. Interval-Valued Plithogenic Fuzzy Set, if 

∀𝑥 ∈ P, d: P×V→ P ([0, 1]),    (150) 

and ∀v ∈ V, d(x, v) is an (open, semi-open, closed) interval 
included in [0, 1]. 
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II.13. Applications of Uni-Dimensional Attribute 

Plithogenic Single-Valued Fuzzy Set 

Let U be a universe of discourse, and a non-empty 
plithogenic set P ⊆ U. Let x ∈ P be a generic element.  

For simplicity, we consider the uni-dimensional attribute and 
the single-valued fuzzy degree function. 

II.13.1. Small Discrete-Set of Attribute-Values 

If the attribute is “color”, and we consider only a discrete set 
of attribute values V, formed by the following six pure colors:  

V = {violet, blue, green, yellow, orange, red},  
the attribute value appurtenance degree function: 
d: P×V→[0, 1],      (151) 
d(x, violet) = v ∈ [0, 1], d(x, blue) = b ∈ [0, 1], d(x, green) 

= g ∈ [0, 1],  
d(x, yellow) = y ∈ [0, 1], d(x, orange) = o ∈ [0, 1], d(x, red) 

= r ∈ [0, 1], 
then one has: 
x(v, b, g, y, o, r), 

where v, b, g, y, o, r are fuzzy degrees of violet, blue, green, yellow, 
orange, and red, respectively, of the object x with respect to the set 
of objects P, where  

v, b, g, y, o, r ∊ [0, 1]. 
The cardinal of the set of attribute values V is 6. 
The other colors are blends of these pure colors. 
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II.13.2. Large Discrete-Set of Attribute-Values 

If the attribute is still “color” and we choose a more refined 
representation of the color values as: 

x{d390, d391, …, d699, d700}, 
measured in nanometers, then we have a discrete finite set of 

attribute values, whose cardinal is: 700 – 390 + 1 = 311. 
Where for each j  ∈  𝑉 = {390, 391, …, 699, 700}, dj 

represents the degree to which the object x’s color, with respect to 
the set of objects P, is of “j” nanometers per wavelength, with 
di ∊[0, 1]. A nanometer (nm) is a billionth part of a meter. 

II.13.3. Infinitely-Uncountable-Set of Attribute-Values 

But if the attribute is again “color”, then one may choose a 
continuous representation:   

𝑥(d([390, 700])),  
having 𝑉 =  [390, 700] a closed real interval, hence an infinitely 
uncountable (continuum) set of attribute values. The cardinal of 
the V is ∞. 

For each 𝑗 ∊ [390, 700], dj represents the degree to which 
the object x’s color, with respect to the set of objects P, is of “j” 
nanometers per wavelength, with di ∊[0, 1]. And 𝑑([390, 700]) = 
{dj, 𝑗 ∊ [390, 700]}. 

The light, ranging from 390 (violet color) to 700 (red color) 
nanometers per wavelengths is visible to the eye of the human. The 
cardinal of the set of attribute values V is continuum infinity. 
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II.14. Multi-Attribute Plithogenic General Set 

II.14.1. Definition of Multi-Attribute Plithogenic General 

Set 

The Multi-Attribute Plithogenic Set is obviously a 
generalization of the One-Attribute Plithogenic Set. 

While the one-attribute plithogenic set has each element 𝑥 ∈ 
P characterized by a single attribute α ∈ A, in a more general form 
we extend it to the multi-attribute plithogenic set, defined as 
follows. 

Let U be a universe of discourse, and a non-empty 
plithogenic set P ⊆ U.  

Let A  be a set of  m ≥ 2 attributes: α1, α2, …, αm, whose 
corresponding spectra of values are the non-empty sets S1, S2, …, 
Sm respectively.  

Let V1  ⊆  S1, V2  ⊆ S2, …, Vm  ⊆ Sm be subsets of attribute 
values of the attributes α1, α2, …, αm respectively needed by experts 
in their given application. 

For each  j ∈ {1, 2, … ,𝑚}, the set of attribute values 
Vj  means the range of attribute αj’s values, needed by the experts 
in a specific application or in a specific problem to solve. 

Each element 𝑥 ∈  P is characterized by all m attributes’ 
values.  

Let the m-dimensional attribute value degree function be: 
𝑑[𝑚]: (𝑃, 𝑉1 × 𝑉2 × … × 𝑉𝑚) → P([0, 1])𝑚.  (152) 

For any 𝑥 ∈  P, and any vj ∈  𝑉𝑗  with  j ∈ {1, 2, … ,𝑚},  one 
has: 

𝑑[𝑚](𝑥(𝑣1, 𝑣2, … , 𝑣𝑚))  P([0, 1])𝑚.   (153) 
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II.14.2. m-Dimensional Attribute 

Instead of working with m uni-dimensional distinct 
attributes, we may use only a single m-dimensional attribute, 
employing the following notations: 

α[𝑚] = (α1, α2, … , α𝑚), 𝑉[𝑚] = 𝑉1 × 𝑉2 × … × 𝑉𝑚,  
and v[m] = (𝑣1, 𝑣2, … , 𝑣𝑚),    (154) 
whence: 
𝑑[𝑚]: (𝑃, 𝑉[𝑚]) → P([0, 1])𝑚    (155) 

with d[m](x(v[m]))   P([0, 1])𝑚   (156) 

and the set of values of the attribute 𝛼j, for 1 ≤ j ≤ m, being 
𝑉j = {𝑣𝑗𝑘}𝑘∈𝑊𝑗, where 𝑊𝑗 is the (finite, or countably, or 

unaccountably infinite) set of indexes corresponding to 𝑉j. 
In other words, each 𝑉𝑗  may be finite, or countably or 

unaccountably infinite set of values of the attribute αj needed by 
the experts in a specific application or in a specific problem to 
solve.  

On each attribute value set Vj, 1 ≤  𝑗 ≤ m, there may exists 
a dominant attribute value 𝑣𝑗𝑘𝑜 ∈ 𝑉𝑗 , determined by the experts 
upon the application or problem to solve. 

{However, there are cases when such dominant attribute 
value may not be taking into consideration or may not exist, or 
there may be many dominant attribute values. In such cases, either 
one discards the contradiction degree function, or a different 
procedure (or multi-contradictory degree function) may be 
designed.} 
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The attribute value degrees of contradiction are afterwards 
calculated between the dominant attribute value and the other 
attribute values in special, but also among any attribute values. 

For example, in the neutrosophic set, the attribute 
“appurtenance” has three values: membership, indeterminacy, and 
nonmembership. The dominant attribute value is membership, 
because it is the most important in all neutrosophic applications. 

The degrees of contradictions are: 
c(nonmembership, membership) = 1, and 
c(indeterminacy, membership) = 
c(indeterminacy, nonmembership) = 0.5. 
In order to fusion (or combine) the results from multiple 

sources of information, we apply aggregation operators. 
On each attribute value 𝑣𝑖𝑗 ∈ 𝑉𝑖 , 𝑗 ∈ 𝑊𝑖 , one applies some 

aggregation operators. 
We start with the dominant attribute value.  
An aggregation operator 𝑂: (𝑃, 𝑉[𝑚]) × (𝑃, 𝑉[𝑚]) → [0, 1] 

can be extended for the case when working with oversets, 
undersets, or offsets {see [4]} to  

O: (𝑃, 𝑉[𝑚]) × (𝑃, 𝑉[𝑚]) → [𝜓, 𝜑],    (157) 
where 𝜓 < 0 and 𝜑 > 1. 

Let’s consider two opposite aggregation operators O1 and O2 
(for example the tnorm and tconorm respectively). If onto the dominant 
attribute value we apply O1 and the degree of contradiction 
between another attribute value 𝑣𝑖𝑗  and the attribute dominant 
value is 𝑐𝑗 ⊆ [0, 1], then:  

(1 − 𝑐𝑗)𝑂1(𝑣𝑖𝑗) + 𝑐𝑗𝑂2(𝑣𝑖𝑗).    (158) 
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II.14.3. Classification of Multi-Attribute Plithogenic 

General Sets 

Let 𝑥 be a generic element, 𝑥 ∈ 𝑃, and all 
(𝑣1𝑗 , 𝑣2𝑗 , … , 𝑣𝑚𝑗) ∈ 𝑉1 × 𝑉2 × …× 𝑉𝑚.  (159) 

II.14.3.1. Multi-Attribute Plithogenic Single-Valued Set 

If 𝑑[𝑚] (𝑥1(𝑣1𝑗 , 𝑣2𝑗 , … , 𝑣𝑚𝑗)) is a Cartesian product of m 

single numbers belonging to [0, 1]𝑚 , we have a Single-Valued 
Multi-Attribute Plithogenic Set. 
II.14.3.2. Multi-Attribute Plithogenic Interval-Valued Set 

If 𝑑[𝑚] (𝑥1(𝑣1𝑗 , 𝑣2𝑗 , … , 𝑣𝑚𝑗)) is a Cartesian product of m 

intervals included in [0, 1]𝑚 , then we have an Interval-Valued 
Multi-Attribute Plithogenic Set. 
II.14.3.3. Multi-Attribute Plithogenic Hesitant Set 

If 𝑑[𝑚] (𝑥1(𝑣1𝑗 , 𝑣2𝑗 , … , 𝑣𝑚𝑗)) is a Cartesian product of m 

hesitant sets, each of the form { 𝑛1, 𝑛2, … , jun  } with uj ≥ 2 for each 

1 ≤ j ≤ m, included in [0, 1]𝑚 , then we have a Hesitant Multi-
Attribute Plithogenic Set. 
II.14.3.4. Multi-Attribute Plithogenic Linguistic Set 

If 𝑑[𝑚] (𝑥1(𝑣1𝑗 , 𝑣2𝑗 , … , 𝑣𝑚𝑗)) ∈ 𝐿𝑚, where  

𝐿 = {𝑙1, 𝑙2, … , 𝑙ℎ} is a set of h ≥ 2  labels, then we have a 
Linguistic Multi-Attribute Plithogenic Set. 
II.14.3.5. Multi-Attribute Plithogenic Linguistic-Interval Set 

If 𝑑[𝑚] (𝑥1(𝑣1𝑗 , 𝑣2𝑗 , … , 𝑣𝑚𝑗)) is a Cartesian product of m 

linguistic-intervals, each linguistic interval of the form [𝑙𝑗1, 𝑙𝑗2], 
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with 1 ≤ 𝑗1 < 𝑗2 ≤ ℎ, then we have a Linguistic-Interval Multi-
Attribute Plithogenic Set. 

II.14.4. Multi-Attribute Plithogenic General Number 

It is a vector of dimension 𝜁 = 𝑐𝑎𝑟𝑑(𝑉[𝑚]) , i.e. 

(𝑝1, 𝑝2, … , 𝑝𝜁), where all 𝑝𝑘 may be:  
- crisp (single-valued) numbers in [0, 1]m; 
- or intervals included in [0, 1]m; 
- or hesitant subsets of the form {𝑛1, 𝑛2, … , 𝑛𝑢} ⊂ [0, 1]m; 
- or general subsets included in [0, 1]m 
- or labels included in label set 𝐿 = {𝑙1, 𝑙2, … , 𝑙ℎ}m; 
- or label intervals of the form [𝑙𝑗1, 𝑙𝑗2]m, with 1 ≤ 𝑗1 < 𝑗2 ≤

ℎ, where the labels 𝑙𝑗1, 𝑙𝑗2 ∈ 𝐿; 
etc. 
Therefore, we may have: Multi-Attribute Plithogenic Single-

Valued / Interval-Valued / Hesitant / General / Linguistic / 
Interval-Linguistic etc. Numbers. 

II.14.5. Bipolar Multi-Attribute Plithogenic General Set 

If 𝑑[𝑚] (𝑥1(𝑣1𝑗 , 𝑣2𝑗 , … , 𝑣𝑚𝑗)) ∈ 𝒫([−1, 0] × [0,1])
𝑚 , 

where 𝒫([−1, 0] × [0,1]) is the power set of [−1, 0] × [0,1], then 
we have a Bipolar Multi-Attribute Plithogenic General Set, which 
further may be sub-classified as Bipolar Multi-Attribute 
Plithogenic Single-Valued / Interval-Valued / Hesitant / Linguistic 
/ Linguistic-Interval Set. 
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II.15. Example of Uni-Attribute (of 4-Attribute-

Values) Plithogenic Single-Valued Fuzzy Set 

Complement (Negation) 

Let’s consider that the attribute “size” that has the following 
values: small (the dominant one), medium, big, very big. 

 
Degrees of 

contradiction 

0 0.50 0.75 1 

Attribute values small medium big very big 

Degrees of 

appurtenance 

0.8 0.1 0.3 0.2 

Table 1. 

II.16. Example of Refinement and Negation of a Uni-

Attribute (of 4-Attribute-Values) Plithogenic Single-

Valued Fuzzy Set 

As a refinement of the above table, let’s add the attribute 
“bigger” as in the below table. 

The opposite (negation) of the attribute value “big”, which is 
75% in contradiction with “small”, will be an attribute value which 
is 1 − 0.75 = 0.25 = 25%  in contradiction with “small”, so it 

will be equal to 1
2
["𝑠𝑚𝑎𝑙𝑙" + "𝑚𝑒𝑑𝑖𝑢𝑚"] . Let’s call it “less 

medium”, whose degree of appurtenance is 1 – 0.3 = 0.7. 
If the attribute “size” has other values, small being dominant 

value: 
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Degrees of 

contradiction 

0 0.14 0.25 0.50 0.75 0.86 1 

Attribute 

values 

small above 

small 

(anti-

bigger) 

less 

medium 

(anti-

big) 

medium big bigger very 

big 

Degrees of 

appurtenance 

0.8 0.6 0.7 0.1 0.3 0.4 0.2 

Table 2. 
 

The opposite (negation) of “bigger” is 1 - 0.86 = 0.14 = 14% 
in contradiction degree with the dominant attribute value 
(“small”), so it is in between “small” and “medium”, we may say 
it is included into the attribute-value interval [small, medium], 
much closer to “small” than to “medium”. Let’s call is “above 
small”, whose degree of appurtenance is 1 – 0.4 = 0.6. 



72 

II.17. Example of Multi-Attribute (of 24 Attribute-

Values) Plithogenic Fuzzy Set Intersection, Union, 

and Complement 

Let 𝑃 be a plithogenic set, representing the students from a 
college. Let 𝑥 ∈ 𝑃 be a generic student that is characterized by 
three attributes: 

- altitude, whose values are {tall, short}≝ {𝑎1, 𝑎2}; 
- weight, whose values are  
{obese, fat, medium, thin}≝ {𝑤1, 𝑤2, 𝑤3, 𝑤4}; 
and  
- hair color, whose values are  
{blond, reddish, brown}≝ {ℎ1, ℎ2, ℎ3}. 
The multi-attribute of dimension 3 is 

𝑉3 = {(𝑎𝑖 , 𝑤𝑗 , ℎ𝑘) for all 1 ≤ 𝑖 ≤ 2, 1 ≤ 𝑗 ≤ 4, 1 ≤ 𝑘 ≤ 3}. 
The cardinal of  𝑉3 is |𝑉3| = 2 × 4 × 3 = 24. 
The uni-dimensional attribute contradiction degrees are: 
𝑐(𝑎1, 𝑎2) = 1; 

𝑐(𝑤1, 𝑤2) =
1

3
, 𝑐(𝑤1, 𝑤3) =

2

3
, 𝑐(𝑤1, 𝑤4) = 1; 

𝑐(ℎ1, ℎ2) = 0.5, 𝑐(ℎ1, ℎ3) = 1. 
Dominant attribute values are: 𝑎1, 𝑤1 , and ℎ1  respectively 

for each corresponding uni-dimensional attribute.  
Let’s use the fuzzy 𝑡𝑛𝑜𝑟𝑚 =  a ∧F b = ab, and  

fuzzy 𝑡𝑐𝑜𝑛𝑜𝑟𝑚 = 𝑎 ∨F b = a + b – ab. 

II.17.1. Tri-Dimensional Plithogenic Single-Valued 

Fuzzy Set Intersection and Union 

 Let  
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𝑥𝐴 = {
𝑑𝐴(𝑥, 𝑎𝑖 , 𝑤𝑗 , ℎ𝑘),

𝑓𝑜𝑟 𝑎𝑙𝑙 1 ≤ 𝑖 ≤ 2, 1 ≤ 𝑗 ≤ 4, 1 ≤ 𝑘 ≤ 3
}  (160) 

and 

𝑥𝐵 = {
𝑑𝐵(𝑥, 𝑎𝑖 , 𝑤𝑗 , ℎ𝑘),

𝑓𝑜𝑟 𝑎𝑙𝑙 1 ≤ 𝑖 ≤ 2, 1 ≤ 𝑗 ≤ 4, 1 ≤ 𝑘 ≤ 3
}.  (161) 

Then:  
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Let’s have 𝑥𝐴(𝑑𝐴(𝑎1) = 0.8, 𝑑𝐴(𝑤2) = 0.6, 𝑑𝐴(ℎ3) = 0.5) 
and 

𝑥𝐵(𝑑𝐵(𝑎1) = 0.4, 𝑑𝐵(𝑤2) = 0.1, 𝑑𝐵(ℎ3) = 0.7). 
We take only one 3-attribute value: (𝑎1, 𝑤2, ℎ3), for the other 

23 3-attribute values it will be analougsly.  
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For 𝑥𝐴 ∧𝑝 𝑥𝐵 we calculate for each uni-dimensional attribute 
separately:   

[1 − 𝑐(𝑎𝐷 , 𝑎1)] ∙ [0.8 F 0.4] + 𝑐(𝑎𝐷 , 𝑎1) ∙ [0.8 F 0.4]

= (1 − 0) ∙ [0.8(0.4)] + 0 ∙ [0.8 F 0.4] = 0.32; 

[1 − 𝑐[𝑤𝐷 , 𝑤2] ∙ [0.6 F 0.1] + 𝑐(𝑤𝐷 , 𝑤2) ∙ [0.6 F 0.1]]

= (1 −
1

3
) [0.6(0.1)] +

1

3
[0.6 + 0.1 − 0.6(0.1)]

=
2

3
[0.06] +

1

3
[0.64] =

0.76

3
≈ 0.25; 

[1 − 𝑐(ℎ𝐷, ℎ3)] ∙ [0.5 F 0.7] + 𝑐(ℎ𝐷, ℎ3) ∙ [0.5 F 0.7]

= [1 − 1] ∙ [0.5(0.7)] + 1

∙ [0.5 + 0.7 − 0.5(0.7)] = 0 ∙ [0.35] + 0.85

= 0.85. 
Whence 𝑥𝐴 ∧𝑝 𝑥𝐵(𝑎1, 𝑤2, ℎ3) ≈ (0.32, 0.25, 0.85). 
For 𝑥𝐴 ∨𝑝 𝑥𝐵 we do similarly: 

[1 − 𝑐(𝑎𝐷 , 𝑎1)] ∙ [0.8 F 0.4] + 𝑐(𝑎𝐷 , 𝑎1) ∙ [0.8 F 0.4]

= (1 − 0) ∙ [0.8 + 0.4 − 0.8(0.4)] + 0

∙ [0.8(0.4)] = 1 ∙ [0.88] + 0 = 0.88; 

[1 − 𝑐[𝑤𝐷 , 𝑤2] ∙ [0.6 F 0.1] + 𝑐(𝑤𝐷 , 𝑤2) ∙ [0.6 F 0.1]]

= (1 −
1

3
) [0.6 + 0.1 − 0.6(0.1)] +

1

3
[0.6(0.1)]

=
2

3
[0.64] +

1

3
[0.06] =

1.34

3
≈ 0.44; 

[1 − 𝑐(ℎ𝐷, ℎ3)] ∙ [0.5 F 0.7] + 𝑐(ℎ𝐷, ℎ3) ∙ [0.5 F 0.7]

= [1 − 1] ∙ [0.5 + 0.7 − 0.5(0.7)] + 1

∙ [0.5(0.7)] = 0 + 0.35 = 0.35. 
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Whence 𝑥𝐴 ∨𝑝 𝑥𝐵(𝑎1, 𝑤2, ℎ3) ≈ (0.88, 0.44, 0.35). 
For ¬𝑝𝑥𝐴(𝑎1, 𝑤2, ℎ3) = (𝑑𝐴(𝑎2) = 0.8, 𝑑𝐴(𝑤3) =

0.6, 𝑑𝐴(ℎ1) = 0.5), since the opposite of 𝑎1 is 𝑎2, the opposite of 
𝑤2 is 𝑤3, and the opposite of ℎ3 is ℎ1. 

II.18. Another Example of Multi-Attribute (of 5 

Attribute-Values) Plithogenic Fuzzy Set 

Complement and Refined Attribute-Value Set 

The 5-attribute values plithogenic fuzzy complement 
(negation) of  

𝑥 (
0

small
0.8

,
0.50

medium
0.1

,
0.75
big
0.3

,
0.86
 bigger
0.4

,
1

very big
0.2

) 

is  

¬𝑝𝑥 (
1 − 1

anti − very big
0.2

,
1 − 0.86

anti − bigger
0.4

,
1 − 0.75
anti − big
0.3

,
1 − 0.50

 anti − medium
0.1

,
1 − 0

anti − small
0.8

)

= ¬𝑝𝑥 (
0

small
0.2

,
0.14

anti − bigger
0.4

,
0.25

anti − big
0.3

,
0.50

 medium
0.1

,
1

very big
0.8

) 

=

¬𝑝𝑥 (
0

small

0.2

,

0.14

above small

0.4

,

0.25

below medium

0.3

,

0.50

 medium

0.1

,

1

very big

0.8

). 

Therefore, the original attribute-value set  
V = {small, medium, big, bigger, very big} 
has been partially refined into:  
RefinedV = {small, above small, below medium, medium, 

very big}, 
where  
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above small, below medium ∊ [small, medium]. 

II.19. Multi-Dimensional Plithogenic Aggregation 

Set Operators 

Let 𝑈 be a universal set, and 𝐴, 𝐵 ⊂ 𝑈 be two plithogenic 
sets. 

Let 𝛼[𝑚] = 𝛼1 × 𝛼2 × …× 𝛼𝑚  be an m-dimensional 
attribute, for 𝑚 ≥ 1, and each attribute 𝛼𝑖, 1 ≤ 𝑖 ≤ 𝑚, has  

𝑟𝑖 ≥ 1 values: 

1 2{ , ,..., }
ii i i irV v v v .    (164) 

An element (object) 𝑥 ∈ 𝑃 is characterized by 
𝑟1 × 𝑟2 × …× 𝑟𝑚 ≝ 𝑟 values: 

1 2

1 2

1 2 11 12 1 21 22 2 1 2
1

1 2 1 1 2 2

{ , ,..., } { , ,..., } { , ,..., } ... { , ,..., }

{( , ,..., ),1 ,1 ,...,1 ,}.

i m

m

n

i i ir r r m m mr
i

j j mj m m

V v v v v v v v v v v v v

v v v j r j r j r


    

      



 
(165) 

Let 𝑐(𝑣𝑖𝐷, 𝑣𝑖𝑘) = 𝑐𝑖𝑘 ⊆ [0, 1]z be the degree of contradiction 
between the attribute 𝛼𝑖  dominant value (denoted by 𝑣𝑖𝐷 ) and 
other attribute ∝𝑖 value (denoted by 𝑣𝑖𝑘), for 1 ≤ 𝑖 ≤ 𝑚 and 1 ≤
𝑘 ≤ 𝑟𝑖. Where z = 1 (for fuzzy degree of contradiction), z = 2 (for 
intuitionistic fuzzy degree of contradiction), or z = 3 (for 
neutrosophic degree of contradiction). And cik, as part of the unit 
interval [0, 1], may be a subset, or an interval, or a hesitant set, or 
a single number etc. 

We split back the m-dimensional attribute into m uni-
dimensional attributes. And, when applying the plithogenic 
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aggregation operators onto an m-uple 
1 21 2( , ,..., )

mj j mjv v v ,  we 

separately apply the 𝑡norm , 𝑡conorm , or a linear combination of 

these separately on each of its m-components: 
1 21 2, ,...,

mj j mjv v v . 

Let 𝑑𝐴: 𝑃 × 𝑉𝑖 →  P([0, 1])z for each 1 ≤ 𝑖 ≤ 𝑚 , be the 

appurtenance fuzzy degree (for 𝑧 = 1), appurtenance intuitionistic 
fuzzy degree (for 𝑧 = 2), or appurtenance neutrosophic degree (for 
𝑧 = 3) function, whereas P([0, 1]) is the power set of the unit 
interval [0, 1], i.e. all subsets of [0, 1].  

Upon the attribute value degree function, the 𝑡norm, 𝑡conorm, 
and their linear combinations are adjusted to the fuzzy sets, 
intuitionistic fuzzy sets, or neutrosophic sets respectively. 

And similarly 𝑑𝐵: 𝑃 × 𝑉𝑖 →P([0, 1])z for each 1 ≤ 𝑖 ≤ 𝑚. 

II.19.1. Multi-Attribute Plithogenic Aggregation Set 

Operations 

Let’s use easier notations for two m-uple plithogenic 
numbers: 

𝑥𝐴 = {𝑑𝐴(𝑥, 𝑢1), … , 𝑑𝐴(𝑥, 𝑢𝑖), … , 𝑑𝐴(𝑥, 𝑢𝑚)}  (166) 
and 
𝑥𝐵 = {𝑑𝐵(𝑥, 𝑢1), … , 𝑑𝐵(𝑥, 𝑢𝑖), … , 𝑑𝐵(𝑥, 𝑢𝑚)}.  (167) 

II.19.2. Multi-Atribute Plithogenic Set Intersection 

Let 𝑢𝑖𝐷 be the attribute 𝛼𝑖 dominant value, and 𝑢𝑖 be any of 
the attribute 𝛼𝑖 value, 𝑖 ∈ {1, 2, … ,𝑚}. 

     (1 , ) , , A p B iD i A iD F B ix x c u u d x u d x u        
     , , , , , {1,2,..., }}.iD i A iD i F B ic u u d x u u d x u i m        
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(168) 

II.19.3. Multi-Atribute Plithogenic Set Union 

     (1 , , , A p B iD i A iD F B ix x c u u d x u d x u        
     , , , , , {1,2,..., }}.iD i A iD i F B ic u u d x u u d x u i m        

(169) 

II.19.4. Multi-Atribute Plithogenic Set Complement 

(Negation) 

Without losing generality, we assume the attribute value 
contradiction degrees are: 

𝑐(𝑢1𝐷, 𝑢1), … , 𝑐(𝑢𝑖𝐷, 𝑢𝑖), … , 𝑐(𝑢𝑚𝐷, 𝑢𝑚).  (170) 
The plithogenic element attributes’ values: 
{𝑢1, … , 𝑢𝑖 , … , 𝑢𝑚}      (171) 
The attribute values’ appurtenance degree: 
{𝑑𝐴(𝑥, 𝑢1), … , 𝑑𝐴(𝑥, 𝑢𝑖), … , 𝑑𝐴(𝑥, 𝑢𝑚)}.  (172) 
Then, the plithogenic complement (negation) is: 
 
1 − 𝑐(𝑢1𝐷, 𝑢1), … , 1 − 𝑐(𝑢𝑖𝐷, 𝑢𝑖), … , 1 − 𝑐(𝑢𝑚𝐷, 𝑢𝑚) 
           𝑎𝑛𝑡𝑖(𝑢1), … , 𝑎𝑛𝑡𝑖(𝑢𝑖),      … ,         𝑎𝑛𝑡𝑖(𝑢𝑚)   

(173) 
or 

¬𝑝𝑥𝐴 = {
𝑑𝐴(𝑥, 𝑎𝑛𝑡𝑖(𝑢1)) = 𝑑𝐴(𝑥, 𝑢1), … ,

𝑑𝐴(𝑥, 𝑎𝑛𝑡𝑖(𝑢𝑖)) = 𝑑𝐴(𝑥, 𝑢𝑖), … , 𝑑𝐴(𝑥, 𝑎𝑛𝑡𝑖(𝑢𝑚)) = 𝑑𝐴(𝑥, 𝑢𝑚)
}, 

(174) 
where 𝑎𝑛𝑡𝑖(𝑢𝑖), 1 ≤ 𝑖 ≤ 𝑚 , is the attribute ∝𝑖′  opposite 

value of 𝑢𝑖, or  
𝑐(𝑢𝑖𝐷, 𝑎𝑛𝑡𝑖(𝑢𝑖)) = [1 − 𝑐(𝑢𝑖𝐷, 𝑢𝑖)].   (175) 
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II.19.5. Multi-Atribute Plithogenic Set Inclusion (Partial 

Order) 

Assuming a relation of partial order has been defined on 
P([0, 1])z, for each z = 1, 2, 3. Then: 

𝑥𝐴 ≤𝑝 𝑥𝐵 if and only if:  
𝑑𝐴(𝑥, 𝑢𝑖) ≤ (1 − 𝑐(𝑢𝑖𝐷, 𝑢𝑖)) ∙ 𝑑𝐵(𝑥, 𝑢𝑖),   (176) 

for 0 ≤ 𝑐(𝑢𝑖𝐷, 𝑢𝑖) < 0.5, and  
𝑑𝐴(𝑥, 𝑢𝑖) ≥ (1 − 𝑐(𝑢𝑖𝐷, 𝑢𝑖)) ∙ 𝑑𝐵(𝑥, 𝑢𝑖),   (177) 

for 𝑐(𝑢𝑖𝐷, 𝑢𝑖) ∊ [0.5, 1] for all 1 ≤ 𝑖 ≤ 𝑚. 

II.19.6. Multi-Atribute Plithogenic Set Equality 

Similarly, assuming a relation of total order has been defined 
on P([0, 1])z, for each z =1, 2, 3. Then: 

𝑥𝐴 =𝑝 𝑥𝐵 if and only if 𝑥𝐴 ≤𝑝 𝑥𝐵 and 𝑥𝐵 ≤𝑝 𝑥𝐴. 

II.20. Uni-Attribute Plithogenic Single-Value 

Number Operations 

Let 𝐴 = (𝑎1, 𝑎2, … , 𝑎𝑛)  and 𝐵 = (𝑏1, 𝑏2, … , 𝑏𝑛)  be two 
single-valued uni-attribute plithogenic numbers, where 
𝑎1, 𝑎2, … , 𝑎𝑛, 𝑏1, 𝑏2, … , 𝑏𝑛 ∈ [0, 1], 𝑛 ≥ 1, and  

0 ≤ ∑ 𝑎𝑖
𝑛
𝑖=1 ≤ 𝑛      (178) 

and  
0 ≤ ∑ 𝑏𝑖

𝑛
𝑖=1 ≤ 𝑛.     (179) 

Let α be the attribute that has n values: 
𝑉 = {𝑣1, 𝑣2, … , 𝑣𝑛},  
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where the attribute dominant value 𝑣𝐷 ≡ 𝑣1 , the single-
valued contradiction fuzzy degree 𝑐(𝑣𝐷, 𝑣1) = 𝑐𝑖 ∈ [0, 1] for 𝑖 ∈
{1, 2, … , 𝑛}, such that 0 = 𝑐1 ≤ 𝑐2 ≤ ⋯ ≤ 𝑐𝑛 ≤ 1. 

We define for the first time the following plithogenic number 
operations: 

II.20.1. Plithogenic Single-Value Number Summation: 

𝐴⊕𝐵 = {
( 1 − 𝑐𝑖) ∙ [𝑎𝑖 + 𝑏𝑖 − 𝑎𝑖 ∙ 𝑏𝑖] +

𝑐𝑖 ∙ [𝑎𝑖 ∙ 𝑏𝑖], 𝑖 ∈ {1, 2, … , 𝑛}
}.  (180) 

II.20.2. Plithogenic Single-Value Number Multiplication: 

𝐴⊗𝐵 = {

(1 − 𝑐𝑖) ∙ [𝑎𝑖 ∙ 𝑏𝑖] + 𝑐𝑖 ∙
[𝑎𝑖+𝑏𝑖 − 𝑎𝑖 ∙ 𝑏𝑖],

𝑖 ∈ {1, 2, … , 𝑛}
}.   (181) 

II.20.3. Plithogenic Single-Value Number Scalar 

Multiplication: 

𝜆 ∙ 𝐴 = {
( 1 − 𝑐𝑖) ∙ [1 − (1 − 𝑎𝑖)

𝜆] + 𝑐𝑖 ∙ 𝑎𝑖
𝜆,

𝑖 ∈ {1, 2, … , 𝑛}
},   (182) 

where the real number 𝜆 > 0. 

II.20.4. Plithogenic Single-Value Number Power: 

𝐴𝜆 = {( 1 − 𝑐𝑖) ∙ 𝑎𝑖
𝜆 + 𝑐𝑖 ∙ [1 − (1 − 𝑎𝑖)

𝜆]},    (183) 
𝑖 ∈ {1, 2, … , 𝑛}, 
where the real number 𝜆 > 0. 
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II.20.5. Properties of Uni-Attribute Plithogenic Single-

Value Number Operations 

These plithogenic number operations are extensions of the 
fuzzy, intuitionistic fuzzy, and neutrosophic number operations. In 
addition, the plithogenic number operations use the linear 
combination of these fuzzy, intuitionistic fuzzy, and neutrosophic 
operations. 

The plithogenic single-value number operations can be 
extended to interval-valued, hesitant-value, or in general subset-
value number operations. 

II.21. Distance and Similarity Measures for Single-

Valued Uni-Attribute Plithogenic Numbers 

II.21.1. Plithogenic Distance Measure Axioms 

Let U be a universe of discourse, and A, B, C three 
plithogenic sets included in U. 

The plithogenic distance measure is defined in the classical 
way: 

𝐷:𝑈 × 𝑈 → [0, 1]      (184) 
such that, for any 𝐴, 𝐵, 𝐶 in 𝑈: 

i. 0 ≤ 𝐷(𝐴, 𝐵) ≤ 1; 
ii. 𝐷(𝐴, 𝐵) = 𝐷(𝐵, 𝐴); 
iii. 𝐷(𝐴, 𝐵) = 0  
if and only if 𝐴 ≡ 𝐵 (i.e. 𝑎𝑖 = 𝑏𝑖 for all 1 ≤ 𝑖 ≤ 𝑛); 
iiii. 𝐴 ⊂ 𝐵 ⊂ 𝐶 ⟹ 𝐷(A, C) ≥ max{ 𝐷(A, B), 𝐷(B, C)}. 
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II.21.2. Plithogenic Similarity Measure Axioms 

The similarity measure is defined as: 
𝑆: 𝑃 × 𝑃 → [0, 1]      (185) 

such that, for any 𝐴, 𝐵, 𝐶 in 𝑃: 
i. 0 ≤ 𝑆(𝐴, 𝐵) ≤ 1; 
ii. 𝑆(𝐴, 𝐵) = 𝑆(𝐵, 𝐴); 
iii. 𝑆(𝐴, 𝐵) = 1  
if and only if 𝐴 ≡ 𝐵 (i.e. 𝑎𝑖 = 𝑏𝑖 for all 1 ≤ 𝑖 ≤ 𝑛); 
iiii. 𝐴 ⊂ 𝐵 ⊂ 𝐶 ⟹ S(A, C) ≤ min{S(A, B), S(B, C)}. 
There are many neutrosophic measure functions defined in 

the literature. We extend for the first time several of them from 
neutrosophic to the plithogenic environment. 
II.21.2.1. Dice Similarity Plithogenic Number Measure 
(extended from Ye, 2014) 

𝐷(𝐴, 𝐵) =
2∙∑ 𝑎𝑖𝑏𝑖

𝑛
𝑖=1

∑ (𝑎𝑖
2+𝑏𝑖

2)𝑛
𝑖=1

.     (186) 

II.21.2.2. Cosine Similarity Plithogenic Number Measure 
(extended from Broumi & Smarandache, 2014) 

cos(𝐴, 𝐵) =
∑ 𝑎𝑖𝑏𝑖
𝑛
𝑖=1

√∑ 𝑎𝑖
2𝑛

𝑖=1 ∙√∑ 𝑏𝑖
2𝑛

𝑖=1

.     (187) 

II.21.2.3. Hamming Plithogenic Number Distance 

𝐻𝐷(𝐴, 𝐵) =
1

𝑛
∑ |𝑎𝑖 − 𝑏𝑖|
𝑛
𝑖=1 .     (188) 

II.21.2.3.1. Hamming Similarity Plithogenic Number Measure 
𝐻𝑆(𝐴, 𝐵) = 1 − 𝐻𝐷(𝐴, 𝐵).     (189) 

II.21.2.4. Euclidean Plithogenic Number Distance 

𝐸𝐷(𝐴, 𝐵) = √
1

𝑛
∑ (𝑎𝑖 − 𝑏𝑖)

2𝑛
𝑖=1 .    (190) 
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II.21.2.4.1. Euclidean Similarity Plithogenic Number Measure 
𝐸𝑆(𝐴, 𝐵) = 1 − 𝐸𝐷(𝐴, 𝐵).     (191) 

II.21.2.5. Jaccard Similarity Plithogenic Number Measure 

𝐽(𝐴, 𝐵) =
∑ 𝑎𝑖𝑏𝑖
𝑛
𝑖=1

∑ (𝑎𝑖
2+𝑏𝑖

2−𝑎𝑖𝑏𝑖)
𝑛
𝑖=1

.     (192) 

II.22. Application of Bi-Attribute Plithogenic Single-

Valued Set 

Let 𝒰 be a universe of discourse, and 𝑃 ⊂ 𝒰 a plithogenic 
set. 

In a plithogenic set 𝑃 , each element (object) 𝑥 ∈ 𝑃  is 
characterized by 𝑚 ≥ 1  attributes 𝛼1, 𝛼2, … , 𝛼𝑚 , and each 
attribute 𝛼𝑖 , 1 ≤ 𝑖 ≤ 𝑚, has 𝑟𝑖 ≥ 1 values: 

1 2{ , ,..., }.
ii i i irV v v v  

Therefore, the element 𝑥 is characterized by 𝑟 = 𝑟1 × 𝑟2 ×
…× 𝑟𝑚 attributes’ values. 

For example, if the attributes are “color” and “height”, and 
their values (required by the application the experts want to do) 
are: 

𝐶𝑜𝑙𝑜𝑟 = {𝑔𝑟𝑒𝑒𝑛, 𝑦𝑒𝑙𝑙𝑜𝑤, 𝑟𝑒𝑑} 
and 
𝐻𝑒𝑖𝑔ℎ𝑡 = {𝑡𝑎𝑙𝑙,𝑚𝑒𝑑𝑖𝑢𝑚}, 
then the object 𝑥 ∈ 𝑃  is characterized by the Cartesian 

product 
𝐶𝑜𝑙𝑜𝑟 × 𝐻𝑒𝑖𝑔ℎ𝑡 =

{
(𝑔𝑟𝑒𝑒𝑛, 𝑡𝑎𝑙𝑙), (𝑔𝑟𝑒𝑒𝑛,𝑚𝑒𝑑𝑖𝑢𝑚), (𝑦𝑒𝑙𝑙𝑜𝑤, 𝑡𝑎𝑙𝑙),
(𝑦𝑒𝑙𝑙𝑜𝑤,𝑚𝑒𝑑𝑖𝑢𝑚), (𝑟𝑒𝑑, 𝑡𝑎𝑙𝑙), (𝑟𝑒𝑑,𝑚𝑒𝑑𝑖𝑢𝑚)

}. 
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Let’s consider the dominant (i.e. the most important, or 
reference) value of attribute “color” be “green”, and of attribute 
“height” be “tall”.  

The attribute value contradiction fuzzy degrees are: 
𝑐(𝑔𝑟𝑒𝑒𝑛, 𝑔𝑟𝑒𝑒𝑛) = 0, 

𝑐(𝑔𝑟𝑒𝑒𝑛, 𝑦𝑒𝑙𝑙𝑜𝑤) =
1

3
, 

𝑐(𝑔𝑟𝑒𝑒𝑛, 𝑟𝑒𝑑) =
2

3
,  

𝑐(𝑡𝑎𝑙𝑙, 𝑡𝑎𝑙𝑙) = 0,  

𝑐(𝑡𝑎𝑙𝑙,𝑚𝑒𝑑𝑖𝑢𝑚) =
1

2
. 

Suppose we have two experts A and B. 
Further on, we consider (fuzzy, intuitionistic fuzzy, or 

neutrosophic) degrees of appurtenance of each attribute value to 
the set 𝑃 with respect to experts’ criteria. 

We consider the single value number fuzzy degrees, for 
simplicity of the example. 

Let 𝑣𝑖 be a uni-attribute value and its degree of contradiction 
with respect to the dominant uni-attribute value 𝑣𝐷 be 𝑐(𝑣𝐷, 𝑣𝑖) ≝
𝑐𝑖. 

Let 𝑑𝐴(𝑥, 𝑣𝑖)  be the appurtenance degree of the attribute 
value 𝑣𝑖 of the element 𝑥 with respect to the set A. And similarly 
for 𝑑𝐵(𝑥, 𝑣𝑖) . Then, we recall the plithogenic aggregation 
operators with respect to this attribute value 𝑣𝑖  that will be 
employed: 
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II.22.1. One-Attribute Value Plithogenic Single-Valued 

Fuzzy Set Intersection 

𝑑𝐴(𝑥, 𝑣𝑖) ∧𝑝 𝑑𝐵(𝑥, 𝑣𝑖) = 
(1 − 𝑐𝑖) ∙ [𝑑𝐴(𝑥, 𝑣𝑖) ∧𝐹 𝑑𝐵(𝑥, 𝑣𝑖)] 

+𝑐𝑖 ∙ [𝑑𝐴(𝑥, 𝑣𝑖) ∨𝐹 𝑑𝐵(𝑥, 𝑣𝑖)]     (193) 

II.22.2. One-Attribute Value Plithogenic Single-Valued 

Fuzzy Set Union 

𝑑𝐴(𝑥, 𝑣𝑖) ∨𝑝 𝑑𝐵(𝑥, 𝑣𝑖) = (1 − 𝑐𝑖) ∙

[𝑑𝐴(𝑥, 𝑣𝑖) ∨𝐹 𝑑𝐵(𝑥, 𝑣𝑖)] + 𝑐𝑖 ∙ [𝑑𝐴(𝑥, 𝑣𝑖) ∧𝐹 𝑑𝐵(𝑥, 𝑣𝑖)]  (193) 

II.22.3. One Attribute Value Plithogenic Single-Valued 

Fuzzy Set Complement (Negation) 

¬𝑝𝑣𝑖 = 𝑎𝑛𝑡𝑖(𝑣𝑖) = (1 − 𝑐𝑖) ∙ 𝑣𝑖    (195) 
¬𝑝𝑑𝐴(𝑥, (1 − 𝑐𝑖)𝑣𝑖) = 𝑑𝐴(𝑥, 𝑣𝑖)    (196) 

II.23. Singe-Valued Fuzzy Set Degrees of 

Appurtenance 

According to Expert A: 
𝑑A: {𝑔𝑟𝑒𝑒𝑛, 𝑦𝑒𝑙𝑙𝑜𝑤, 𝑟𝑒𝑑; 𝑡𝑎𝑙𝑙, 𝑚𝑒𝑑𝑖𝑢𝑚} → [0, 1] 
One has: 
𝑑A(𝑔𝑟𝑒𝑒𝑛) = 0.6, 
𝑑A(𝑦𝑒𝑙𝑙𝑜𝑤) = 0.2, 
𝑑A(𝑟𝑒𝑑) = 0.7; 
𝑑A(𝑡𝑎𝑙𝑙) = 0.8, 
𝑑A(𝑚𝑒𝑑𝑖𝑢𝑚) = 0.5. 
We summarize as follows: 
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According to Expert A: 
Contradiction 

Degrees 

0 1

3
 

2

3
  0 1

2
 

Attributes’ Values green yellow red  tall medium 

Fuzzy Degrees 0.6 0.2 0.7  0.8 0.5 

Table 3. 
 

According to Expert B: 
Contradiction 

Degrees 

0 1

3
 

2

3
  0 1

2
 

Attributes’ Values green yellow red  tall medium 

Fuzzy Degrees 0.7 0.4 0.6  0.6 0.4 

Table 4. 
 
The element  

x{ (green, tall), (green, medium), (yellow, tall), 
(yellow, medium), (red, tall), (red, medium) } ∈ 𝑃 

with respect to the two experts as above is represented as: 
𝑥𝐴{(0.6, 0.8), (0.6, 0.5), (0.2, 0.8), (0.2, 0.5), (0.7, 0.8), (0.7, 0.5)} 

and 
𝑥𝐵{(0.7, 0.6), (0.7, 0.4), (0.4, 0.6), (0.4, 0.4), (0.6, 0.6), (0.6, 0.4)}. 

In order to find the optimal representation of 𝑥, we need to 
intersect 𝑥𝐴  and 𝑥𝐵 , each having six duplets. Actually, we 
separately intersect the corresponding duplets.  

In this example, we take the fuzzy 𝑡𝑛𝑜𝑟𝑚: 𝑎 ∧𝐹 𝑏 = 𝑎𝑏 and  
the fuzzy 𝑡𝑐𝑜𝑛𝑜𝑟𝑚: 𝑎 ∨𝐹 𝑏 = 𝑎 + 𝑏 − 𝑎𝑏. 
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II.23.1. Application of Uni-Attribute Value Plithogenic 

Single-Valued Fuzzy Set Intersection 

Let’s compute 𝑥𝐴 ∧𝑝 𝑥𝐵. 
    0      0           0      0   {degrees of contradictions}        
(0.6, 0.8) ∧𝑝 (0.7, 0.6) = (0.6 ∧𝑝 0.7, 0.8 ∧𝑝 0.6)

= (0.6 ∙ 0.7, 0.8 ∙ 0.6) = (0.42, 0.48), 
where above each duplet we wrote the degrees of contradictions of 
each attribute value with respect to their correspondent dominant 
attribute value. Since they were zero, ∧𝑝 coincided with ∧𝐹. 
 
{the first raw below 0 ½ and again 0 ½ represents the 
contradiction degrees} 

(
0
0.6
,
1

2
0.5

) ∧𝑝 (
0
0.7
,
1

2
0.4
) = (0.6 ∧𝑝 0.7, 0.5 ∧𝑝 0.4)

= (0.6 ∙ 0.7, (1 − 0.5) ∙ [0.5 ∧𝐹 0.4] + 0.5

∙ [0.5 ∨𝐹 0.4])

= (0.42, 0.5[0.2] + 0.5[0.5 + 0.4 − 0.5 ∙ 0.4])

= (0.42, 0.45). 

(
1

3
0.2

,
0
0.8
) ∧𝑝 (

1

3
0.4

,
0
0.6
) = (0.2 ∧𝑝 0.4, 0.8 ∧𝑝 0.6)

= ({ 1 −
1

3
} ∙ [0.2 ∧𝐹 0.4] + {

1

3
} ∙ [0.2 ∨𝐹 0.4], 0.8

∙ 0.6) ≈ (0.23, 0.48). 

(
1

3
0.2

,
1

2
0.5

) ∧𝑝 (
1

3
0.4

,
1

2
0.4
) = (0.2 ∧𝑝 0.4, 0.5 ∧𝑝 0.4) 

(they were computed above) 
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≈ (0.23, 0.45). 

(
2

3
0.7

,
0
0.8
) ∧𝑝 (

2

3
0.6

,
0
0.6
) = (0.7 ∧𝑝 0.8, 0.8 ∧𝑝 0.6)

= ({1 −
2

3
} ∙ [0.7 ∧𝐹 0.6] + {

2

3
}

∙ [0.7 ∨𝐹 0.6], 0.48) 

(the second component was computed above) 

= (
1

3
[0.7 ∙ 0.6] +

2

3
[0.7 + 0.6 − 0.7 ∙ 0.6], 0.48) ≈ (0.73, 0.48). 

And the last duplet: 

(
2

3
0.7

,
1

2
0.5

) ∧𝑝 (
2

3
0.6

,
1

2
0.4
) = (0.7 ∧𝑝 0.6, 0.5 ∧𝑝 0.4)

≈ (0.73, 0.45) 
(they were computed above). 
Finally:  
𝑥𝐴 ∧𝑝 𝑥𝐵

≈ {
(0.42, 0.48), (0.42, 0.45), (0.23, 0.48), (0.23, 0.45),

(0.73, 0.48), (0.73, 0.45)
}, 

or, after the intersection of the experts’ opinions A/\PB, we 
summarize the result as: 

 
 
 
 
 
 
 



89 

Contradiction 

Degrees 

0 1

3
 

2

3
  0 1

2
 

Attributes’ Values green yellow red  tall medium 

Fuzzy Degrees of 

Expert A for x 

0.6 0.2 0.7  0.8 0.5 

Fuzzy Degrees of 

Expert B for x 

0.7 0.4 0.6  0.6 0.4 

Fuzzy Degrees of 

𝑥𝐴 ∧𝑝 𝑥𝐵 

0.42 0.23 0.73  0.48 0.45 

Fuzzy Degrees of 

𝑥𝐴 𝑝𝑥𝐵 

0.88 0.37 0.57  0.92 0.45 

Table 5. 
 

II.23.2. Application of Uni-Attribute Value Plithogenic 

Single-Valued Fuzzy Set Union 

We separately compute for each single attribute value: 
𝑑𝐴
𝐹(𝑥, 𝑔𝑟𝑒𝑒𝑛) ∨𝑝 𝑑𝐵

𝐹(𝑥, 𝑔𝑟𝑒𝑒𝑛) = 0.6 ∨𝑝 0.7

= (1 − 0) ∙ [0.6 ∨𝐹 0.7] + 0 ∙ [0.6 ∧𝐹 0.7]

= 1 ∙ [0.6 + 0.7 − 0.6 ∙ 0.7] + 0 = 0.88. 
𝑑𝐴
𝐹(𝑥, 𝑦𝑒𝑙𝑙𝑜𝑤) ∨𝑝 𝑑𝐵

𝐹(𝑥, 𝑦𝑒𝑙𝑙𝑜𝑤) = 0.2 ∨𝑝 0.4

= (1 −
1

3
) ∙ [0.2 ∨𝐹 0.4] +

1

3
∙ [0.2 ∧𝐹 0.4]

=
2

3
∙ (0.2 + 0.4 −  0.2 ∙ 0.4) +

1

3
(0.2 ∙ 0.4)

≈ 0.37. 
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𝑑𝐴
𝐹(𝑥, 𝑟𝑒𝑑) ∨𝑝 𝑑𝐵

𝐹(𝑥, 𝑟𝑒𝑑) = 0.7 ∨𝑝 0.6

= {1 −
2

3
} ∙ [0.7 ∨𝐹 0.6] +

2

3
∙ [0.7 ∧𝐹 0.6]

=
1

3
∙ (0.7 + 0.6 − 0.7 ∙ 0.6) +

2

3
(0.7 ∙ 0.6)

≈ 0.57. 
𝑑𝐴
𝐹(𝑥, 𝑡𝑎𝑙𝑙) ∨𝑝 𝑑𝐵

𝐹(𝑥, 𝑡𝑎𝑙𝑙) = 0.8 ∨𝑝 0.6

= (1 − 0) ∙ (0.8 + 0.6 − 0.8 ∙ 0.6) + 0

∙ (0.8 ∙ 0.6) = 0.92. 
𝑑𝐴
𝐹(𝑥,𝑚𝑒𝑑𝑖𝑢𝑚) ∨𝑝 𝑑𝐵

𝐹(𝑥,𝑚𝑒𝑑𝑖𝑢𝑚) = 0.5 ∨𝑝 0.4

=
1

2
(0.5 + 0.4 − 0.5 ∙ 0.4) +

1

2
∙ (0.5 ∙ 0.4)  

= 0.45. 

II.23.3. Properties of Plithogenic Single-Valued Set 

Operators in Applications 

1) When the attribute value contradiction degree with respect 
to the corresponding dominant attribute value is 0 (zero), one 
simply use the fuzzy intersection: 

𝑑𝐴∧𝑝𝐵(𝑥, 𝑔𝑟𝑒𝑒𝑛) = 𝑑𝐴(𝑥, 𝑔𝑟𝑒𝑒𝑛) ∧𝐹 𝑑𝐵(𝑥, 𝑔𝑟𝑒𝑒𝑛) = 0.6 ∙

0.7 = 0.42, 
and 
𝑑𝐴∧𝑝𝐵(𝑥, 𝑡𝑎𝑙𝑙) = 𝑑𝐴(𝑥, 𝑡𝑎𝑙𝑙) ∧𝐹 𝑑𝐵(𝑥, 𝑡𝑎𝑙𝑙) = 0.8 ∙ 0.6 =

0.48. 
2) But, if the attribute value contradiction degree with 

respect to the corresponding dominant attribute value is different 
from 0 and from 1, the result of the plithogenic intersection is 
between the results of fuzzy 𝑡𝑛𝑜𝑟𝑚 and fuzzy 𝑡𝑐𝑜𝑛𝑜𝑟𝑚. Examples: 
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𝑑𝐴(𝑥, 𝑦𝑒𝑙𝑙𝑜𝑤) ∧𝐹 𝑑𝐵(𝑥, 𝑦𝑒𝑙𝑙𝑜𝑤) = 0.2 ∧𝐹 0.4 = 0.2 ∙ 0.4

= 0.08 (𝑡𝑛𝑜𝑟𝑚), 
𝑑𝐴(𝑥, 𝑦𝑒𝑙𝑙𝑜𝑤) ∨𝐹 𝑑𝐵(𝑥, 𝑦𝑒𝑙𝑙𝑜𝑤) = 0.2 ∨𝐹 0.4

= 0.2 + 0.4 − 0.2 ∙ 0.4 = 0.52 (𝑡𝑐𝑜𝑛𝑜𝑟𝑚); 
while  
𝑑𝐴(𝑥, 𝑦𝑒𝑙𝑙𝑜𝑤) ∧𝑝 𝑑𝐵(𝑥, 𝑦𝑒𝑙𝑙𝑜𝑤) = 0.23 ∈ [0.08, 0.52]  
{or 0.23 ≈ 0.2266… = (2/3)×0.08 + (1/3)×0.52, i.e. a linear 

combination of 𝑡𝑛𝑜𝑟𝑚 and 𝑡𝑐𝑜𝑛𝑜𝑟𝑚}. 
Similarly: 
𝑑𝐴(𝑥, 𝑟𝑒𝑑) ∧𝑝 𝑑𝐵(𝑥, 𝑟𝑒𝑑) = 0.7 ∧𝐹 0.6 = 0.7 ∙ 0.6

= 0.42 (𝑡𝑛𝑜𝑟𝑚), 
𝑑𝐴(𝑥, 𝑟𝑒𝑑) ∨𝑝 𝑑𝐵(𝑥, 𝑟𝑒𝑑) = 0.7 ∨𝐹 0.6 = 0.7 + 0.6 − 0.7 ∙

0.6 = 0.88 (𝑡𝑐𝑜𝑛𝑜𝑟𝑚); 
while 
𝑑𝐴(𝑥, 𝑟𝑒𝑑) ∧𝑝 𝑑𝐵(𝑥, 𝑟𝑒𝑑) = 0.57 ∈ [0.42, 0.88]  
{linear combination of 𝑡𝑛𝑜𝑟𝑚 and 𝑡𝑐𝑜𝑛𝑜𝑟𝑚}. 
And 

𝑑𝐴(𝑥,𝑚𝑒𝑑𝑖𝑢𝑚) ∧𝐹 𝑑𝐵(𝑥,𝑚𝑒𝑑𝑖𝑢𝑚) = 0.5 ∧𝐹 0.4 = 0.5 ∙ 0.4

= 0.20, 
𝑑𝐴(𝑥,𝑚𝑒𝑑𝑖𝑢𝑚) ∨𝐹 𝑑𝐵(𝑥,𝑚𝑒𝑑𝑖𝑢𝑚) = 0.5 ∨𝐹 0.4

= 0.5 + 0.4 − 0.5 ∙ 0.4 = 0.70, 
while 
𝑑𝐴(𝑥,𝑚𝑒𝑑𝑖𝑢𝑚) ∧𝑝 𝑑𝐵(𝑥,𝑚𝑒𝑑𝑖𝑢𝑚) = 0.45, which is just in 

the middle (because “medium” contradiction degree is  1
2
) of the 

interval [0.20, 0.70]. 
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II.24. Single-Valued Intuitionistic Fuzzy Set Degree 

of Appurtenance 

Contradiction 

Degrees 

 0 1

3
 

2

3
  0 1

2
 

Attributes’ 

Values 

 green yellow red  tall medium 

 Expert 

A 

(0.4, 

0.5) 

(0.1, 

0.2) 

(0, 0.3)  (0.8, 

0.2) 

(0.4, 

0.5) 

Intuitionistic 

Fuzzy 

Degrees 

Expert 

B 

(0.6, 

0.3) 

(0.4, 

0.3) 

(0.2, 0.5)  (0.6, 

0.1) 

(0.5, 

0.3) 

 Experts 

𝐴 ∧𝑝 𝐵 

(0.24, 

0.65) 

(0.18, 

0.31) 

(0.13, 0.32)  (0.48, 

0.28) 

(0.45, 

0.40) 

 Experts 

𝐴 ∨𝑝 𝐵 

(0.76, 

0.15) 

(0.32, 

0.19) 

(0.07, 0.48)  (0.92, 

0.02) 

(0.45, 

0.40) 

Table 6. 
 
 
 
 
 
 
 
 



93 

II.24.1. One-Attribute Value Plithogenic Single-Valued 

Intuitionistic Fuzzy Set Intersection 

{degrees of contradictions} 
                                                      0                    0  

𝑑𝐴
𝐼𝐹(𝑥, 𝑔𝑟𝑒𝑒𝑛) ∧𝑝 𝑑𝐵

𝐼𝐹(𝑥, 𝑔𝑟𝑒𝑒𝑛) = (0.4, 0.5) ∧𝑝 (0.6, 0.3)

= (0.4 ∧𝑝 0.6, 0.5 ∨𝑝 0.3) =

= (1 ∙ [0.4 ∙ 0.6] + 0 ∙ [0.4 + 0.6 − 0.4 ∙ 0.6], 0

∙ [0.5 ∙ 0.3] + 1 ∙ [0.5 + 0.3 − 0.5 ∙ 0.3])

= (0.24, 0.65). 
 
                                                         1/3                1/3 

𝑑𝐴
𝐼𝐹(𝑥, 𝑦𝑒𝑙𝑙𝑜𝑤) ∧𝑝 𝑑𝐵

𝐼𝐹(𝑥, 𝑦𝑒𝑙𝑙𝑜𝑤) = (0.1, 0.2) ∧𝑝 (0.4, 0.3)

= (0.1 ∧𝑝 0.4, 0.2 ∨𝑝 0.3)

= ({1 −
1

3
} ∙ [0.1 ∧𝐹 0.4] + {

1

3
 }

∙ [0.1 ∨𝐹 0.4], { 1 −
1

3
} ∙ [0.2 ∨𝐹 0.3]) + {

1

3
}

∙ [0.2 ∧𝐹 0.3]

= (
2

3
∙ [0.1 ∙ 0.4] +

1

3
∙ [0.1 + 0.4 − 0.1 ∙ 0.4],

2

3
∙ [0.2 + 0.3 − 0.2 ∙ 0.3]) +

1

3
∙ [0.2 ∙ 0.3]

≈ (0.18, 0.31). 
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                                            2/3                2/3 
𝑑𝐴
𝐼𝐹(𝑥, 𝑟𝑒𝑑) ∧𝑝 𝑑𝐵

𝐼𝐹(𝑥, 𝑟𝑒𝑑) = (0, 0.3) ∧𝑝 (0.2, 0.5)

= (0 ∧𝑝 0.2, 0.3 ∨𝑝 0.5)

= ({1 −
2

3
} ∙ [0 ∧𝐹 0.2] + {

2

3
} ∙ [0 ∨𝐹 0.2], {1 −

2

3
}

∙ [0.3 ∨𝐹 0.5] + {
2

3
} ∙ [0.3 ∧𝐹 0.5] +)

= (
1

3
∙ [0 ∙ 0.2] +

2

3
∙ [0 + 0.2 − 0 ∙ 0.2],

1

3

∙ [0.3 + 0.5 − 0.3 ∙ 0.5] +
2

3
∙ [0.3 ∙ 0.5])

≈ (0.13, 0.32). 
 
                                                  0                    0 

𝑑𝐴
𝐼𝐹(𝑥, 𝑡𝑎𝑙𝑙) ∧𝑝 𝑑𝐵

𝐼𝐹(𝑥, 𝑡𝑎𝑙𝑙) = (0.8, 0.2) ∧𝑝 (0.6, 0.1)

= (0.8 ∧𝑝 0.6, 0.2 ∨𝑝 0.1)

= ({1 − 0} ∙ [0.8 ∧𝐹 0.6] + {0}

∙ [0.8 ∨𝐹 0.6], { 1 − 0} ∙ [0.2 ∨𝐹 0.1] + {0}

∙ [0.2 ∧𝐹 0.1])

= (1 ∙ [0.8 ∙ 0.6] + 0 ∙ [0.8 + 0.6 − 0.8 ∙ 0.6], 1

∙ [0.2 + 0.1 − 0.2 ∙ 0.1] + 0 ∙ [0.2 ∙ 0.1])

= (0.48, 0.28). 
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                                                       ½                ½  
𝑑𝐴
𝐼𝐹(𝑥,𝑚𝑒𝑑𝑖𝑢𝑚) ∧𝑝 𝑑𝐵

𝐼𝐹(𝑥,𝑚𝑒𝑑𝑖𝑢𝑚) = (0.4, 0.5) ∧𝑝 (0.5, 0.3)

= (0.4 ∧𝑝 0.5, 0.5 ∨𝑝 0.3)

= ({1 −
1

2
} ∙ [0.4 ∧𝐹 0.5] + {

1

2
}

∙ [0.4 ∨𝐹 0.5], { 1 −
1

2
} ∙ [0.5 ∨𝐹 0.3] + {

1

2
}

∙ [0.5 ∧𝑝 0.3])

= (
1

2
∙ [0.4 ∙ 0.5] +

1

2
∙ [0.4 + 0.5 − 0.4 ∙ 0.5],

1

2

∙ [0.5 + 0.3 − 0.5 ∙ 0.3] +
1

2
∙ [0.5 ∙ 0.3])

= (0.45, 0.40). 

II.24.2. One-Attribute Value Plithogenic Single-Valued 

Intuitionistic Fuzzy Set Union 

                                                          0                    0 
𝑑𝐴
𝐼𝐹(𝑥, 𝑔𝑟𝑒𝑒𝑛) ∨𝑝 𝑑𝐵

𝐼𝐹(𝑥, 𝑔𝑟𝑒𝑒𝑛) = (0.4, 0.5) ∨𝑝 (0.6, 0.3)

= (0.4 ∨𝑝 0.6, 0.5 ∧𝑝 0.3)

= ({1 − 0} ∙ [0.4 ∨𝐹 0.6] + {0}

∙ [0.4 ∧𝐹 0.6], {1 − 0} ∙ [0.5 ∧𝐹 0.3] + {0}

∙ [0.5 ∨𝐹 0.3])

= (1 ∙ [0.4 + 0.6 − 0.4 ∙ 0.6] + 0 ∙ [0.4 ∙ 0.6], 0

∙ [0.5 ∙ 0.3] + 1 ∙ [0.5 + 0.3 − 0.5 ∙ 0.3])

= (0.76, 0.15). 
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                       1/3                1/3 
𝑑𝐴
𝐼𝐹(𝑥, 𝑦𝑒𝑙𝑙𝑜𝑤) ∨𝑝 𝑑𝐵

𝐼𝐹(𝑥, 𝑦𝑒𝑙𝑙𝑜𝑤) = (0.1, 0.2) ∨𝑝 (0.4, 0.3)

= (0.1 ∨𝑝 0.4, 0.2 ∧𝑝 0.3)

= ({ 1 −
1

3
} ∙ [0.1 ∨𝐹 0.4] + {

1

3
}

∙ [0.1 ∧𝐹 0.4], { 1 −
1

3
} ∙ [0.2 ∧𝐹 0.3] + {

1

3
}

∙ [0.2 ∨𝐹 0.3])

= (
2

3
∙ [0.1 + 0.4 − 0.1 ∙ 0.4] +

1

3
∙ [0.1 ∙ 0.4],

2

3

∙ [0.2 ∙ 0.3] +
1

3
∙ [0.2 + 0.3 − 0.2 ∙ 0.3])

≈ (0.32, 0.19). 
 
                                           2/3                2/3 

𝑑𝐴
𝐼𝐹(𝑥, 𝑟𝑒𝑑) ∨𝑝 𝑑𝐵

𝐼𝐹(𝑥, 𝑟𝑒𝑑) = (0, 0.3) ∨𝑝 (0.2, 0.5)

= (0 ∨𝑝 0.2, 0.3 ∧𝑝 0.5)

= ({1 −
2

3
} ∙ [0 ∨𝑝 0.2] + {

2

3
} ∙ [0 ∧𝑝 0.2], {1 −

2

3
}

∙ [0.3 ∧𝑝 0.5] + {
2

3
} ∙ [0.3 ∨𝑝 0.5])

= (
1

3
[0 + 0.2 − 0 ∙ 0.2] +

2

3
[0 ∙ 0.2],

1

3
[0.3 ∙ 0.5]

+
2

3
∙ [0.3 + 0.5 − 0.3 ∙ 0.5]) ≈ (0.07, 0.48). 
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        0                 0 
𝑑𝐴
𝐼𝐹(𝑥, 𝑡𝑎𝑙𝑙) ∨𝑝 𝑑𝐵

𝐼𝐹(𝑥, 𝑡𝑎𝑙𝑙) = (0.8, 0.2) ∨𝑝 (0.6, 0.1)

= (0.8 ∨𝑝 0.6,0.2 ∧𝑝 0.1)

= ({1 − 0} ∙ [0.8 ∨𝐹 0.6] + {0}

∙ [0.8 ∧𝐹 0.6], {1 − 0} ∙ [0.2 ∧𝐹 0.1] + {0}

∙ [0.2 ∨𝐹 0.1])

= (1 ∙ [0.8 + 0.6 − 0.8 ∙ 0.6] + 0 ∙ [0.8 ∙ 0.6], 1

∙ [0.2 ∙ 0.1] + 0 ∙ [0.2 + 0.1 − 0.2 − 0.1])

= (0.92, 0.02). 
 
                                                      1/2                 1/2 

𝑑𝐴
𝐼𝐹(𝑥,𝑚𝑒𝑑𝑖𝑢𝑚) ∨𝑝 𝑑𝐵

𝐼𝐹(𝑥,𝑚𝑒𝑑𝑖𝑢𝑚) = (0.4, 0.5) ∨𝑝 (0.5, 0.3)

= (0.4 ∨𝑝 0.5,0.5 ∧𝑝 0.3)

= ({1 −
1

2
} ∙ [0.4 ∨𝑝 0.5] + {

1

2
}

∙ [0.4 ∧𝐹 0.5], {1 −
1

2
} ∙ [0.5 ∧𝐹 0.3] + {

1

2
}

∙ [0.5 ∨𝐹 0.3])

= (
1

2
∙ [0.4 + 0.5 − 0.4 ∙ 0.5] +

1

2
∙ [0.4 ∙ 0.5],

1

2

∙ [0.5 ∙ 0.3] +
1

2
∙ [0.5 + 0.3 − 0.5 − 0.3])

= (0.45, 0.40). 
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II.25. Single Valued Neutrosophic Set Degree of 

Appurtenance 

Contradiction  Degrees 0 1

3
 

2

3
  0 1

2
 

Attributes’ Values green yellow red  tall medium 

 Expert 

A 
0
1

2
1

(0.4, 0.1, 0.5)
 

(0.3, 

0.6, 

0.2) 

(0.2, 

0.1, 

0.4) 

 (0.8, 

0.3, 

0.1) 
(0.6, 

0.2, 0.3) 

Neutrosophic Expert 

B 

(0.5, 0.2, 0.4) (0.4, 

0.1, 

0.3) 

(0.3, 

0.4, 

0.2) 

 (0.7, 

0.1, 

0.6) 

(0.5, 

0.1, 0.3) 

Degrees Experts 

A⋀𝑝B 

(0.20, 0.15, 

0.70) 

(0.27, 

0.35, 

0.31) 

(0.31, 

0.25, 

0.23) 

 (0.56, 

0.20, 

0.64) 

(0.55, 

0.15, 

0.30) 

 Experts 

A∨𝑝B 

(0.70, 0.15, 

0.20) 

(0.43, 

0.35, 

0.19) 

(0.19, 

0.25, 

0.37) 

 (0.94, 

0.20, 

0.06) 

(0.55, 

0.15, 

0.30) 

Table 7. 
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II.25.1. One-Attribute Value Plithogenic Single-Valued 

Neutrosophic Set Intersection 

𝑑𝐴
𝑁(𝑥, 𝑔𝑟𝑒𝑒𝑛) ∧𝑝 𝑑𝐵

𝑁(𝑥, 𝑔𝑟𝑒𝑒𝑛)

= (0.4, 0.1, 0.5) ∧𝑝 (0.5, 0.2, 0.4)

= (0.4 ∧𝑝 0.5, {1 −
1

2
} ⋅ (0.1 ∧𝑝 0.2) + {

1

2
}

⋅ (0.1 ∨𝑝 0.2), 0.5 ∨𝑝 0.4)

= (0.4 ∧𝑝 0.5,
1

2
⋅ [0.1 ∧𝑝 0.2] +

1

2

⋅ [0.1 ∨𝑝 0.2], 0.4 ∨𝑝  0.5) 

{ Using first the interior neutrosophic contradiction degrees 
(between the neutrosophic components T, I, and F): 

0
1

2
1  

𝑇, 𝐼, 𝐹
} 

= ({1 − 0} ⋅ [0.4 ∧𝐹 0.5]  + {0} ⋅ [0.4 ∨𝐹 0.5],
1

2
⋅ [0.1 ∧𝑝 0.2]

+
1

2
⋅ [0.1 ∨𝑝 0.2], {1 − 0} ⋅ [0.5 ∨𝐹 0.4]  + {0}

⋅ [0.5 ∧𝐹 0.4]) = 

= (1 ⋅ [0.4 ⋅ 0.5] + 0 ⋅ [0.4 + 0.5 − 0.4 ⋅ 0.5],
1

2
⋅ [0.1 ∧𝑝 0.2]

+
1

2
⋅ [0.1 ∨𝑝 0.2], (1 − 0) ⋅ [0.5 + 0.4 − 0.5 ⋅ 0.4]

+ 0 ⋅ [0.5 ⋅ 0.4]) 
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= (0.20,
1

2
⋅ [0.1 ∧𝐹 0.2]  +

1

2
⋅ [0.1 ∨𝐹 0.2], 0.70)

= (0.20,
1

2
(0.1 ⋅  0.2) +

1

2

⋅ [0.1 + 0.2 − 0.1 ⋅ 0.2], 0.70)

= (0.20, 0.15, 0.70). 
 

𝑑𝐴
𝑁(𝑥, 𝑦𝑒𝑙𝑙𝑜𝑤) ∧𝑝 𝑑𝐵

𝑁(𝑥, 𝑦𝑒𝑙𝑙𝑜𝑤)

= (
1

3
0.3, 0.6, 0.2

) ∧𝑝 (
1

3
0.4, 0.1, 0.3

)

= (0.3 ∧𝑝 0.4,
1

2
⋅ [0.6 ∧𝑝 0.1] +

1

2

⋅ [0.6 ∨𝑝 0.1], 0.2 ∨𝑝 0.3) 

{

𝑜ne firstly used the interior neutrosophic contradiction degrees: 

𝑐(𝑇, 𝐼) =
1

2
, 𝑐(𝑇, 𝐹) = 1.

} 

= ({1 −
1

3
} ⋅ [0.3 ∧𝐹 0.4] + {

1

3
} ⋅ [0.3 ∨𝐹 0.4],

1

2
⋅ [0.6 ⋅ 0.1] +

1

2

⋅ [0.6 + 𝑜. 1 − 0.6 ⋅ 0.1], {1 −
1

3
} ⋅ [0.2 ∨𝐹 0.3]

+ {
1

3
} ⋅ [0.2 ∧𝐹 0.3])

= (
2

3
⋅ [0.3 ⋅ 0.4] +

1

3

⋅ [0.3 + 0.4 − 0.3 ⋅ 0.4], 0.35,
2

3

⋅ [0.2 + 0.3 − 0.2 ⋅ 0.3] +
1

3
⋅ [0.2 ⋅ 0.3])

≈ (0.27, 0.35, 0.31). 
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                                               2/3                      2/3 
𝑑𝐴
𝑁(𝑥, 𝑟𝑒𝑑) ∧𝑝 𝑑𝐵

𝑁(𝑥, 𝑟𝑒𝑑) = (0.2, 0.1, 0.4) ∧𝑝 (0.3, 0.4, 0.2)   

= (0.2 ∧𝑝 0.3, 0.1 ∨𝑝 0.4, 0.4 ∨𝑝 0.2)

= ({1 −
2

3
} ⋅ [0.2 ∧𝐹 0.3] + {

2

3
} ⋅ [0.2 ∨𝑝 0.3]) ,

1

2

⋅ [𝐼1 ∧𝐹 𝐼2 + 𝐼1 ∨𝐹 𝐼2], {according to Theorem 5}   

{1 −
2

3
} ⋅ [0.4 ∨𝐹 0.2] + {

2

3
} ⋅ [0.4 ∧𝐹 0.2])

= (
1

3
⋅ [0.2 ⋅ 0.3] +

2

3
⋅ [0.2 + 0.3 − 0.2 ⋅ 0.3],

1

2

⋅ [0.1 ⋅ 0.4 + 0.1 + 0.4 − 0.1 ⋅ 0.4],
1

3

⋅ [0.4 + 0.2 − 0.4 ⋅ 0.2] +
2

3
⋅ [0.4 ⋅ 0.2])

≈ (0.31, 0.25, 0.23). 
{The degree of contradiction is 2/3 > 0.5.} 
 

𝑑𝐴
𝑁(𝑥, 𝑡𝑎𝑙𝑙) ∧𝑝 𝑑𝐵

𝑁(𝑥, 𝑡𝑎𝑙𝑙) = (0.8, 0.3, 0.1) ∧𝑝 (0.7, 0.1, 0.6)

= (0.8 ∧𝑝 0.7, 0.3 ∨𝑝 0.1, 0.1 ∨𝑝 0.6)

= (0.8 ∧𝐹 0.7,
1

2

⋅ (0.3 ∧𝐹 0.1 + 0.3 ∨𝐹 0.1), 0.1 ∨𝐹 0.6) 

(since the exterior degree of contradiction is zero) 

= (0.8 ⋅ 0.7,
1

2
⋅ (0.3 ⋅ 0.1 + 0.3 + 0.1 − 0.3 ⋅ 0.1), 0.1 + 0.6

− 0.1 ⋅ 0.6) = (0.56, 0.20, 0.64). 
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𝑑𝐴
𝑁(𝑥,𝑚𝑒𝑑𝑖𝑢𝑚) ∧𝑝 𝑑𝐵

𝑁(𝑥,𝑚𝑒𝑑𝑖𝑢𝑚)

= (0.6, 0.2, 0.3) ∧𝑝 (0.5, 0.1, 0.3)

= (0.6 ∧𝑝 0.5, 0.2 ∨𝑝 0.1, 0.3 ∨𝑝 0.3)

= (
1

2
⋅ [0.6 ⋅ 0.5] +

1

2
⋅ [0.6 + 0.5 − 0.6 ⋅ 0.5],

1

2

⋅ [0.2 ⋅ 0.1 + 0.2 + 0.1 − 0.2 ⋅ 0.1],
1

2
⋅ [0.3 ⋅ 0.3]

+
1

2
⋅ [0.3 + 0.3 − 0.3 ⋅ 0.3])

= (0.55, 0.15, 0.30). 
{Since the degree of contradiction is 1/2. } 

II.25.2. One-Attribute Value Plithogenic Single-Valued 

Neutrosophic Set Union 

𝑑𝐴
𝑁(𝑥, 𝑔𝑟𝑒𝑒𝑛) ∨𝑝 𝑑𝐵

𝑁(𝑥, 𝑔𝑟𝑒𝑒𝑛)

= (
0

0.4, 0.1, 0.5
) ∨𝑝 (

0
0.5, 0.2, 0.4

)

= (0.4 ∨𝑝 0.5, 0.1 ∧𝑝 0.2, 0.5 ∧𝑝 0.4)  
{since the degree of contradiction is zero}

= (0.4 + 0.5 − 0.4

⋅ 0.5,
1

2
(0.1 ⋅ 0.2 + 0.1 + 0.2 − 0.1 ⋅ 0.2), 0.5

⋅ 0.4) = (0.70, 0.15, 0.20). 
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𝑑𝐴
𝑁(𝑥, 𝑦𝑒𝑙𝑙𝑜𝑤) ∨𝑝 𝑑𝐵

𝑁(𝑥, 𝑦𝑒𝑙𝑙𝑜𝑤)

= (
1

3
0.3, 0.6, 0.2

) ∨𝑝 (
1

3
0.4, 0.1, 0.3

)

= (0.3 ∨𝑝 0.4, 0.6 ∧𝑝 0.1, 0.2 ∧𝑝 0.3)

= ({1 −
1

3
} ⋅ [0.3 ∨𝐹 0.4] + {

1

3
} ⋅ [0.3 ∧𝐹 0.4],

1

2

⋅ [0.6 ∧𝐹 0.1 + 0.6 ∨𝐹 0.1], {1 −
1

3
} ⋅ [0.2 ∧𝐹 0.3]

+ {
1

3
} ⋅ [0.2 ∨𝐹 0.3])

= (
2

3
⋅ [0.3 + 0.4 − 0.3 ⋅ 0.4] +

1

3
⋅ [0.3 ⋅ 0.4],

1

2

⋅ [0.6 ⋅ 0.1 + 0.6 + 0.1 − 0.6 ⋅ 0.1],
2

3
⋅ [0.2 ⋅ 0.3]

+
1

3
⋅ [0.2 + 0.3 − 0.2 ⋅ 0.3])

≈ (0.43, 0.35, 0.19). 
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𝑑𝐴
𝑁(𝑥, 𝑟𝑒𝑑) ∨𝑝 𝑑𝐵

𝑁(𝑥, 𝑟𝑒𝑑)

= (
2

3
0.2, 0.1, 0.4

) ∨𝑝 (
2

3
0.3, 0.4, 0.2

)

= (0.2 ∨𝑝 0.3, 0.1 ∧𝑝 0.4, 0.4 ∧𝑝 0.2)

= ({1 −
2

3
} ⋅ [0.2 ∨𝑝 0.3] + {

2

3
} ⋅ [0.2 ∧𝑝 0.3]) ,

1

2

⋅ [0.1 ∧𝐹 0.4 + 0.1 ∨𝐹 0.4], {1 −
2

3
} ⋅ [0.4 ∧𝐹 0.2]

+ {
2

3
} ⋅ [0.4 ∨𝐹 0.2]

= (
1

3
⋅ [0.2 + 0.3 − 0.2 ⋅ 0.3] +

2

3
⋅ [0.2 ⋅ 0.3],

1

2

⋅ [0.1 ⋅ 0.4 + 0.4 + 0.1 − 0.1 ⋅ 0.4],
1

3
⋅ [0.4 ⋅ 0.2]

+
2

3
⋅ [0.4 + 0.2 − 0.4 ⋅ 0.2])

≈ (0.19, 0.25, 0.37). 
{The degree of contradiction is  2

3
> 0.5.} 
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𝑑𝐴
𝑁(𝑥, 𝑡𝑎𝑙𝑙) ∨𝑝 𝑑𝐵

𝑁(𝑥, 𝑡𝑎𝑙𝑙)

= (
0

0.8, 0.3, 0.1
) ∨𝑝 (

0
0.7, 0.1, 0.6

)

= (0.8 ∨𝑝 0.7, 0.3 ∧𝑝 0.1, 0.1 ∧𝑝 0.6)

= (0.8 ∨𝐹 0.7,
1

2
(0.3 ∧𝐹 0.1

+ 0.3 ∨𝐹 0.1), 0.1 ∧𝐹 0.6)

= (0.8 + 0.7 − 0.8

⋅ 0.7,
1

2
(0.3 ⋅ 0.1 + 0.3 + 0.1 − 0.3 ⋅ 0.1), 0.1

⋅ 0.6) = (0.94, 0.20, 0.06). 

 
𝑑𝐴
𝑁(𝑥,𝑚𝑒𝑑𝑖𝑢𝑚) ∨𝑝 𝑑𝐵

𝑁(𝑥,𝑚𝑒𝑑𝑖𝑢𝑚)

= (
1

2
0.6, 0.2, 0.3

) ∨𝑝 (
1

2
0.5, 0.1, 0.3

)

= (0.6 ∨𝑝 0.5, 0.2 ∨𝑝 0.1, 0.3 ∨𝑝 0.3)

= ({1 −
1

2
} ⋅ [0.6 ∨𝑝 0.5] + {

1

2
} ⋅ [0.6 ∧𝐹 0.5]) ,

1

2

⋅ [0.2 ∧𝐹 0.1 + 0.2 ∨𝑝 0.1],

{1 −
1

2
} ⋅ [0.3 ∧𝐹 0.3] + {

1

2
} ⋅ [0.3 ∨𝑝 0.3]

= (
1

2
⋅ [0.6 + 0.5 − 0.6 ⋅ 0.5] +

1

2
⋅ [0.6 ⋅ 0.5],

1

2

⋅ [0.2 ⋅ 0.1 + 0.2 + 0.1 − 0.2 ⋅ 0.1],
1

2
⋅ [0.3 ⋅ 0.3]

+
1

2
⋅ [0.3 + 0.3 − 0.3 ⋅ 0.3])

= (0.55, 0.15, 0.30). 
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III. PLITHOGENIC LOGIC 

We now trace the previous study on plithogenic set and 
adjust it to the plithogenic logic. In order for the chapter to be self-
contained, we recopy the previous main plithogenic set formulas 
and ideas, but we correlate and adapt them to the logic field. 

III.1. Informal Definition of Plithogenic Logic 

A plithogenic logical proposition P is a proposition that is 
characterized by many degrees of truth-values with respect to the 
corresponding attributes’ values that characterize P. 

For each attribute’s value v there is a corresponding degree 
of truth-value d(P, v) of P with respect to the attribute value v.  

 In order to obtain a better accuracy for the plithogenic 
aggregation logical operators, a contradiction (dissimilarity) 
degree is defined between each attribute value and the dominant 
(most important) attribute value.  

{However, there are cases when such dominant attribute 
value may not be taking into consideration or may not exist [and 
then by default the contradiction degree is taken as zero], or there 
may be many dominant attribute values. In such cases, either the 
contradiction degree function is suppressed, or another 
relationship function between attribute values should be 
established.} 

The plithogenic aggregation logical operators (conjunction, 
disjunction, negation, inclusion, equality) are based on 
contradiction degrees between attributes’ values, and the first two 
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are linear combinations of the fuzzy logical operators tnorm and 
tconorm. 

 Plithogenic logic is a generalization of the classical logic, 
fuzzy logic, intuitionistic fuzzy logic, and neutrosophic logic, since 
these four types of logics are characterized by a single attribute 
value (truth-value): which has one value (truth) – for the classical 
logic and fuzzy logic, two values (truth, and falsehood) – for 
intuitionistic fuzzy logic, or three values (truth, falsehood, and 
indeterminacy) – for neutrosophic logic. 

A plithogenic logic proposition P, in general, may be 
characterized by four or more degrees of truth-values resulted from 
the number of attribute-values that characterize P.  The number of 
attribute-values is established by the experts. 

III.2. Formal Definition of Single (Uni-Dimensional) 

Attribute Plithogenic Set 

Let U be a logical universe of discourse, and P a logical 
proposition, P ∊ U. 

III.2.1. Attribute Value Spectrum 

Let A be a non-empty set of uni-dimensional attributes A = 
{α1, α2, …, αm},  

m ≥ 1; and α ∈ A be a given attribute whose spectrum of all 
possible values (or states) is the non-empty set S, where S can be a 
finite discrete set, S = {s1, s2, …, sl}, 1  ≤ l  <∞, or infinitely 
countable set S = {s1, s2, …, s∞}, or infinitely uncountable 
(continuum) set S = ]𝑎, 𝑏[, a < b, where ]… [ is any open, semi-
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open, or closed interval from the set of real numbers or from other 
general set. 

III.2.2. Attribute Value Range 

Let V  be a non-empty subset of S, where V is the range of 
all attribute’s values needed by the experts for their logical 
application. Each logical proposition 𝑃  is characterized by all 
attribute’s values in V = {v1, v2, …, vn}, for n ≥ 1. 

III.2.3. Dominant Attribute Value 

Into the attribute’s value set V, in general, there is a dominant 
attribute value, which is determined by the experts upon their 
application.  Dominant attribute value means the most important 
attribute value that the experts are interested in.  

{However, there cases when such dominant attribute value 
may not be taking into consideration or not exist [in such case it is 
zero by default], or there may be many dominant (important) 
attribute values - when different approach should be employed.} 

III.2.4. Attribute Value Truth-Value Degree Function 

With respect to each attributes value v ∈ V the proposition P 
has a corresponding degree of truth-value: d(P, v). 

The degree of truth-value may be: a fuzzy degree of truth-
value, or intuitionistic fuzzy degree of truth-value, or neutrosophic 
degree of truth-value of the proposition P with respect to v. 

Therefore, the attribute value truth-value degree function is: 
∀𝑃 ∈ U, d: U×V→ P ([0, 1]z),     (197) 
so d(P, v) is a subset of [0, 1]z, where  
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P([0, 1] z) is the power set of the [0, 1] z, where z = 1 (for 
fuzzy degree of truth-value), z = 2 (for intuitionistic fuzzy degree 
of truth-value), or z = 3 (for neutrosophic degree de truth-value). 

III.2.5. Attribute Value Contradiction Degree Function 

Let the cardinal |V| ≥ 1.  
Let c: V×V  → [0, 1] be the attribute value contradiction 

degree function (that we introduce now for the first time) between 
any two attribute values v1 and v2, denoted by  

c(v1, v2), and satisfying the following axioms:  
c(v1, v1) = 0, the contradiction degree between the same 

attribute values is zero;  
c(v1, v2) = c(v2, v1), commutativity. 
For simplicity, we use a fuzzy attribute value contradiction 

degree function (c as above, that we may denote by cF in order to 
distinguish it from the next two), but an intuitionistic attribute 
value contradiction function (cIF : V×V → [0, 1]2), or more general 
a neutrosophic attribute value contradiction function (cN : V×V →
 [0, 1]3) may be utilized increasing the complexity of calculation 
but the accuracy as well. 

We mostly compute the contradiction degree between uni-
dimensional attribute values. For multi-dimensional attribute 
values we split them into corresponding uni-dimensional attribute 
values. 

The attribute value contradiction degree function helps the 
plithogenic aggregation logical operators, and the plithogenic 
logical inclusion (partial order) relationship to obtain a more 
accurate result. 



110 

The attribute value contradiction degree function is designed 
in each field where plithogenic logic is used in accordance with the 
application to solve. If it is ignored, the aggregations still work, but 
the result may lose accuracy. 

Then (𝑈, 𝑎, 𝑉, 𝑑, 𝑐) is called a plithogenic logic: 
where “U” is a logical universe of discourse of many logical 

generic propositions P, “a” is a (multi-dimensional in general) 
attribute, “V” is the range of the attribute’s values, “d” is the degree 
of truth-value of each logical proposition P ∊ U with respect to 
each attribute value - and “d”  stands for “𝑑𝐹” or “𝑑𝐼𝐹” or “𝑑𝑁”, 
when dealing with fuzzy degree of truth-value, intuitionistic fuzzy 
degree of truth-value, or neutrosophic degree of truth-value 
respectively of a plithogenic logical proposition P;  and “c” stands 
for “cF” or “cIF” or “cN”, when dealing with fuzzy degree of 
contradiction (dissimilarity), intuitionistic fuzzy degree of 
contradiction, or neutrosophic degree of contradiction between 
attribute values respectively.  

The functions 𝑑(∙,∙)  and 𝑐(∙,∙)  are defined in accordance 
with the logical applications the experts need to solve. 

One uses the notation: 
𝑃(𝑑(𝑃, 𝑉)),  

where 𝑑(𝑃, 𝑉) = {𝑑(𝑃, 𝑣), for all 𝑣 ∈ 𝑉}, ∀𝑃 ∈ 𝑈. 

III.2.6. About the Plithogenic Aggregation Logical 

Operators 

The attribute value contradiction degree is calculated 
between each attribute value with respect to the dominant attribute 
value (denoted vD) in special, and with respect to other attribute 
values as well. 
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The attribute value contradiction degree function c between 
the attribute’s values is used into the definition of plithogenic 
aggregation logical operators {conjunction (AND), disjunction 
(OR), Negation ( ), Implication ( ), Equivalence ( ), and 
other plithogenic aggregation operators that combine two or more 
attribute value degrees - that tnorm and tconorm act upon}.  

Several of the plithogenic aggregation logical operators are 
linear combinations of the fuzzy tnorm (denoted ∧F), and fuzzy 
tconorm (denoted ∨F), but non-linear combinations may as well be 
constructed. 

If one applies the tnorm on dominant attribute value denoted 
by vD, and the contradiction between vD and v2 is c(vD, v2), then 
onto attribute value v2 one applies: 

[1 − c(vD, v2)]⋅tnorm(vD, v2) + c(vD, v2)⋅tconorm(vD, v2),  (198) 
Or, by using symbols:  
[1 − c(vD, v2)]⋅(vD∧Fv2) + c(vD, v2)⋅(vD∨Fv2).  (199) 
Similarly, if one applies the tconorm on dominant attribute 

value denoted by vD, and the contradiction between vD and v2 is 
c(vD, v2), then onto attribute value v2 one applies: 

[1 − c(vD, v2)]⋅tconorm(vD, v2) + c(vD, v2)⋅tnorm(vD, v2), (200) 
Or, by using symbols:  
[1 − c(vD, v2)]⋅(vD∨Fv2) + c(vD, v2)⋅(vD∧Fv2).   (201) 

III.3. Plithogenic Logic as Generalization of other 

Logics  

The plithogenic set is an extension of all: classical logic, 
fuzzy logic, intuitionistic fuzzy logic, and neutrosophic logic. 

For examples:  
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Let U be a logical universe of discourse, and a generic logical 
proposition P ∊ U. Then:  

III.3.1. Classical (Crisp) Logic (CCL) 

The attribute is α = “truth-value”;  
the set of attribute values V = {truth, falsehood}, with 

cardinal |V| = 2;  
the dominant attribute value = truth; 
the attribute value truth-value degree function:  
d: U×V→{0, 1},      (202) 
d(P, truth) = 1,  d(P, falsehood) = 0,  
and the attribute value contradiction degree function: 
c: V×V→{0, 1},     (203) 
c(truth, truth) = c(falsehood, falsehood) = 0, 
c(truth, falsehood) = 1. 

III.3.1.2. Crisp (Classical) Intersection 
a /\ b ∊ {0, 1}      (204) 

III.3.1.3. Crisp (Classical) Union 
a \/ b ∊ {0, 1}      (205) 

III.3.1.4. Crisp (Classical) Complement (Negation) 
 a ∊ {0, 1}.      (206) 

III.3.2. Single-Valued Fuzzy Logic (SVFL) 

The attribute is α = “truth-value”;  
set of attribute values V = {truth}, whose cardinal |V| = 1;  
the dominant attribute value = truth; 
the attribute value truth-value degree function: 
d: U×V→[0, 1],      (207) 
with d(P, truth) ∈ [0, 1];  
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and the attribute value contradiction degree function: 
c: V×V→[0, 1],      (208) 
c(truth, truth) = 0. 

III.3.2.1. Fuzzy Intersection 
a /\F b ∊ [0, 1] 

III.3.2.2. Fuzzy Union 
a \/F b ∊ [0, 1] 

III.3.2.3. Fuzzy Complement (Negation) 
 F a = 1 – a ∊ [0, 1].     (209) 

III.3.3. Single-Valued Intuitionistic Fuzzy Logic (SVIFL) 

The attribute is α = “truth-value”;  
the set of attribute values V = {truth, falsehood}, whose 

cardinal |V| = 2;  
the dominant attribute value = truth; 
the attribute-value truth-value degree function:  
d: U×V→[0, 1],      (210) 
d(P, truth) ∈ [0, 1], d(P, falsehood) ∈ [0, 1],  
with d(P, truth) + d(P, falsehood) ≤ 1,  
and the attribute value contradiction degree function: 
c: V×V→[0, 1],       (211) 
c(truth, truth) = c(falsehood, falsehood) = 0, 
c(truth, falsehood) = 1, 
which means that for SVIFL aggregation operators’ 

conjunction (AND) and disjunction (OR), if one applies the tnorm 
on truth degree, then one has to apply the tconorm on falsehood 
degree – and reciprocally. 

Therefore: 
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III.3.3.1. Intuitionistic Fuzzy Intersection 
(a1, a2) /\IFS (𝑏1, 𝑏2) = 1 1 2 2( , )F Fa b a b    (212) 

III.3.3.2. Intuitionistic Fuzzy Union 
(a1, a2) \/IFS (𝑏1, 𝑏2) = 1 1 2 2( , )F Fa b a b  ,   (213) 

and 
III.3.3.3. Intuitionistic Fuzzy Complement (Negation) 

 IFS (a1, a2) = (a2, a1).     (214) 
where ∧ F and ∨ F are the fuzzy tnorm and fuzzy tconorm 

respectively. 

III.3.4. Single-Valued Neutrosophic Set (SVNS) 

The attribute is α = “truth-value”;  
the set of attribute values V = {truth, indeterminacy, 

falsehood}, whose cardinal |V| = 3;  
the dominant attribute value = truth; 
the attribute-value truth-value degree function:  
d: U×V→[0, 1],      (215) 
d(P, truth) ∈ [0, 1], d(P, indeterminacy) ∈ [0, 1], 
d(P, falsehood) ∈ [0, 1],  
with  

0 ≤ d(P, truth) + d(P, indeterminacy) + d(P, falsehood) ≤ 3;  
and the attribute-value contradiction degree function: 
c: V×V→[0, 1],      (216) 
c(truth, truth) = c(indeterminacy, indeterminacy) = 

c(falsehood, falsehood) = 0, c(truth, falsehood) = 1, 
c(truth, indeterminacy) = c(falsehood, indeterminacy) = 0.5, 
which means that for the SVNL aggregation operators 

(conjunction, disjunction, negation etc.), if one applies the tnorm on 



115 

truth, then one has to apply the tconorm on falsehood {and 
reciprocally), while on indeterminacy one applies the average of 
tnorm and tconorm, as follows: 
III.3.4.1. Neutrosophic Conjunction 
III.3.4.1.1. Simple Neutrosophic conjunction (the most used by 
the neutrosophic community): 

(a1, a2, a3) ∧NL (𝑏1, 𝑏2, 𝑏3) =  11 2 2 3 3, , F F Fa b a b a b    

(217) 
III.3.4.1.2. Plithogenic Neutrosophic Conjunction 

 (a1, a2, a3) ∧P (𝑏1, 𝑏2, 𝑏3) 

=    1 1 2 2 2 2 3 3
1, , 
2F F F Fa b a b a b a b 

       
 

,  (218) 

III.3.4.2. Neutrosophic Disjunction 
III.3.4.2.1. Simple Neutrosophic Disjunction (the most used by 
the neutrosophic community): 

(a1, a2, a3) ∨NL (𝑏1, 𝑏2, 𝑏3) =  11 2 2 3 3, , F F Fa b a b a b    

(219) 
III.3.4.2.2. Plithogenic Neutrosophic Disjunction 

(a1, a2, a3) ∨P (𝑏1, 𝑏2, 𝑏3) = 

   1 1 2 2 2 32 3
1, , 
2F F F Fa b a b a b a b 

       
    (220) 
In other way, with respect to what one applies on the truth, 

one applies the opposite on falsehood, while on indeterminacy one 
applies the average between them. 
III.3.4.3. Neutrosophic Negation: 

NS (𝑎1, 𝑎2, 𝑎3) = (𝑎3, 𝑎2, 𝑎1).    (221) 
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III.4. One-Attribute-Value Plithogenic Single-Valued 

Fuzzy Logic Operators 

We consider the single-value number degrees, for simplicity 
of the example. 

Let 𝑣𝑖 be a uni-attribute value and its degree of contradiction 
with respect to the dominant uni-attribute value 𝑣𝐷 be  

𝑐(𝑣𝐷, 𝑣𝑖) ≝ 𝑐𝑖. 
Let 𝑑𝐴(𝑃, 𝑣𝑖) be the truth-value degree of the attribute-value 

𝑣𝑖 of the logical proposition P with respect to the Expert A. And 
similarly for 𝑑𝐵(𝑃, 𝑣𝑖).  Then, we recall the plithogenic 
aggregation logical operators with respect to this attribute value 𝑣𝑖 
that will be employed: 

III.4.1. One-Attribute-Value Plithogenic Single-Valued 

Fuzzy Logic Conjunction 

𝑑𝐴(𝑃, 𝑣𝑖) ∧𝑝 𝑑𝐵(𝑃, 𝑣𝑖)

= (1 − 𝑐𝑖) ∙ [𝑑𝐴(𝑃, 𝑣𝑖) ∧𝐹 𝑑𝐵(𝑃, 𝑣𝑖)] + 𝑐𝑖

∙ [𝑑𝐴(𝑃, 𝑣𝑖) ∨𝐹 𝑑𝐵(𝑃, 𝑣𝑖)] 
(222) 

III.4.2. One-Attribute Value Plithogenic Single-Valued 

Fuzzy Logic Disjunction 

𝑑𝐴(𝑃, 𝑣𝑖) ∨𝑝 𝑑𝐵(𝑃, 𝑣𝑖) =

= (1 − 𝑐𝑖) ∙ [𝑑𝐴(𝑃, 𝑣𝑖) ∨𝐹 𝑑𝐵(𝑃, 𝑣𝑖)] + 𝑐𝑖

∙ [𝑑𝐴(𝑃, 𝑣𝑖) ∧𝐹 𝑑𝐵(𝑃, 𝑣𝑖)] 
(223) 
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III.4.3. One Attribute Value Plithogenic Single-Valued 

Fuzzy Logic Negation 

¬𝑝𝑣𝑖 = 𝑎𝑛𝑡𝑖(𝑣𝑖) = (1 − 𝑐𝑖) ∙ 𝑣𝑖   (224) 
¬𝑝𝑑𝐴(𝑃, (1 − 𝑐𝑖)𝑣𝑖) = 𝑑𝐴(𝑃, 𝑣𝑖)    (225) 

III.5. n-Attribute-Values Plithogenic Single-Valued 

Logic Operators 

The easiest way to apply the plithogenic logic operators on a 
multi-attribute plithogenic logic is to split back the m-dimensional 
attribute, 𝑚 ≥ 1, into m uni-dimensional attributes, and separately 
apply the plithogenic logic operators on the set of all values 
(needed by the application to solve) of each given attribute. 

Therefore, let α be a given attribute, characterizing each 
element 𝑥 ∈ 𝑃, whose set of values are: 

𝑉 = {𝑣1, 𝑣2, … , 𝑣𝑛} ≡ {𝑣𝐷, 𝑣2, … , 𝑣𝑛}, 𝑛 ≥ 1,   (226) 
where 𝑣𝐷 = dominant attribute value, and 𝑐(𝑣𝐷, 𝑣𝑖) = 𝑐𝑖 ∈

[0, 1] the contradiction degrees. Without restricting the generality, 
we consider the values arranged in an increasing order with respect 
to their contradiction degrees, i.e.: 

𝑐(𝑣𝐷, 𝑣𝐷) = 0 ≤ 𝑐1 ≤ 𝑐2 ≤ ⋯ ≤ 𝑐𝑖0 

<
1

2
≤ 𝑐𝑖0+1 ≤ ⋯ ≤ 𝑐𝑛 ≤ 1.    (227) 

III.5.1. n-Attribute-Values Plithogenic Single-Valued 

Fuzzy Logic Operators 

Let’s consider two experts, A and B, which evaluate a logical 
proposition P, with respect to the fuzzy degrees of the values 
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𝑣1, … , 𝑣𝑛 of truth-values of the logical proposition P, upon some 
given criteria: 

𝑑𝐴
𝐹: 𝑃 × 𝑉 → [0, 1], 𝑑𝐴𝐹(𝑥, 𝑣𝑖) = 𝑎𝑖 ∈ [0, 1],   (228) 
𝑑𝐵
𝐹: 𝑃 × 𝑉 → [0, 1], 𝑑𝐵𝐹(𝑥, 𝑣𝑖) = 𝑏𝑖 ∈ [0, 1],  (229) 

for all 𝑖 ∈ {1, 2, … , 𝑛}. 

III.5.2. n-Attribute-Values Plithogenic Single-Valued 

Fuzzy Logic Conjunction 

(𝑎1, 𝑎2, … , 𝑎𝑖0 , 𝑎𝑖0+1, … , 𝑎𝑛) ∧𝑝 (𝑏1, 𝑏2, … , 𝑏𝑖0 , 𝑏𝑖0+1, … , 𝑏𝑛)

= (𝑎1 ∧𝑝 𝑏1, 𝑎2 ∧𝑝 𝑏2, … , 𝑎𝑖0 ∧𝑝 𝑏𝑖0 , 𝑎𝑖0+1 ∧𝑝 𝑏𝑖0+1, … , 𝑎𝑛 ∧𝑝 𝑏𝑛 ) 
(230) 

The first 𝑖0 conjunctions are proper plithogenic conjunctions 
(the weights onto the tnorm’s are bigger than onto tconorm’s): 

𝑎1 ∧𝑝 𝑏1, 𝑎2 ∧𝑝 𝑏2, … , 𝑎𝑖0 ∧𝑝 𝑏𝑖0     (231) 
whereas the next n - 𝑖0 conjunctions 
𝑎𝑖0+1 ∧𝑝 𝑏𝑖0+1, … , 𝑎𝑛 ∧𝑝 𝑏𝑛      (232) 
are improper plithogenic disjunctions (since the weights onto 

the tnorm’s are less than onto tconorm’s): 

III.5.3. n-Attribute-Values Plithogenic Single-Valued 

Fuzzy Logic Disjunction 

(𝑎1, 𝑎2, … , 𝑎𝑖0 , 𝑎𝑖0+1, … , 𝑎𝑛) ∨𝑝 (𝑏1, 𝑏2, … , 𝑏𝑖0 , 𝑏𝑖0+1, … , 𝑏𝑛)     (233)

= (𝑎1 ∨𝑝 𝑏1, 𝑎2 ∨𝑝 𝑏2, … , 𝑎𝑖0 ∨𝑝 𝑏𝑖0 , 𝑎𝑖0+1 ∨𝑝 𝑏𝑖0+1, … , 𝑎𝑛 ∨𝑝 𝑏𝑛 ) 
The first 𝑖0 disjunctions are proper plithogenic disjunctions 

(the weights onto the tconorm’s are bigger than onto tnorm’s): 
𝑎1 ∨𝑝 𝑏1, 𝑎2 ∨𝑝 𝑏2, … , 𝑎𝑖0 ∨𝑝 𝑏𝑖0    (234) 
whereas the next n - 𝑖0 disjunctions 
𝑎𝑖0+1 ∨𝑝 𝑏𝑖0+1, … , 𝑎𝑛 ∨𝑝 𝑏𝑛     (235) 
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are improper plithogenic conjunctions (since the weights 
onto the tconorm’s are less than onto tnorm’s): 

III.5.4. n-Attribute-Values Plithogenic Single-Valued 

Fuzzy Logic Negations 

In general, for a generic logical proposition 𝑃, characterized 
by the uni-dimensional attribute α, whose attribute values are 𝑉 =
(𝑣𝐷, 𝑣2, … , 𝑣𝑛), 𝑛 ≥ 2 , and with attribute value contradiction 
degrees (with respect to the dominant attribute value 𝑣𝐷 ) are 
respectively: 0 ≤ 𝑐2 ≤ ⋯ ≤ 𝑐𝑛−1 ≤ 𝑐𝑛 ≤ 1 , and their attribute 
value degrees of truth-values with respect to the set 𝑃  are 
respectively 𝑎𝐷 , 𝑎2, … , 𝑎𝑛−1, 𝑎𝑛 ∈ [0, 1] , then the plithogenic 
fuzzy logic negation of 𝑃 is: 

¬𝑝[ 𝑃 (
0
𝑣𝐷
𝑎𝐷

,

𝑐2
𝑣2
𝑎2
, … ,

𝑐𝑛−1
𝑣𝑛−1
𝑎𝑛−1

,

𝑐𝑛
𝑣𝑛
𝑎𝑛
) ] =

¬𝑝𝑃 (

1 − 𝑐𝑛
𝑎𝑛𝑡𝑖(𝑣𝑛)
𝑎𝑛

 

1 − 𝑐𝑛−1
𝑎𝑛𝑡𝑖(𝑣𝑛−1)
𝑎𝑛−1

 …

1 − 𝑐2
𝑎𝑛𝑡𝑖(𝑣2)
𝑎2

 

1 − 𝑐𝐷
𝑎𝑛𝑡𝑖(𝑣𝐷)
𝑎𝐷

).  (236) 

Some 𝑎𝑛𝑡𝑖(𝑉𝑖) may coincide with some 𝑉𝑗 , whereas other 
𝑎𝑛𝑡𝑖(𝑉𝑖) may fall in between two consecutive [𝑣𝑘, 𝑣𝑘+1] or we 
may say that they belong to the Refined set V; 

or 

= {
𝑣𝑛 𝑣𝑛−1… … 𝑣1
𝑎1, 𝑎2, … , , … , 𝑎𝑛

}     (237) 

 {This version gives an exact result when the contradiction 
degrees are equi-distant (for example: 0, 0.25, 0.50, 0.75, 1) or 
symmetric with respect to the center 0.5 (for example: 0, 0.4, 0.6, 
1), and an approximate result when they are not equi-distant and 
not symmetric to the center (for example: 0, 0.3, 0.8, 0.9, 1);} 
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or  

{
𝑣1          𝑣2     …     𝑣𝑖0       𝑣𝑖0+1      …     𝑣𝑛

1 − 𝑎1   1 − 𝑎2…1 − 𝑎𝑖0   1 − 𝑎𝑖0+1  …  1 − 𝑎𝑛
}  (238) 

where 𝑎𝑛𝑡𝑖(𝑣𝑖) ∈ 𝑉  or 𝑎𝑛𝑡𝑖(𝑣𝑖) ∈ 𝑅𝑒𝑓𝑖𝑛𝑒𝑑𝑉 , for all 𝑖 ∈
{1, 2, … , 𝑛}. 

III.6. Multi-Attribute Plithogenic General Logic 

III.6.1. Definition of Multi-Attribute Plithogenic General 

Logic 

Let U be a logical universe of discourse, and a plithogenic 
logical proposition P ∊ U.  

Let A  be a set of  m ≥ 2 attributes: α1, α2, …, αm, whose 
corresponding spectra of values are the non-empty sets S1, S2, …, 
Sm respectively.  

Let V1  ⊆  S1, V2  ⊆ S2, …, Vm  ⊆ Sm be subsets of attribute 
values of the attributes α1, α2, …, αm respectively needed by experts 
in their given application. 

For each j ∈ {1, 2, … ,𝑚}, the set of attribute values Vj  means 
the range of attribute αj’s values, needed by the experts in a 
specific application or in a specific problem to solve. 

Each logical proposition P ∈  U is characterized by all m 
attributes.  

Let the m-dimensional attribute value degree function be: 
𝑑[𝑚]: (𝑈, 𝑉1 × 𝑉2 × … × 𝑉𝑚) → P([0, 1])𝑚.   (239) 

For any 𝑃 ∈ U, and any vj ∈ 𝑉𝑗  with j ∈ {1, 2, … ,𝑚}, one 
has: 

𝑑[𝑚](𝑃(𝑣1, 𝑣2, … , 𝑣𝑚))  P([0, 1])𝑚.   (240) 
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III.6.2. Example of Plithogenic Logic  

Let  
P = “John is a knowledgeable person” 
be a logical proposition. 
The three attributes under which this proposition has to be 

evaluated about - according to the experts - are: 
Science (whose attribute values are: mathematics, physics, 

anatomy), Literature (whose attribute values are: poetry, novel),  
and Arts (whose only attribute value is: sculpture).  
Assume that one has: fuzzy truth-value degrees, and fuzzy 

contradiction (dissimilarity) degrees – for simpler calculation.  
The experts consider that the attributes’ values contradiction 

(dissimilarity) degrees, determined by the experts that study this 
problem, are: 

  0               0.3          0.8           0         0.9             0 
mathematics, physics, anatomy;  poetry, novels;  sculpture 

Let’s assume that mathematics, poetry, sculpture are 
dominant [most important] attribute values for the attributes 
Science, Literature, and Arts respectively. 

The degree of contradiction (dissimilarity) between physics 
and mathematics is 0.3, between anatomy and mathematics is 0.8;  

while the degree of contradiction (dissimilarity) between 
novels and poetry is 0.9; 

there is no degree of contradiction (dissimilarity) between 
attribute values from different attribute classes (for example 
between sculpture and anatomy, etc.). 

According to Expert A(lexander), the truth-values of 
plithogenic proposition P are: 

PA(0.7, 0.6, 0.4;  0.9, 0.2; 0.5), 
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which means that John’s degree of truth (knowledge) in 
mathematics is 0.7, degree of truth (knowledge) in physics is 0.6, 
degree of truth (knowledge) in anatomy is 0.4;  degree of truth 
(knowledge) in poetry is 0.9, degree of truth (knowledge) in novels 
is 0.2;  degree of truth (knowledge) in sculpture is 0.5. 

But, according to Expert B(arbara), the truth-values of 
plithogenic proposition P are: 

PB(0.9, 0.6, 0.2;  0.8, 0.7; 0.3). 
We use the 6-attribute-values plithogenic single-valued 

logical intersection, taken as before  
tnorm(a, b) = a F b = a∙b     (241) 

and tconorm(a, b) = a F b = a + b - a∙b   

        (242) 
whence we get: 

PA(0.7, 0.6, 0.4;  0.9, 0.2;  0.5) P  PB(0.9, 0.6, 0.2;  0.8, 0.7;  0.3) 

= PA P B(0.7 P 0.9, 0.6 P 0.6, 0.4 P 0.2;  0.9 P 0.8, 0.2 P 0.7;  

0.5 P 0.3) = PA P B(0.7 F 0.9, 0.6 P 0.6, 0.4 P 0.2;  0.9 F 0.8, 

0.2 P 0.7; 0.5 F 0.3) = PA P B(0.7∙0.9, (1-0.3)∙0.6 F 0.6+0.3∙ 0.6

F 0.6, (1-0.8)∙ 0.4 F 0.2+0.8∙ 0.4 F 0.2;  0.9∙0.8,  (1-0.9)∙ 0.2 F

0.7+0.9∙ 0.2 F 0.7; 0.5∙0.3) =  

PA P B(0.630, 0.504, 0.432;  0.720, 0.698;  0.150). 
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IV. PLITHOGENIC PROBABILITY 

We again trace both previous studies on plithogenic set and 
plithogenic logic respectively, and adjust them to the plithogenic 
probability. In order for the chapter to be self-contained, we recopy 
as well the previous plithogenic set and plithogenic logic main 
formulas and ideas, but we correlate and adapt them to the 
probabilistic field. 

IV.1. Informal Definition of Plithogenic Probability 

In the plithogenic probability each event E from a probability 
space U is characterized by many chances of the event to occur 
[not only one chance of the event to occur: as in classical 
probability, imprecise probability, and neutrosophic probability], 
chances of occurrence calculated with respect to the corresponding 
attributes’ values that characterize the event E.  The attributes’ 
values that characterize the event are established by experts with 
respect to the application or problem they need to solve. 

A discrete finite n-attribute-values plithogenic probability 
space Unk, of k events, each event together with its n chances of 
occurring, is displayed below: 

Unk = {E1(d11, d21, …, dn1), E2(d12, d22, …, dn2), …, 
 Ek(d1k, d2k, …, dnk)}.        (243) 
With respect to each attribute’s value vj, j ∊ {1, 2, …, n},  

n ≥ 1, there is a corresponding degree of chance d(Ei, vj) = dij of 
the event Ei to occur, for i ∊ {1, 2, …, k}, k ≥ 1. 
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A discrete infinite n-attribute-values plithogenic probability 
space Un∞, of infinitely many events, each event together with its 
n chances of occurring, is displayed below: 

Un∞ = {E1(d11, d21, …, dn1), E2(d12, d22, …, dn2), …,  
E∞(d1∞, d2∞, …, dn∞)}.      (244) 
While a continuous n-attribute-values plithogenic 

probability space UnI is: 
UnI = {Ei(d1i, d2i, …, dni), i ∊ I,                                          (245) 

where I is a continuous set of indices}. 
And a continuous infinite-attribute-values plithogenic 

probability space 
1 2I IU 

is: 

1 2I IU   = {Ei(d1i, d2i, …, dji), i ∊ I1, j ∊ I2,  (246) 

where I1 and I2 are continuous sets of indices}. 
In order to obtain a better accuracy for the plithogenic 

aggregation probabilistic operators, a contradiction (dissimilarity) 
degree is defined between each attribute value and the dominant 
(most important) attribute value.  

{However, there are cases when such dominant attribute 
value may not be taking into consideration or may not exist [and 
then by default the contradiction degree is taken as zero], or there 
may be many dominant attribute values. In such cases, either the 
contradiction degree function is suppressed, or another 
relationship function between attribute values should be 
established.} 

 The plithogenic aggregation probabilistic operators 
(conjunction, disjunction, negation, inclusion, equality) are based 
on contradiction degrees between attributes’ values, and the first 
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two are linear combinations of the fuzzy logical operators’ tnorm 
and tconorm. 

IV.2. Plithogenic Probability as Generalization of 

other Probabilities 

Plithogenic probability is a generalization of the classical 
probability [ since a single event may have more crisp-probabilities 
of occurrence ], imprecise probability [ since a single event may 
have more subunitary subset-probabilities of occurrence ], and 
neutrosophic probability [ since a single event may have more 
triplets of:  subunitary subset-probabilities of occurrence, 
subunitary subset-probabilities of indeterminacy (not clear if 
occurring or not occurring), and  subunitary subset-probabilities of 
nonoccurring ]. 

IV.3. Formal Definition of Single (Uni-Dimensional) 

Attribute Plithogenic Probability 

Let U be a probability space, and an event E  ∊ U. 

IV.3.1. Attribute Value Spectrum 

Let A be a non-empty set of uni-dimensional attributes  
A = {α1, α2, …, αm}, m ≥ 1; and α ∈ A be a given attribute 

whose spectrum of all possible values (or states) is the non-empty 
set S, where S can be a finite discrete set, S = {s1, s2, …, sl}, 1 ≤
 l <∞, or infinitely countable set S = {s1, s2, …, s∞}, or infinitely 
uncountable (continuum) set S = ]𝑎, 𝑏[, a < b, where ]… [ is any 
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open, semi-open, or closed interval from the set of real numbers or 
from other general set. 

IV.3.2. Attribute Value Range 

Let V  be a non-empty subset of S, where V is the range of 
all attribute’s values needed by the experts for their probabilistic 
application. Each probabilistic event E is characterized by all 
attribute’s values in V = {v1, v2, …, vn}, for n ≥ 1. 

IV.3.3. Dominant Attribute Value 

Into the attribute’s value set V, in general, there is a dominant 
attribute value, which is determined by the experts upon their 
application.  Dominant attribute value means the most important 
attribute value that the experts are interested in.  

{However, there cases when such dominant attribute value 
may not be taking into consideration or not exist [in such case it is 
zero by default], or there may be many dominant (important) 
attribute values - when different approach should be employed.} 

IV.3.4. Attribute-Value Chance-of-Occurrence Degree-

Function 

With respect to each attributes value v ∈ V the event E has a 
corresponding degree of occurring: d(E, v). 

The degree of occuring may be: a fuzzy degree of occuring, 
or intuitionistic fuzzy degree of occurring-nonoccurring, or 
neutrosophic degree of occurring- indeterminacy-nonoccuring. 

Therefore, the attribute-value chance-of-occurrence degree-
function is: 
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∀𝐸 ∈ U, d: U×V→ P ([0, 1]z),     
 (247) 

so d(P, v) is a subset of [0, 1]z, where  
P([0, 1] z) is the power set of [0, 1] z, where z = 1 (for fuzzy 

degree of occurrence), z = 2 (for intuitionistic fuzzy degree of 
occurrence-nonoccurrence), or z = 3 (for neutrosophic degree de 
occurrence-indeterminacy-nonoccurence). 

IV.3.5. Attribute-Value Contradiction (Dissimilarity) 

Degree Function 

Let the cardinal |V| ≥ 1.  
Let c: V×V  → [0, 1] be the attribute value contradiction 

degree function (that we introduce now for the first time) between 
any two attribute values v1 and v2, denoted by  

c(v1, v2), and satisfying the following axioms:  
c(v1, v1) = 0, the contradiction degree between the same 

attribute values is zero;  
c(v1, v2) = c(v2, v1), commutativity. 
For simplicity, we use a fuzzy attribute value contradiction 

degree function (c as above, that we may denote by cF in order to 
distinguish it from the next two), but an intuitionistic attribute 
value contradiction function (cIF : V×V → [0, 1]2), or more general 
a neutrosophic attribute value contradiction function (cN : V×V →
 [0, 1]3) may be utilized increasing the complexity of calculation 
but the accuracy as well. 

We mostly compute the contradiction degree between uni-
dimensional attribute values. For multi-dimensional attribute 
values we split them back into corresponding uni-dimensional 
attribute values. 
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The attribute value contradiction degree function helps the 
plithogenic aggregation probability operators, and the plithogenic 
probability inclusion (partial order) relationship to obtain a more 
accurate result. 

The attribute value contradiction degree function is designed 
in each field where plithogenic probability is used in accordance 
with the application to solve. If it is ignored, the aggregations still 
work, but the result may lose accuracy. 

Then (𝑈, 𝑎, 𝑉, 𝑑, 𝑐) is called a plithogenic probability: 
where “U” is the probability space of all events E, “a” is a 

(multi-dimensional in general) attribute with respect to which the 
chances of occurrences of E are calculated, “V” is the range of the 
attribute’s values, “d” is the degree of chance-of-occurrence of 
each event E ∊ U with respect to each attribute value - and “d”  
stands for “𝑑𝐹” or “𝑑𝐼𝐹” or “𝑑𝑁”, when dealing with fuzzy degree 
of occurrence, intuitionistic fuzzy degree of occurrence-
nonoccurrence, or neutrosophic degree of occurrence-
indeterminacy-nonoccurence respectively of a plithogenic 
probabilistic event E;  and “c” stands for “cF” or “cIF” or “cN”, 
when dealing with fuzzy degree of contradiction (dissimilarity), 
intuitionistic fuzzy degree of contradiction (dissimilarity), or 
neutrosophic degree of contradiction (dissimilarity) between 
attribute values respectively.  

The functions 𝑑(∙,∙)  and 𝑐(∙,∙)  are defined in accordance 
with the probabilistic applications the experts need to solve. 

One uses the notation: 
𝐸(𝑑(𝐸, 𝑉)),  

where 𝑑(𝐸, 𝑉) = {𝑑(𝐸, 𝑣), for all 𝑣 ∈ 𝑉}, ∀𝐸 ∈ 𝑈. 
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IV.3.6. About the Plithogenic Aggregation Probabilistic 

Operators 

The attribute value contradiction degree is calculated 
between each attribute value with respect to the dominant attribute 
value (denoted vD) in special, and with respect to other attribute 
values as well. 

The attribute value contradiction degree function c between 
the attribute’s values is used into the definition of plithogenic 
aggregation probabilistic operators {conjunction (AND), 
disjunction (OR), Negation ( ), Implication ( ), Equivalence (
), and other plithogenic aggregation probabilistic operators that 
combine two or more attribute value degrees - that tnorm and tconorm 
act upon}.  

Several plithogenic aggregation probabilistic operators are 
linear combinations of the fuzzy tnorm (denoted ∧F), and fuzzy 
tconorm (denoted ∨F), but non-linear combinations may as well be 
constructed. 

If one applies the tnorm on dominant attribute value denoted 
by vD, and the contradiction between vD and v2 is c(vD, v2), then 
onto attribute value v2 one applies: 

[1 − c(vD, v2)]⋅tnorm(vD, v2) + c(vD, v2)⋅tconorm(vD, v2),  (248) 
Or, by using symbols:  
[1 − c(vD, v2)]⋅(vD∧Fv2) + c(vD, v2)⋅(vD∨Fv2).   (249) 
Similarly, if one applies the tconorm on dominant attribute 

value denoted by vD, and the contradiction between vD and v2 is 
c(vD, v2), then onto attribute value v2 one applies: 

[1 − c(vD, v2)]⋅tconorm(vD, v2) + c(vD, v2)⋅tnorm(vD, v2),  (250) 
Or, by using symbols:  
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[1 − c(vD, v2)]⋅(vD∨Fv2) + c(vD, v2)⋅(vD∧Fv2).   (251) 

IV.4. One-Attribute-Value Plithogenic Single-Valued 

Fuzzy Probabilistic Operators 

We consider the single-value number degrees of chances of 
occurrence, for simplicity of the example. 

Let 𝑣𝑖 be a uni-attribute value and its degree of contradiction 
with respect to the dominant uni-attribute value 𝑣𝐷 be  

𝑐(𝑣𝐷, 𝑣𝑖) ≝ 𝑐𝑖. 
Let 𝑑𝐴(𝐸, 𝑣𝑖) be the degree of occurrence of event E with 

respect to the attribute-value 𝑣𝑖 given by Expert A. And similarly 
for 𝑑𝐵(𝐸, 𝑣𝑖).  Then, we recall the plithogenic aggregation 
probabilistic operators with respect to this attribute value 𝑣𝑖 that 
will be employed: 

IV.4.1. One-Attribute-Value Plithogenic Single-Valued 

Fuzzy Probabilistic  Conjunction 

𝑑𝐴(𝐸, 𝑣𝑖) ∧𝑝 𝑑𝐵(𝐸, 𝑣𝑖)

= (1 − 𝑐𝑖) ∙ [𝑑𝐴(𝐸, 𝑣𝑖) ∧𝐹 𝑑𝐵(𝐸, 𝑣𝑖)] + 𝑐𝑖

∙ [𝑑𝐴(𝐸, 𝑣𝑖) ∨𝐹 𝑑𝐵(𝐸, 𝑣𝑖)] 
(252) 

IV.4.2. One-Attribute Value Plithogenic Single-Valued 

Fuzzy Probabilistic  Disjunction 

𝑑𝐴(𝐸, 𝑣𝑖) ∨𝑝 𝑑𝐵(𝐸, 𝑣𝑖) == (1 − 𝑐𝑖) ∙

[𝑑𝐴(𝐸, 𝑣𝑖) ∨𝐹 𝑑𝐵(𝐸, 𝑣𝑖)] + 𝑐𝑖 ∙ [𝑑𝐴(𝐸, 𝑣𝑖) ∧𝐹 𝑑𝐵(𝐸, 𝑣𝑖)]  (253) 
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IV.4.3. One Attribute Value Plithogenic Single-Valued 

Fuzzy Probabilistic Negations 

¬𝑝𝑑𝐴(𝐸, 𝑣𝑖) = 𝑑𝐴(𝐸, 𝑎𝑛𝑡𝑖(𝑣𝑖)) = 𝑑𝐴(𝐸, (1 − 𝑐𝑖)𝑣𝑖)  (254) 
or 
¬𝑝𝑑𝐴(𝐸, 𝑣𝑖) = 1 − 𝑑𝐴(𝐸, 𝑣𝑖).     (255) 

IV.5. n-Attribute-Values Plithogenic Single-Valued 

Probabilistic Operators 

The easiest way to apply the plithogenic probabilistic 
operators on a multi-attribute plithogenic probability is to split  
back the m-dimensional attribute, 𝑚 ≥ 1, into m uni-dimensional 
attributes, and separately apply the plithogenic probabilistic 
operators on the set of all attribute values (needed by the 
application to solve) of each uni-dimensional attribute. 

Therefore, let α be a given uni-dimensional attribute, 
characterizing each event 𝐸 ∈ 𝑈, whose set of values are: 

𝑉 = {𝑣1, 𝑣2, … , 𝑣𝑛} ≡ {𝑣𝐷, 𝑣2, … , 𝑣𝑛}, 𝑛 ≥ 1,   (256) 
where 𝑣𝐷 = dominant attribute value, and 
𝑐(𝑣𝐷, 𝑣𝑖) = 𝑐𝑖 ∈ [0, 1]  the contradiction degrees. Without 

restricting the generality, we consider the uni-dimensional 
attribute values arranged in an increasing order with respect to their 
contradiction degrees, i.e.: 

𝑐(𝑣𝐷, 𝑣𝐷) = 0 ≤ 𝑐1 ≤ 𝑐2 ≤ ⋯ ≤ 𝑐𝑖0 

<
1

2
≤ 𝑐𝑖0+1 ≤ ⋯ ≤ 𝑐𝑛 ≤ 1.    (257) 
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IV.5.1. n-Attribute-Values Plithogenic Single-Valued 

Fuzzy Probabilistic Operators 

Let’s consider two experts, A and B, which evaluate a 
probabilistic event E, with respect to the fuzzy degrees of the 
values 𝑣1, … , 𝑣𝑛 representing the chances of occurrence of event E, 
upon some given criteria: 

𝑑𝐴
𝐹: 𝑈 × 𝑉 → [0, 1], 𝑑𝐴𝐹(𝑥, 𝑣𝑖) = 𝑎𝑖 ∈ [0, 1],   (258) 
𝑑𝐵
𝐹: 𝑈 × 𝑉 → [0, 1], 𝑑𝐵𝐹(𝑥, 𝑣𝑖) = 𝑏𝑖 ∈ [0, 1],  (259) 

for all 𝑖 ∈ {1, 2, … , 𝑛}. 

IV.5.2. n-Attribute-Values Plithogenic Single-Valued 

Fuzzy Probabilistic Conjunction 

(𝑎1, 𝑎2, … , 𝑎𝑖0 , 𝑎𝑖0+1, … , 𝑎𝑛) ∧𝑝 (𝑏1, 𝑏2, … , 𝑏𝑖0 , 𝑏𝑖0+1, … , 𝑏𝑛) = 

(
𝑎1 ∧𝑝 𝑏1, 𝑎2 ∧𝑝 𝑏2, … , 𝑎𝑖0 ∧𝑝
𝑏𝑖0 , 𝑎𝑖0+1 ∧𝑝 𝑏𝑖0+1, … , 𝑎𝑛 ∧𝑝 𝑏𝑛 

)     (260) 

The first 𝑖0 probabilistic conjunctions are proper plithogenic 
probabilistic conjunctions (the weights onto the tnorm’s are bigger 
than onto tconorm’s): 

𝑎1 ∧𝑝 𝑏1, 𝑎2 ∧𝑝 𝑏2, … , 𝑎𝑖0 ∧𝑝 𝑏𝑖0   
 (261) 
whereas the next n - 𝑖0 probabilistic conjunctions 

𝑎𝑖0+1 ∧𝑝 𝑏𝑖0+1, … , 𝑎𝑛 ∧𝑝 𝑏𝑛    (262) 
are improper plithogenic probabilistic disjunctions (since the 

weights onto the tnorm’s are less than onto tconorm’s): 
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IV.5.3. n-Attribute-Values Plithogenic Single-Valued 

Fuzzy Probabilistic Disjunction 

(𝑎1, 𝑎2, … , 𝑎𝑖0 , 𝑎𝑖0+1, … , 𝑎𝑛) ∨𝑝 (𝑏1, 𝑏2, … , 𝑏𝑖0 , 𝑏𝑖0+1, … , 𝑏𝑛) =

(
𝑎1 ∨𝑝 𝑏1, 𝑎2 ∨𝑝 𝑏2, … , 𝑎𝑖0 ∨𝑝
𝑏𝑖0 , 𝑎𝑖0+1 ∨𝑝 𝑏𝑖0+1, … , 𝑎𝑛 ∨𝑝 𝑏𝑛 

)    (263) 

The first 𝑖0 probabilistic disjunctions are proper plithogenic 
probabilistic disjunctions (the weights onto the tconorm’s are bigger 
than onto tnorm’s): 

𝑎1 ∨𝑝 𝑏1, 𝑎2 ∨𝑝 𝑏2, … , 𝑎𝑖0 ∨𝑝 𝑏𝑖0    (264) 
whereas the next n - 𝑖0 probabilistic disjunctions 
𝑎𝑖0+1 ∨𝑝 𝑏𝑖0+1, … , 𝑎𝑛 ∨𝑝 𝑏𝑛     (265) 
are improper plithogenic probabilistic conjunctionss (since 

the weights onto the tconorm’s are less than onto tnorm’s): 

IV.5.4. n-Attribute-Values Plithogenic Single-Valued 

Fuzzy Probabilistic Negations 

In general, for a generic probabilistic event E, characterized 
by the uni-dimensional attribute α, whose attribute values are 𝑉 =
(𝑣𝐷, 𝑣2, … , 𝑣𝑛), 𝑛 ≥ 2 , and whose attribute value contradiction 
degrees (with respect to the dominant attribute value 𝑣𝐷 ) are 
respectively: 0 ≤ 𝑐2 ≤ ⋯ ≤ 𝑐𝑛−1 ≤ 𝑐𝑛 ≤ 1 , and their attribute 
value degrees of occurrence of the event E are respectively 
𝑎𝐷 , 𝑎2, … , 𝑎𝑛−1, 𝑎𝑛 ∈ [0, 1] , then the plithogenic fuzzy 
probabilistic negation of 𝐸 is: 
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¬𝑝[ 𝐸 (
0
𝑣𝐷
𝑎𝐷

,

𝑐2
𝑣2
𝑎2
, … ,

𝑐𝑛−1
𝑣𝑛−1
𝑎𝑛−1

,

𝑐𝑛
𝑣𝑛
𝑎𝑛
) ] =

¬𝑝𝐸 (

1 − 𝑐𝑛
𝑎𝑛𝑡𝑖(𝑣𝑛)
𝑎𝑛

 

1 − 𝑐𝑛−1
𝑎𝑛𝑡𝑖(𝑣𝑛−1)
𝑎𝑛−1

 …

1 − 𝑐2
𝑎𝑛𝑡𝑖(𝑣2)
𝑎2

 

1 − 𝑐𝐷
𝑎𝑛𝑡𝑖(𝑣𝐷)
𝑎𝐷

).  (266) 

Some 𝑎𝑛𝑡𝑖(𝑉𝑖) may coincide with some 𝑉𝑗 , whereas other 
𝑎𝑛𝑡𝑖(𝑉𝑖) may fall in between two consecutive [𝑣𝑘, 𝑣𝑘+1] or we 
may say that they belong to the Refined set V; 

or 

= {
𝑣𝑛 𝑣𝑛−1… … 𝑣1
𝑎1, 𝑎2, … , , … , 𝑎𝑛

}     (267) 

 {this version gives an exact result when the contradiction 
degrees are equi-distant (for example: 0, 0.25, 0.50, 0.75, 1) or 
symmetric with respect to the center 0.5 (for example: 0, 0.4, 0.6, 
1), and an approximate result when they are not equi-distant and 
not symmetric to the center (for example: 0, 0.3, 0.8, 0.9, 1);} 

or  

{
𝑣1          𝑣2     …     𝑣𝑖0       𝑣𝑖0+1      …     𝑣𝑛

1 − 𝑎1   1 − 𝑎2…1 − 𝑎𝑖0   1 − 𝑎𝑖0+1  …  1 − 𝑎𝑛
}  (268) 

where 𝑎𝑛𝑡𝑖(𝑣𝑖) ∈ 𝑉  or 𝑎𝑛𝑡𝑖(𝑣𝑖) ∈ 𝑅𝑒𝑓𝑖𝑛𝑒𝑑𝑉 , for all 𝑖 ∈
{1, 2, … , 𝑛}. 

IV.6. Multi-Attribute Plithogenic General 

Probability 

IV.6.1. Definition of Multi-Attribute Plithogenic General 

Probabilistic 

Let U be a probability space, and a plithogenic probabilistic 
event E ∊ U.  
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Let A  be a set of  m ≥ 2 attributes: α1, α2, …, αm, whose 
corresponding spectra of values are the non-empty sets S1, S2, …, 
Sm respectively.  

Let V1  ⊆  S1, V2  ⊆ S2, …, Vm  ⊆ Sm be subsets of attribute 
values of the attributes α1, α2, …, αm respectively needed by experts 
in their given probabilistic application. 

For each j ∈ {1, 2, … ,𝑚}, the set of attribute values Vj  means 
the range of attribute αj’s values, needed by the experts in a 
specific application or in a specific problem to solve. 

Each probabilistic event E ∈  U is characterized by all m 
attributes.  

Let the m-dimensional attribute value degree of chance of 
occurrence function be: 

𝑑[𝑚]: (𝑈, 𝑉1 × 𝑉2 × … × 𝑉𝑚) → P([0, 1])𝑚.  (269) 

For any 𝐸 ∈ U, and any vj ∈ 𝑉𝑗  with j ∈ {1, 2, … ,𝑚}, one 
has: 

𝑑[𝑚](𝐸(𝑣1, 𝑣2, … , 𝑣𝑚))  P([0, 1])𝑚.   (270) 

IV.6.2. Example of Plithogenic Probabilistic  

What is the plithogenic probability that Jenifer will graduate 
at the end of this semester in her program of electrical engineer, 
given that she is enrolled in and has to pass two courses of 
Mathematics (Second-Order Differential Equations, and 
Stochastic Analysis), and two courses of Mechanics (Fluid 
Mechanics, and Solid Mechanics) ?  

We have a 4-attribute values plithogenic probability. 
IV.6.2.1. Plithogenic Fuzzy Probability 

According to her adviser, Jenifer’s plithogenic single-valued 
fuzzy probability of graduating at the end of this semester is:  
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J( 0.5, 0.6;  0.8, 0.4 ),  
which means 50% chance of passing the Second-Order 

Differential Equations class, 60% chance of passing the Stochastic 
Analysis class (as part of Mathematics), and 80% of passing the 
Fluid Mechanics class and 40% of passing the Solid Mechanics 
class (as part of Physics). 

Using a larger approximation (less accuracy), the adviser 
predicts that Jenifer’s plithogenic interval-valued fuzzy probability 
of graduating at the end of this semester is:  

J( [0.4, 0.6], [0.3, 0.7];  [0.8, 0.9], [0.2, 0.5] ), 
which means that between 40%-50% are Jenifer’s chances to 

pass the class of Second-Order Differential Equations; and 
similarly for the other three classes. 
IV.6.2.2. Plithogenic Intuitionistic Fuzzy Probability 

 Jenifer’s plithogenic single-valued intuitionistic fuzzy 
probability of graduating at the end of this semester is:  

J( (0.5, 0.2), (0.6, 0.4);  (0.8, 0.1), (0.4, 0.5) ),  
which mean that 50% is chance that Jenifer passes the 

Second-Order Differential Equations class and 20% chance that 
she fails this class; and similarly for the other three classes. 

Jenifer’s plithogenic interval-valued intuitionistic fuzzy 
probability of graduating at the end of this semester is:  

J( ([0.5, 0.6], [0.1, 0.2]), ([0.6, 0.8], [0.2,0.4]);  ([0.8, 0.9], 
[0.0, 0.1]), ([0.3, 0.6], [0.3, 0.5]) ),  

which mean that between 50% - 60% is chance that Jenifer 
passes the Second-Order Differential Equations class and between 
10% - 20% is the chance that she fails this class; and similarly for 
the other three classes. 
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IV.6.2.3. Plithogenic Neutrosophic Probability 
Jenifer’s plithogenic single-valued neutrosophic probability 

of graduating at the end of this semester is:  
𝐽((0.5, 0.1, 0.2), (0.6, 0.2, 0.4);  (0.8, 0.0, 0.1), (0.4, 0.3, 0.5)), 

which mean that there is 50% chance, 10% indeterminate-
chance, and 20% nonchance that Jenifer passes the class of 
Second-Order Differential Equation; and similarly for the other 
three classes. 

Jenifer’s plithogenic interval-valued neutrosophic 
probability of graduating at the end of this semester is:  

J( ([0.5, 0.6], [0.0, 0.1], [0.2., 0.4]), ([0.6, 0.8], [0.1, 0.2], 
[0.3, 0.5]);  ([0.8, 0.9], [0.0, 0.2], [0.1, 0.3]), (0.4, 0.3, 0.5) ),  

which mean that there is between 50% - 60% chance, 
between 0% - 10% indeterminate-chance, and between 20% - 405 
nonchance that Jenifer passes the class of Second-Order 
Differential Equation; and similarly for the other three classes. 

IV.6.3. Plithogenic Probability as Probability of 

Probabilities 

Plithogenic probability is a probability of (classical, 
imprecise, intuitionistic fuzzy, or neutrosophic) probabilities – 
depending on the choice of the chance function. Or plithogenic 
probability is a refined probability. 
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V. PLITHOGENIC STATISTICS 

As a generalization of classical statistics and neutrosophic 
statistics, the Plithogenic Statistics is the analysis of events 
described by the plithogenic probability. 

Since in plithogenic probability each event E from a 
probability space U is characterized by many chances of the event 
to occur [not only one chance of the event E to occur: as in classical 
probability, imprecise probability, and neutrosophic probability],  

a plithogenic probability distribution function, PP(x), 
of a random variable x, is described by many plithogenic 
probability distribution sub-functions, where each sub-function 
represents the chance (with respect to a given attribute value) that 
value x occurs, and these chances of occurrence can be represented 
by  classical, imprecise, or neutrosophic probabilities (depending 
on the type of degree of a chance). 

 
[More study is to be done in this subject…] 
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Future Research 

As generalization of dialectics and neutrosophy, plithogeny 
will find more use in blending diverse philosophical, ideological, 
religious, political and social ideas. 

After the extension of fuzzy set, intuitionistic fuzzy set, and 
neutrosophic set to the plithogenic set;  

the extension of classical logic, fuzzy logic, intuitionistic 
fuzzy logic and neutrosophic logic to plithogenic logic; 

and the extension of classical probability, imprecise 
probability, and neutrosophic probability to plithogenic probability 
– more applications of the plithogenic 
set/logic/probability/statistics in various fields should follow. 

The classes of plithogenic implication operators and their 
corresponding sets of plithogenic rules are to be constructed in this 
direction. 

Also, exploration of non-linear combinations of tnorm and 
tconorm, or of other norms and conorms, in constructing of more 
sophisticated plithogenic set, logic and probabilistic aggregation 
operators, for a better modeling of real life applications. 

More study, development, and utilizations should be done 
and proved into the field of plithogenic statistics. 
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In this book we introduce for the first time, as generalization of 
dialectics and neutrosophy, the philosophical concept called plithogeny. 
And as its derivatives: the plithogenic set (as generalization of crisp, 
fuzzy, intuitionistic fuzzy, and neutrosophic sets), plithogenic logic (as 
generalization of classical, fuzzy, intuitionistic fuzzy, and neutrosophic 
logics), plithogenic probability (as generalization of classical, imprecise, 
and neutrosophic probabilities), and plithogenic statistics (as 
generalization of classical, and neutrosophic statistics).   

Plithogeny is the genesis or origination, creation, formation, 
development, and evolution of new entities from dynamics and organic 
fusions of contradictory and/or neutrals and/or non-contradictory 
multiple old entities. 

Plithogenic Set is a set whose elements are characterized by one 
or more attributes, and each attribute may have many values.  

An attribute’s value v has a corresponding (fuzzy, intuitionistic 
fuzzy, or neutrosophic) degree of appurtenance d(x, v) of the element x, 
to the set P, with respect to some given criteria. 

In order to obtain a better accuracy for the plithogenic aggregation 
operators in the plithogenic set/logic/probability and for a more exact 
inclusion (partial order), a (fuzzy, intuitionistic fuzzy, or neutrosophic) 
contradiction (dissimilarity) degree is defined between each attribute 
value and the dominant (most important) attribute value.  

The plithogenic intersection and union are linear combinations of 
the fuzzy operators tnorm and tconorm, while the plithogenic 
complement/inclusion/equality are influenced by the attribute values’ 
contradiction (dissimilarity) degrees. 

Formal definitions of plithogenic set/logic/probability/statistics 
are presented into the book, followed by plithogenic aggregation 
operators, various theorems related to them, and afterwards examples and 
applications of these new concepts in our everyday life.  

 


