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Abstract: In this chapter we propose five versions of a Proportional Conflict Re-
distribution rule (PCR) for information fusion together with several examples. From
PCR1 to PCR2, PCR3, PCR4, PCR5 one increases the complexity of the rules and
also the exactitude of the redistribution of conflicting masses. PCR1 restricted from
the hyper-power set to the power set and without degenerate cases gives the same re-
sult as the Weighted Average Operator (WAO) proposed recently by Jøsang, Daniel
and Vannoorenberghe but does not satisfy the neutrality property of vacuous belief
assignment (VBA). That’s why improved PCR rules are proposed in this chapter.
PCR4 is an improvement of minC and Dempster’s rules. The PCR rules redistribute
the conflicting mass, after the conjunctive rule has been applied, proportionally with
some functions depending on the masses assigned to their corresponding columns
in the mass matrix. There are infinitely many ways these functions (weighting fac-
tors) can be chosen depending on the complexity one wants to deal with in specific
applications and fusion systems. Any fusion combination rule is at some degree
ad-hoc.

1.1 Introduction

This chapter presents a new set of alternative combination rules based on different proportional
conflict redistributions (PCR) which can be applied in the framework of the two principal
theories dealing the combination of belief functions. We remind briefly the basic ideas of these
two theories:

• The first and the oldest one is the Dempster-Shafer Theory (DST) developed by Shafer in
1976 in [17]. In DST framework, Glenn Shafer starts with a so-called frame of discernment
Θ = {θ1, . . . , θn} consisting in a finite set of exclusive and exhaustive hypotheses. This

3

is Shafer’s model. Then, a basic belief assignment (bba) m(.) is defined as the mapping
m : 2Θ → [0, 1] with:

m(∅) = 0 and
∑

m(X) = 1 (1.1)

X∈2Θ

The combination of belief assignments provided by several sources of evidence is done
with Dempster’s rule of combination.
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• The second and the most recent theory is the Dezert-Smarandache Theory (DSmT) de-
veloped by the authors since 2001 [18]. In the DSmT framework, one starts with a frame
Θ = {θ1, . . . , θn} consisting only in a finite set of exhaustive1 hypotheses. This is the
so-called free DSm model. The exclusivity assumption between elements (i.e. requirement
for a refinement) of Θ is not necessary within DSmT. However, in DSmT any integrity
constraints between elements of Θ can also be introduced, if necessary, depending on the
fusion problem under consideration. A free DSm model including some integrity con-
straints is called a hybrid DSm model. DSmT can deal also with Shafer’s model as well
which appears actually only as a specific hybrid DSm model. The DSmT framework is
much larger that the DST one since it offers the possibility to deal with any model and
any intrinsic nature of elements of Θ including continuous/vague concepts having subjec-
tive/relative interpretation which cannot be refined precisely into finer exclusive subsets.
In DSmT, a generalized basic belief assignment (gbba) m(.) is defined as the mapping
m : DΘ → [0, 1] with

m(∅) = 0 and
∑

X∈DΘ

m(X) = 1 (1.2)

DΘ represents the hyper-power set of Θ (i.e. Dedekind’s lattice). Since the power set
2Θ is closed under ∪ operator, while the hyper-power set DΘ is closed under both ∪ and
∩ operators, | DΘ |>| 2Θ |. A detailed presentation of DSmT with many examples and
comparisons between rules of combination can be found in [18].

Among all possible bba’s or gbba’s, the belief vacuous belief assignment (VBA), denoted
mv(.) and defined by mv(Θ) = 1 which characterizes a full ignorant source, plays a particular
and important role for the construction of a satisfying combination rule. Indeed, the major
properties that a good rule of combination must satisfy, upon to authors’ opinion, are :

1. the coherence of the combination result in all possible cases (i.e. for any number of sources,
any values of bba’s or gbba’s and for any types of frames and models which can change
or stay invariant over time).

2. the commutativity of the rule of combination

3. the neutral impact of the VBA into the fusion.

The requirement for conditions 1 and 2 is legitimate since we are obviously looking for best
performances (we don’t want a rule yielding to counter-intuitive or wrong solutions) and we
don’t want that the result depends on the arbitrary order the sources are combined. The neutral
impact of VBA to be satisfied by a fusion rule (condition 3), denoted by the generic ⊕ operator
is very important too. This condition states that the combination of a full ignorant source

1The exhaustivity assumption is not restrictive since one always can close any non-exhaustive set by intro-
ducing a closure element, say θ0, representing all missing unknown hypotheses.
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with a set of s ≥ 1 non-totally ignorant sources doesn’t change the result of the combination of
the s sources because the full ignorant source doesn’t bring any new specific evidence on any
problems under consideration. This condition is thus perfectly reasonable and legitimate. The
condition 3 is mathematically represented as follows: for all possible s ≥ 1 non-totally ignorant
sources and for any X ∈ 2Θ (or for any X ∈ DΘ when working in the DSmT framework), the
fusion operator ⊕ must satisfy

[m1 ⊕ . . .⊕ms ⊕mv](X) = [m1 ⊕ . . . ⊕ms](X) (1.3)

The associativity property, while very attractive and generally useful for sequential imple-
mentation is not actually a crucial property that a combination rule must satisfy if one looks
for the best coherence of the result. The search for an optimal solution requires to process all
bba’s or gbba’s altogether. Naturally, if several different rules of combination satisfy conditions
1-3 and provide similar performances, the simplest rule endowing associativity will be preferen-
tially chosen (from engineering point of view). Up to now and unfortunately, no combination
rule available in literature satisfy incontrovertibly the three first primordial conditions. Only
three fusion rules based on the conjunctive operator are known associative: Dempster’s rule in
DST, Smets’ rule (conjunctive consensus based on the open-world assumption), and the DSm
classic rule on free DSm model. The disjunctive rule is associative and satisfy properties 1 and 2
only. All alternative rules developed in literature until now don’t endow properties 1-3 and the
associativity property. Although, some rules such as Yager’s, Dubois & Prade’s, DSm hybrid,
WAO, minC, PCR rules, which are not associative become quasi-associative if one stores the
result of the conjunctive rule at each time when a new bba arises in the combination process
(see section 1.14 for details).

This chapter extends a previous paper on Proportional Conflict Redistribution Rule no 1
(PCR1) detailed in [20, 21] in order to overcome its inherent limitation (i.e. the neutral impact
of VBA - condition 3 - is not fulfilled by PCR1). In the DSm hybrid rule of combination [18],
the transfer of partial conflicts (taking into account all integrity constraints of the model) is
done directly onto the most specific sets including the partial conflicts but without proportional
redistribution. In this chapter, we propose to improve this rule by introducing a more effective
proportional conflict redistribution to get a more efficient and precise rule of combination PCR5.

The main steps in applying all the PCR rules of combination (i.e. fusion) are as follows:

• Step 1: use the conjunctive rule,

• Step 2: compute the conflicting masses (partial and/or total),

• Step 3: redistribute the conflicting masses to non-empty sets.

The way the redistribution is done makes the distinction between all existing rules available
in literature in the DST and DSmT frameworks (to the knowledge of the authors) and the
PCR rules, and also the distinction among the different PCR versions themselves. One also
studies the impact of the vacuous belief assignment (VBA) on PCR rules and one makes a short
discussion on the degree of the fusion rules’ ad-hoc-ity.

Before presenting the PCR rules, and after a brief reminder on the notion of total and
partial conflicts, we browse the main rules of combination proposed in the literature in the
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frameworks of DST and DSmT in the next section. More rules of combination are presented
in Chapter 8. Then we present the general Weighted Operator (WO), the Weighted Average
Operator (WAO) and the minC operator. MinC is historically the first sophisticated rule using
the idea of proportional conflict redistribution. The last part of this chapter is devoted to the
development of a new family of PCR rules. Several examples and comparisons with other rules
are also provided.

1.2 The principal rules of combination

In the sequel, we assume non degenerate void2 problems and thus we always consider the frame
Θ as a truly non empty finite set (i.e. Θ 6= {∅}), unless specified expressly.

1.2.1 Notion of total and partial conflicting masses

The total conflicting mass drawn from two sources, denoted k12, is defined as follows:

k12 =
∑

X1,X2∈GΘ

X1∩X2=∅

m1(X1)m2(X2) (1.4)

The total conflicting mass is nothing but the sum of partial conflicting masses, i.e.

k12 =
∑

X1,X2∈GΘ

X1∩X2=∅

m(X1 ∩X2) (1.5)

Here, m(X1∩X2), where X1∩X2 = ∅, represents a partial conflict, i.e. the conflict between
the sets X1 and X2. Formulas (1.4) and (1.5) can be directly generalized for s ≥ 2 sources as
follows:

k12...s =
∑

X1,...,Xs∈GΘ

X1∩...∩Xs=∅

s∏

i=1

mi(Xi) (1.6)

k12...s =
∑

X1,...,Xs∈GΘ

X1∩...∩Xs=∅

m(X1 ∩X2 ∩ . . . ∩Xs) (1.7)

1.2.2 The conjunctive rule

1.2.2.1 Definition

For n ≥ 2, let’s Θ = {θ1, θ2, . . . , θn} be the frame of the fusion problem under consideration. In
the case when these n elementary hypotheses θ1, θ2, . . . , θn are known to be truly exhaustive and
exclusive (i.e. Shafer’s model holds), one can use the DST [17] framework with Dempster’s rule,

2The degenerate void problem considers Θ = {∅} which is actually a meaningless fusion problem in static
fusion applications since the frame contains no hypothesis on which we can work with. In dynamic fusion
application, a non degenerate void problem can sometimes turn into a degenerate void problem at a given time
depending of the evolution of integrity constraints and thus the dynamic fusion problem can vanish with time.
To overcome such possibility (if required by the fusion system designer), it is more cautious to always introduce
at least one closure - possibly unknown - element θ0 6= ∅ in Θ.
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Yager’s rule [29, 30], the TBM [25, 26] approach, Dubois-Prade approach [6–8] or the DSmT
framework as well using the general DSm hybrid rule of combination [18] adapted to deal with
any DSm model (including Shafer’s model). When the hypotheses (or some of them) are not
exclusive and have potentially vague boundaries, the DSmT [18] is adopted. If hypotheses are
known to be non-exhaustive, one can either use Smets’ open-world approach [25, 26] or apply
the hedging closure procedure [28] and work back with DST or DSmT.

The conjunctive rule (known also as conjunctive consensus) for s ≥ 2 sources can be applied
both in DST and in DSmT frameworks. In the DST framework, it is defined ∀X ∈ 2Θ by

m∩(X) =
∑

X1,...,Xs∈2Θ

X1∩...∩Xs=X

s∏

i=1

mi(Xi) (1.8)

m∩(.) is not a proper belief assignment satisfying Shafer’s definition (1.1), since in most of cases
the sources do not totally agree (there exists partial and/or total conflicts between sources of
evidence), so that m∩(∅) > 0. In Smets’ open-world approach and TBM, one allows m∩(∅) ≥ 0
and the empty set is then interpreted not uniquely as the classical empty set (i.e. the set having
no element) but also as the set containing all missing hypotheses of the original frame Θ to
which all the conflicting mass is committed.

In the DSmT framework, the formula is similar, but instead of the power set 2Θ, one uses
the hyper-power set DΘ and the generalized basic belief assignments, i.e. ∀X ∈ DΘ

m∩(X) =
∑

X1,...,Xs∈DΘ

X1∩...∩Xs=X

s∏

i=1

mi(Xi) (1.9)

m∩(.) remains, in the DSmT framework based on the free DSm model, a proper generalized
belief assignment as defined in (1.2). Formula (1.9) allowing the use of intersection of sets (for
the non-exclusive hypotheses) is called the DSm classic rule.

1.2.2.2 Example

Let’s consider Θ = {θ1, θ2} and two sources with belief assignments

m1(θ1) = 0.1 m1(θ2) = 0.2 m1(θ1 ∪ θ2) = 0.7

m2(θ1) = 0.4 m2(θ2) = 0.3 m2(θ1 ∪ θ2) = 0.3

In the DST framework based on Shafer’s model, one gets

m∩(∅) = 0.11 m∩(θ1) = 0.35

m∩(θ2) = 0.33 m∩(θ1 ∪ θ2) = 0.21

In the DSmT framework based on the free DSm model, one gets

m∩(∅) = 0 m∩(θ1 ∩ θ2) = 0.11

m∩(θ1) = 0.35 m∩(θ2) = 0.33 m∩(θ1 ∪ θ2) = 0.21
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We can easily verify that the condition 3 (neutral impact of VBA) is satisfied with the con-
junctive operator in both cases and that the commutativity and associativity are also preserved.
The main drawback of this operator is that it doesn’t generate a proper belief assignment in
both DST and DSmT frameworks when integrity constraints are introduced in the model as in
dynamic fusion problems where the frame and/or the model itself can change with time.

1.2.3 The disjunctive rule

The disjunctive rule of combination [6, 7, 24] is a commutative and associative rule proposed
by Dubois & Prade in 1986 and denoted here by the index ∪. m∪(.) is defined ∀X ∈ 2Θ by
m∪(∅) = 0 and ∀(X 6= ∅) ∈ 2Θ by

m∪(X) =
∑

X1,X2∈2Θ

X1∪X2=X

m1(X1)m2(X2)

The core of the belief function (i.e. the set of focal elements having a positive mass) given
by m∪ equals the union of the cores of m1 and m2. This rule reflects the disjunctive consensus
and is usually preferred when one knows that one of the sources (some of the sources in the
case of s sources) could be mistaken but without knowing which one. The disjunctive rule can
also be defined similarly in DSmT framework by replacing 2Θ by DΘ in the previous definition.

1.2.4 Dempster’s rule of combination

Dempster’s rule of combination is the most widely used rule of combination so far in many ex-
pert systems based on belief functions since historically it was proposed in the seminal book of
Shafer in [17]. This rule, although presenting interesting advantages (mainly the commutativity,
associativity and the neutral impact of VBA) fails however to provide coherent results due to
the normalization procedure it involves. Some proponents of Dempster’s rule claim that this
rule provides correct and coherent result, but actually under strictly satisfied probabilistic con-
ditions, which are rarely satisfied in common real applications. Discussions on the justification
of Dempster’s rule and its well-known limitations can be found by example in [18, 27, 31–33].
Let’s a frame of discernment Θ based on Shafer’s model and two independent and equally reli-
able belief assignments m1(.) and m2(.). Dempster’s rule of combination of m1(.) and m2(.) is
obtained as follows: mDS(∅) = 0 and ∀(X 6= ∅) ∈ 2Θ by

mDS(X) =

∑

X1,X2∈2Θ

X1∩X2=X

m1(X1)m2(X2)

1−
∑

X1,X2∈2Θ

X1∩X2=∅

m1(X1)m2(X2)
=

1

1− k12
·

∑

X1,X2∈2Θ

X1∩X2=X

m1(X1)m2(X2) (1.10)

where the degree of conflict k12 is defined by k12 ,
∑

X1,X2∈2Θ

X1∩X2=∅

m1(X1)m2(X2).

mDS(.) is a proper basic belief assignment if and only if the denominator in equation (1.10) is
non-zero, i.e. the degree of conflict k12 is less than one.
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1.2.5 Smets’ rule of combination

Smets’ rule of combination [25, 26] is nothing but the non-normalized version of the conjunctive
consensus (equivalent to the non-normalized version of Dempster’s rule). It is commutative
and associative and allows positive mass on the null/empty set ∅ (i.e. open-world assumption).
Smets’ rule of combination of two independent (equally reliable) sources of evidence (denoted
here by index S) is given by:

mS(∅) ≡ k12 =
∑

X1,X2∈2Θ

X1∩X2=∅

m1(X1)m2(X2)

and ∀(X 6= ∅) ∈ 2Θ, by

mS(X) =
∑

X1,X2∈2Θ

X1∩X2=X

m1(X1)m2(X2)

1.2.6 Yager’s rule of combination

Yager’s rule of combination [28–30] admits that in case of conflict the result is not reliable, so
that k12 plays the role of an absolute discounting term added to the weight of ignorance. This
commutative but not associative rule, denoted here by index Y is given3 by mY (∅) = 0 and
∀X ∈ 2Θ,X 6= ∅,X 6= Θ by

mY (X) =
∑

X1,X2∈2Θ

X1∩X2=X

m1(X1)m2(X2)

and when X = Θ by

mY (Θ) = m1(Θ)m2(Θ) +
∑

X1,X2∈2Θ

X1∩X2=∅

m1(X1)m2(X2)

1.2.7 Dubois & Prade’s rule of combination

Dubois & Prade’s rule of combination [7] admits that the two sources are reliable when they
are not in conflict, but one of them is right when a conflict occurs. Then if one observes a value
in set X1 while the other observes this value in a set X2, the truth lies in X1 ∩ X2 as long
X1∩X2 6= ∅. If X1 ∩X2 = ∅, then the truth lies in X1∪X2 [7]. According to this principle, the
commutative (but not associative) Dubois & Prade hybrid rule of combination, denoted here
by index DP , which is a reasonable trade-off between precision and reliability, is defined by
mDP (∅) = 0 and ∀X ∈ 2Θ,X 6= ∅ by

mDP (X) =
∑

X1,X2∈2Θ

X1∩X2=X
X1∩X2 6=∅

m1(X1)m2(X2) +
∑

X1,X2∈2Θ

X1∪X2=X
X1∩X2=∅

m1(X1)m2(X2) (1.11)

3Θ represents here the full ignorance θ1 ∪ θ2 ∪ . . . ∪ θn on the frame of discernment according the notation
used in [17].
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1.2.8 The hybrid DSm rule

The hybrid DSm rule of combination is the first general rule of combination developed in the
DSmT framework [18] which can work on any DSm models (including Shafer’s model) and for
any level of conflicting information. The hybrid DSm rule can deal with the potential dynamicity
of the frame and its model as well. The DSmT deals properly with the granularity of information
and intrinsic vague/fuzzy nature of elements of the frame Θ to manipulate. The basic idea of
DSmT is to define belief assignments on hyper-power set DΘ (i.e. free Dedekind’s lattice) and to
integrate all integrity constraints (exclusivity and/or non-existential constraints) of the model,
say M(Θ), fitting with the problem into the rule of combination. Mathematically, the hybrid
DSm rule of combination of s ≥ 2 independent sources of evidence is defined as follows (see
chap. 4 in [18]) for all X ∈ DΘ,

mM(Θ)(X) , φ(X)
[
S1(X) + S2(X) + S3(X)

]
(1.12)

where all sets involved in formulas are in canonical form4, and where φ(X) is the characteristic
non-emptiness function of a set X, i.e. φ(X) = 1 if X /∈ ∅ and φ(X) = 0 otherwise, where
∅ , {∅M, ∅}. ∅M is the set of all elements of DΘ which have been forced to be empty through
the constraints of the model M and ∅ is the classical/universal empty set. S1(X), S2(X) and
S3(X) are defined by

S1(X) ,
∑

X1,X2,...,Xs∈DΘ

X1∩X2∩...∩Xs=X

s∏

i=1

mi(Xi) (1.13)

S2(X) ,
∑

X1,X2,...,Xs∈∅

[U=X]∨[(U∈∅)∧(X=It)]

s∏

i=1

mi(Xi) (1.14)

S3(A) ,
∑

X1,X2,...,Xs∈DΘ

X1∪X2∪...∪Xs=A
X1∩X2∩...∩Xs∈∅

s∏

i=1

mi(Xi) (1.15)

with U , u(X1) ∪ u(X2) ∪ . . . ∪ u(Xs) where u(X) is the union of all θi that compose X and
It , θ1 ∪ θ2 ∪ . . . ∪ θn is the total ignorance. S1(A) corresponds to the classic DSm rule for
k independent sources based on the free DSm model Mf (Θ); S2(A) represents the mass of all
relatively and absolutely empty sets which is transferred to the total or relative ignorances asso-
ciated with non existential constraints (if any, like in some dynamic problems); S3(A) transfers
the sum of relatively empty sets directly onto the (canonical) disjunctive form of non-empty
sets5. The hybrid DSm rule generalizes the classic DSm rule of combination and is not equiva-
lent to Dempster’s rule. It works for any DSm models (the free DSm model, Shafer’s model or
any other hybrid models) when manipulating precise generalized (or eventually classical) basic

4The canonical form of a set is its easiest (or standard) form. We herein use the disjunctive normal form
(which is a disjunction of conjunctions). In Boolean logic (and equivalently in the classical set theory) every
statement of sentential calculus can be reduced to its disjunctive normal form. Of course the canonical form
depends on the model.

5We have voluntarily removed the canonicity function c(.) in expression of S3(.) with respect to some formulas
in earlier publications because such notation appears actually totally useless since all sets involved in formulas
must be expressed in canonical form.
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belief functions. Extension of this hybrid DSm rule for the fusion of imprecise belief can be
found in [18].

In the case of a dynamic fusion problem, when all elements become empty because one gets
new evidence on integrity constraints (which corresponds to a specific hybrid model M), then
the conflicting mass is transferred to the total ignorance, which also turns to be empty, therefore
the empty set gets now mass equals one which shows that the problem has no solution at all
(actually the problem is a degenerate void problem since all elements became empty at a given
time). If we prefer to adopt an optimistic vision, we can consider that one (or more missing hy-
potheses), say θ0, has entered in the frame but we did pay attention to it in the dynamicity and
thus, one must expressly consider m(θ0) = 1 instead of m(∅) = 1. For example, Let’s consider
the frame Θ = {A,B} with the 2 following bba’s m1(A) = 0.5, m1(B) = 0.3, m1(A ∪ B) = 0.2
and m2(A) = 0.4, m2(B) = 0.5, m2(A ∪B) = 0.1, but one finds out with new evidence that A

and B are truly empty, then A∪B ≡ Θ
M≡ ∅. Then m(∅) = 1 which means that this is a totally

impossible problem because this degenerate problem turns out to be void. The only escape is to
include a third or more missing hypotheses C, D, etc into the frame to warranty its true closure.

The hybrid DSm rule of combination is not equivalent to Dempster’s rule even working
on Shafer’s model. DSmT is an extension of DST in the way that the hyper-power set is
an extension of the power set; hyper-power set includes, besides, unions, also intersections of
elements; and when all intersections are empty, the hyper-power set coincides with the power
set. Consequently, the DSm hybrid models include Shafer’s model. An extension of this rule
for the combination of imprecise generalized (or eventually classical) basic belief functions is
possible and is presented in [18]. The hybrid DSm rule can be seen as an improved version
of Dubois & Prade’s rule which mix the conjunctive and disjunctive consensus applied in the
DSmT framework to take into account the possibility for any dynamical integrity constraint in
the model.

1.3 The general weighted operator (WO)

In the framework of Dempster-Shafer Theory (DST), a unified formula has been proposed
recently by Lefèvre, Colot and Vanoorenberghe in [12] to embed all the existing (and potentially
forthcoming) combination rules involving conjunctive consensus in the same general mechanism
of construction. It turns out that such unification formula had been already proposed by
Inagaki [10] in 1991 as reported in [16]. This formulation is known as the Weighted Operator
(WO) in literature [11]. The WO for 2 sources is based on two steps.

• Step 1: Computation of the total conflicting mass based on the conjunctive consensus

k12 ,
∑

X1,X2∈2Θ

X1∩X2=∅

m1(X1)m2(X2) (1.16)

• Step 2: This second step consists in the reallocation (convex combination) of the con-
flicting masses on (X 6= ∅) ⊆ Θ with some given coefficients wm(X) ∈ [0, 1] such that∑

X⊆Θwm(X) = 1 according to

m(∅) = wm(∅) · k12
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and ∀(X 6= ∅) ∈ 2Θ

m(X) = [
∑

X1,X2∈2Θ

X1∩X2=X

m1(X1)m2(X2)] + wm(X)k12 (1.17)

The WO can be easily generalized for the combination of s ≥ 2 independent and equally
reliable sources of information as well by substituting k12 in step 1 by

k12...s ,
∑

X1,...,Xs∈2Θ

X1∩...∩Xs=∅

s∏

i=1

mi(Xi)

and for step 2 by deriving for all (X 6= ∅) ∈ 2Θ the mass m(X) by

m(X) = [
∑

X1,...,Xs∈2Θ

X1∩...∩Xs=X

s∏

i=1

mi(Xi)] + wm(X)k12...s

The particular choice of coefficients wm(.) provides a particular rule of combination (Demp-
ster’s, Yager’s, Smets’, Dubois & Prade’s rules, by example, are particular cases of WO [12]).
Actually this nice and important general formulation shows there exists an infinite number of
possible rules of combination. Some rules are more justified or criticized with respect to the
other ones mainly on their ability to, or not to, preserve the commutativity, associativity of the
combination, to maintain the neutral impact of VBA and to provide what we feel coherent/ac-
ceptable solutions in high conflicting situations. It can be easily shown in [12] that such general
procedure provides all existing rules involving conjunctive consensus developed in the literature
based on Shafer’s model.

1.4 The weighted average operator (WAO)

1.4.1 Definition

This operator has been recently proposed (only in the framework of Dempster-Shafer theory)
by Jøsang, Daniel and Vannoorenberghe in [11] only for static fusion case. It is a new particular
case of WO where the weighting coefficients wm(A) are chosen as follows: wm(∅) = 0 and
∀X ∈ 2Θ \ {∅},

wm(X) =
1

s

s∑

i=1

mi(X) (1.18)

where s is the number of independent sources to combine.

From the general expression of WO and this particular choice of weighting coefficients
wm(X), one gets, for the combination of s ≥ 2 independent sources and ∀(X 6= ∅) ∈ 2Θ

mWAO(X) = [
∑

X1,...,Xs∈2Θ

X1∩...∩Xs=X

s∏

i=1

mi(Xi)] + [
1

s

s∑

i=1

mi(X)] · [
∑

X1,...,Xs∈2Θ

X1∩...∩Xs=∅

s∏

i=1

mi(Xi)] (1.19)
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1.4.2 Example for WAO

Let’s consider Shafer’s model (exhaustivity and exclusivity of hypotheses) on Θ = {A,B} and
the two following bba’s

m1(A) = 0.3 m1(B) = 0.4 m1(A ∪B) = 0.3

m2(A) = 0.5 m2(B) = 0.1 m2(A ∪B) = 0.4

The conjunctive consensus yields6

m12(A) = 0.42 m12(B) = 0.23 m12(A ∪B) = 0.12

with the conflicting mass k12 = 0.23. The weighting average coefficients are given by

wm(A) = 0.40 wm(B) = 0.25 wm(A ∪B) = 0.35

The result of the WAO is therefore given by

mWAO|12(A) = m12(A) + wm(A) · k12 = 0.42 + 0.40 · 0.23 = 0.5120

mWAO|12(B) = m12(B) + wm(B) · k12 = 0.23 + 0.25 · 0.23 = 0.2875

mWAO|12(A ∪B) = m12(A ∪B) + wm(A ∪B) · k12 = 0.12 + 0.35 · 0.23 = 0.2005

1.4.3 Limitations of WAO

From the previous simple example, one can easily verify that the WAO doesn’t preserve the
neutral impact of VBA (condition expressed in (1.3)). Indeed, if one combines the two first
sources with a third (but totally ignorant) source represented by the vacuous belief assignment
(i.e. m3(.) = mv(.)), m3(A∪B) = 1 altogether, one gets same values from conjunctive consensus
and conflicting mass, i.e. k123 = 0.23 and

m123(A) = 0.42 m123(B) = 0.23 m123(A ∪B) = 0.12

but the weighting average coefficients are now given by

wm(A) = 0.8/3 wm(B) = 0.5/3 wm(A ∪B) = 1.7/3

so that

mWAO|123(A) = 0.42 + (0.8/3) · 0.23 ≈ 0.481333

mWAO|123(B) = 0.23 + (0.5/3) · 0.23 ≈ 0.268333

mWAO|123(A ∪B) = 0.12 + (1.7/3) · 0.23 ≈ 0.250334

Consequently, WAO doesn’t preserve the neutral impact of VBA since one has found at least
one example in which condition (1.3) is not satisfied because

mWAO|123(A) 6= mWAO|12(A)

6We use m12 instead of m∩ to indicate explicitly that only 2 sources enter in the conjunctive operator. The
notation mWAO|12 denotes the result of the WAO combination for sources 1 and 2. When s ≥ 2 sources are
combined, we use similarly the notations m12...s and mWAO|12...s.
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mWAO|123(B) 6= mWAO|12(B)

mWAO|123(A ∪B) 6= mWAO|12(A ∪B)

Another limitation of WAO concerns its impossibility to deal with dynamical evolution of
the frame (i.e. when some evidence arises after a while on the true vacuity of elements of power
set). As example, let’s consider three different suspects A, B and C in a criminal investigation
(i.e. Θ = {A,B,C}) and the two following simple Bayesian witnesses reports

m1(A) = 0.3 m1(B) = 0.4 m1(C) = 0.3

m2(A) = 0.5 m2(B) = 0.1 m2(C) = 0.4

The conjunctive consensus is

m12(A) = 0.15 m12(B) = 0.04 m12(C) = 0.12

with the conflicting mass k12 = 0.69. Now let’s assume that a little bit later, one learns that
B = ∅ because the second suspect brings a perfect alibi, then the initial consensus on B (i.e.
m12(B) = 0.04) must enter now in the new conflicting mass k′12 = 0.69 + 0.04 = 0.73 since
B = ∅. k′12 is then re-distributed to A and C according to the WAO formula:

mWAO|12(B) = 0

mWAO|12(A) = 0.15 + (1/2)(0.3 + 0.5)(0.73) = 0.4420

mWAO|12(C) = 0.12 + (1/2)(0.3 + 0.4)(0.73) = 0.3755

From this WAO result, one sees clearly that the sum of the combined belief assignments
mWAO|12(.) is 0.8175 < 1. Therefore, the WAO proposed in [12] doesn’t manage properly
the combination with VBA neither the possible dynamicity of the fusion problematic. This lim-
itation is not very surprising since the WAO was proposed actually only for the static fusion7

based on Shafer’s model. The improvement of WAO for dynamic fusion is an open problem,
but Milan Daniel in a private communication to the authors, proposed to use the following
normalized coefficients for WAO in dynamic fusion:

wm(X) =
1

s

∑
X

∑s
i=1mi(X)∑

X 6=∅
∑s

i=1mi(X)

s∑

i=1

mi(X) (1.20)

1.5 Daniel’s minC rule of combination

1.5.1 Principle of the minC rule

MinC fusion rule is a recent interesting rule based on proportional redistribution of partial
conflicts. Actually it was the first rule, to the knowledge of authors, that uses the idea for so-
phisticated proportional conflict redistribution. This rule was developed in the DST framework
only. MinC rule is commutative and preserves the neutral impact of VBA but, as the majority
of rules, MinC is not fully associative. MinC has been developed and proposed by Milan Daniel

7Note that the static fusion aspect was not explicitly stated and emphasized in [12] but only implicitly
assumed.
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in [1–4]. A detailed presentation of MinC can also be found in [18] (Chap. 10).

The basic idea of minC is to identify all different types of partial conflicts and then transfer
them with some proportional redistribution. Two versions of proportional redistributions have
been proposed by Milan Daniel:

• The minC (version a) ): the mass coming from a partial conflict (called contradiction by
M. Daniel) involving several sets X1,X2,. . . ,Xk is proportionalized among all unions

⋃j
i=1,

of j ≤ k sets Xi of {X1, . . . ,Xk} (after a proper reallocation of all equivalent propositions
containing partial conflit onto elements of power set).

• The minC (version b) ): the mass coming from a partial conflict involving several sets
X1,X2,. . . ,Xk is proportionalized among all non empty subsets of X1∪, . . . ∪Xk.

The preservation of the neutral impact of the VBA by minC rule can been drawn from the
following demonstration: Let’s consider two basic belief assignments m1(.) and m2(.). The first
stage of minC consists in deriving the conjunctive consensus m12(.) from m1(.) and m2(.) and
then transfer the mass of conflicting propositions to its components and unions of its compo-
nents proportionally to their masses m12(.). Since the vacuous belief assignment mv(.) is the
neutral element of the conjunctive operator, one always has m12v(.) = m12(.) and thus the result
of the minC at the first stage and after the first stage not affected by the introduction of the
vacuous belief assignment in the fusion process. That’s why minC preserves the neutral impact
of VBA.

Unfortunately no analytic expression for the minC rules (version a) and b)) has been pro-
vided so far by the author. As simply stated, minC transfers m(A ∩ B) when A ∩ B = ∅ with
specific proportionalization factors to A, B, and A ∪ B; More generally, minC transfers the
conflicting mass m(X), when X = ∅, to all subsets of u(X) (the disjunctive form of X), which
is not the most exact issue. As it will be shown in the sequel of this chapter, the PCR5 rule
allows a more judicious proportional conflict redistribution. For a better understanding of the
minC rule, here is a simple illustrative example drawn from [18] (p. 237).

1.5.2 Example for minC

Let’s consider Shafer’s model with Θ = {θ1, θ2, θ3} and the two following bba’s to combine (here
we denotes θ1 ∪ θ2 ∪ θ3 by Θ for notation convenience).

m1(θ1) = 0.3 m2(θ1) = 0.1

m1(θ2) = 0.2 m2(θ2) = 0.1

m1(θ3) = 0.1 m2(θ3) = 0.2

m1(θ1 ∪ θ2) = 0.1 m2(θ1 ∪ θ2) = 0.0

m1(θ1 ∪ θ3) = 0.1 m2(θ1 ∪ θ3) = 0.1

m1(θ2 ∪ θ3) = 0.0 m2(θ2 ∪ θ3) = 0.2

m1(Θ) = 0.2 m2(Θ) = 0.3

The results of the three steps of the minC rules are given in Table 1.1. For notation convenience,
the square symbol � represents (θ1 ∩ θ2) ∪ (θ1 ∩ θ3) ∪ (θ2 ∩ θ3).
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m12 m?
12 m

a)
minC

m
b)
minC

θ1 0.19 0.20 0.2983 0.2999
θ2 0.15 0.17 0.2318 0.2402
θ3 0.14 0.16 0.2311 0.2327

θ1 ∪ θ2 0.03 0.03 0.0362 0.0383
θ1 ∪ θ3 0.06 0.06 0.0762 0.0792
θ2 ∪ θ3 0.04 0.04 0.0534 0.0515

θ1 ∪ θ2 ∪ θ3 0.06 0.06 0.0830 0.0692

θ1 ∩ θ2 0.05 0.05
θ1 ∩ θ3 0.07 0.07
θ2 ∩ θ3 0.05 0.05

θ1 ∩ (θ2 ∪ θ3) 0.06 0.06
θ2 ∩ (θ1 ∪ θ3) 0.03 0.03
θ3 ∩ (θ1 ∪ θ2) 0.02 0.02
θ1 ∪ (θ2 ∩ θ3) 0.01
θ2 ∪ (θ1 ∩ θ3) 0.02
θ3 ∪ (θ1 ∩ θ2) 0.02
θ1 ∩ θ2 ∩ θ3 0

� 0

Table 1.1: minC result (versions a) and b))

• Step 1 of minC : the conjunctive consensus

The first column of Table 1.1 lists all the elements involved in the combination. The second
column gives the result of the first step of the minC rule which consists in applying the
conjunctive consensus operator m12(.) defined on the hyper-power set DΘ of the free-DSm
model.

• Step 2 of minC : the reallocation

The second step of minC consists in the reallocation of the masses of all partial conflicts
which are equivalent to some non empty elements of the power set. This is what we call
the equivalence-based reallocation principle (EBR principle). The third column m?

12 of
Table 1.1 gives the basic belief assignment after reallocation of partial conflicts based on
EBR principle before proportional conflict redistribution (i.e. the third and final step of
minC).

Let’s explain a bit what EBR is from this simple example. Because we are working with
Shafer’s model all elements θ1, θ2 and θ3 of Θ are exclusive and therefore θ1 ∩ θ2 = ∅,
θ1 ∩ θ3 = ∅, θ3 ∩ θ3 = ∅ and θ1 ∩ θ2 ∩ θ3 = ∅. Consequently, the propositions θ1 ∪ (θ2 ∩ θ3),
θ2 ∪ (θ1 ∩ θ3), and θ3 ∪ (θ1 ∩ θ2) corresponding to the 14th, 15th and 16th rows of the
Table 1.1 are respectively equivalent to θ1, θ2 and θ3 so that their committed masses
can be directly reallocated (added) onto m12(θ1), m12(θ2) and m12(θ3). No other mass
containing partial conflict can be directly reallocated onto the first seven elements of the
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table based on the EBR principle in this example. Thus finally, one gets m?
12(.) = m12(.)

for all non-equivalent elements and for elements θ1, θ2 and θ3 for which a reallocation has
been done

m?
12(θ1) = m12(θ1) +m12(θ1 ∪ (θ2 ∩ θ3)) = 0.19 + 0.01 = 0.20

m?
12(θ2) = m12(θ2) +m12(θ2 ∪ (θ1 ∩ θ3)) = 0.15 + 0.02 = 0.17

m?
12(θ3) = m12(θ3) +m12(θ3 ∪ (θ1 ∩ θ2)) = 0.14 + 0.02 = 0.16

• Step 3 of minC : proportional conflict redistribution

The fourth and fifth columns of the Table 1.1 (m
a)
minC and m

b)
minC) provide the minC

results with the two versions of minC proposed by Milan Daniel and explained below.
The column 4 of the Table 1.1 corresponds to the version a) of minC while the column 5
corresponds to the version b). Let’s explain now in details how the values of columns 4
and 5 have be obtained.

Version a) of minC: The result for the minC (version a) corresponding to the fourth
column of the Table 1.1 is obtained from m?

12(.) by the proportional redistribution of
the partial conflict onto the elements entering in the partial conflict and their union. By
example, the mass m?

12(θ1∩ (θ2∪ θ3)) = 0.06 will be proportionalized from the mass of θ1,
θ2 ∪ θ3 and θ1 ∪ θ2 ∪ θ3 only. The parts of the mass of θ1 ∩ (θ2 ∪ θ3) added to θ1, θ2 ∪ θ3
and θ1 ∪ θ2 ∪ θ3 will be given by

k(θ1) = m?
12(θ1 ∩ (θ2 ∪ θ3)) · m

?
12(θ1)

K
= 0.06 · 0.20

0.30
= 0.040

k(θ2 ∪ θ3) = m?
12(θ1 ∩ (θ2 ∪ θ3)) · m

?
12(θ2 ∪ θ3)

K
= 0.06 · 0.04

0.30
= 0.008

k(θ1 ∪ θ2 ∪ θ3) = m?
12(θ1 ∩ (θ2 ∪ θ3)) · m

?
12(Θ)

K
= 0.06 · 0.06

0.30
= 0.012

where the normalization constant is K = m?
12(θ1) + m?

12(θ2 ∪ θ3) + m?
12(θ1 ∪ θ2 ∪ θ3) =

0.20 + 0.04 + 0.06 = 0.30.

The proportional redistribution is done similarly for all other partial conflicting masses.
We summarize in Tables 1.2-1.4 all the proportions (rounded at the fifth decimal) of
conflicting masses to transfer onto elements of the power set. The sum of each column of
the Tables 1.2-1.4 is transferred onto the mass of the element of power set it corresponds

to get the final result of minC (version a)). By example, m
a)
minC

(θ1) is obtained by

m
a)
minC

(θ1) = m?
12(θ1) + (0.025 + 0.03333 + 0.04) = 0.20 + 0.09833 = 0.29833

which corresponds to the first value (rounded at the 4th decimal) of the 4th column of
Table 1.1. All other values of the minC (version a)) result of Table 1.1 can be easily
verified similarly.

Version b) of minC: In this second version of minC, the proportional redistribution of any
partial conflict X remaining after step 2 uses all subsets of u(X) (i.e. the disjunctive form
of X). As example, let’s consider the partial conflict X = θ1 ∩ (θ2 ∪ θ3) in the Table 1.1
having the belief mass m?

12(θ1 ∩ (θ2 ∪ θ3)) = 0.06. Since u(X) = θ1 ∪ θ2 ∪ θ3, all elements
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θ1 θ2 θ3
θ1 ∩ θ2 0.025 0.02125
θ1 ∩ θ3 0.03333 0.02667
θ2 ∩ θ3 0.02297 0.02162

θ1 ∩ (θ2 ∪ θ3) 0.04
θ2 ∩ (θ1 ∪ θ3) 0.01758
θ3 ∩ (θ1 ∪ θ2) 0.0128

Table 1.2: Version a) of minC Proportional conflict redistribution factors

θ1 ∪ θ2 θ1 ∪ θ3
θ1 ∩ θ2 0.00375
θ1 ∩ θ3 0.01
θ2 ∩ θ3

θ1 ∩ (θ2 ∪ θ3)
θ2 ∩ (θ1 ∪ θ3) 0.00621
θ3 ∩ (θ1 ∪ θ2) 0.0024

Table 1.3: Version a) of minC Proportional conflict redistribution factors (continued)

θ2 ∪ θ3 θ1 ∪ θ2 ∪ θ3
θ1 ∩ θ2
θ1 ∩ θ3
θ2 ∩ θ3 0.00541

θ1 ∩ (θ2 ∪ θ3) 0.008 0.012
θ2 ∩ (θ1 ∪ θ3) 0.00621
θ3 ∩ (θ1 ∪ θ2) 0.0048

Table 1.4: Version a) of minC Proportional conflict redistribution factors (continued)

of the power set 2Θ will enter in the proportional redistribution and we will get for this X

k(θ1) = m?
12(θ1 ∩ (θ2 ∪ θ3)) · m

?
12(θ1)

K
≈ 0.01666

k(θ2) = m?
12(θ1 ∩ (θ2 ∪ θ3)) · m

?
12(θ2)

K
≈ 0.01417

k(θ3) = m?
12(θ1 ∩ (θ2 ∪ θ3)) · m

?
12(θ3)

K
≈ 0.01333

k(θ1 ∪ θ2) = m?
12(θ1 ∩ (θ2 ∪ θ3)) · m

?
12(θ1 ∪ θ2)

K
= 0.06 · 0.03

0.72
= 0.0025

k(θ1 ∪ θ3) = m?
12(θ1 ∩ (θ2 ∪ θ3)) · m

?
12(θ1 ∪ θ3)

K
= 0.06 · 0.06

0.72
= 0.005

k(θ2 ∪ θ3) = m?
12(θ1 ∩ (θ2 ∪ θ3)) · m

?
12(θ2 ∪ θ3)

K
= 0.06 · 0.04

0.72
≈ 0.00333

k(Θ) = m?
12(θ1 ∩ (θ2 ∪ θ3)) · m

?
12(Θ)

K
= 0.005
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where the normalization constant K = 0.72 corresponds here to K =
∑

Y ∈2Θ m?
12(Y ).

If one considers now X = θ1 ∩ θ2 with its belief mass m?
12(θ1 ∩ θ2) = 0.05, then only θ1,

θ2 and θ1 ∪ θ2 enter in the proportional redistribution (version b) because u(X) = θ1 ∪ θ2
doesn’t not carry element θ3. One then gets for this element X the new set of proportional
redistribution factors:

k(θ1) = m?
12(θ1 ∩ θ2) · m

?
12(θ1)

K
= 0.05 · 0.20

0.40
= 0.025

k(θ2) = m?
12(θ1 ∩ θ2) · m

?
12(θ2)

K
= 0.05 · 0.17

0.40
= 0.02125

k(θ1 ∪ θ2) = m?
12(θ1 ∩ θ2) · m

?
12(θ1 ∪ θ2)

K
= 0.05 · 0.03

0.40
= 0.00375

where the normalization constant K = 0.40 corresponds now to the sum K = m?
12(θ1) +

m?
12(θ2) +m?

12(θ1 ∪ θ2).

The proportional redistribution is done similarly for all other partial conflicting masses.
We summarize in the Tables 1.5-1.7 all the proportions (rounded at the fifth decimal) of
conflicting masses to transfer onto elements of the power set based on this second version
of proportional redistribution of minC.

The sum of each column of the Tables 1.5-1.7 is transferred onto the mass of the element
of power set it corresponds to get the final result of minC (version b)). By example,

m
b)
minC

(θ1) will be obtained by

m
b)
minC

(θ1) = m?
12(θ1) + (0.02500 + 0.03333 + 0.01666 + 0.00834 + 0.00555)

= 0.20 + 0.08888 = 0.28888

which corresponds to the first value (rounded at the 4th decimal) of the 5th column of
Table 1.1. All other values of the minC (version b)) result of Table 1.1 can be easily
verified similarly.

θ1 θ2 θ3
θ1 ∩ θ2 0.02500 0.02125
θ1 ∩ θ3 0.03333 0.02667
θ2 ∩ θ3 0.02298 0.02162

θ1 ∩ (θ2 ∪ θ3) 0.01666 0.01417 0.01333
θ2 ∩ (θ1 ∪ θ3) 0.00834 0.00708 0.00667
θ3 ∩ (θ1 ∪ θ2) 0.00555 0.00472 0.00444

Table 1.5: Version b) of minC Proportional conflict redistribution factors
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θ1 ∪ θ2 θ1 ∪ θ3
θ1 ∩ θ2 0.00375
θ1 ∩ θ3 0.01000
θ2 ∩ θ3

θ1 ∩ (θ2 ∪ θ3) 0.00250 0.00500
θ2 ∩ (θ1 ∪ θ3) 0.00125 0.00250
θ3 ∩ (θ1 ∪ θ2) 0.00084 0.00167

Table 1.6: Version b) of minC Proportional conflict redistribution factors (continued)

θ2 ∪ θ3 θ1 ∪ θ2 ∪ θ3
θ1 ∩ θ2
θ1 ∩ θ3
θ2 ∩ θ3 0.00540

θ1 ∩ (θ2 ∪ θ3) 0.00333 0.00500
θ2 ∩ (θ1 ∪ θ3) 0.00166 0.00250
θ3 ∩ (θ1 ∪ θ2) 0.00111 0.00167

Table 1.7: Version b) of minC Proportional conflict redistribution factors (continued)

1.6 Principle of the PCR rules

Let’s Θ = {θ1, θ2, . . . , θn} be the frame of the fusion problem under consideration and two belief
assignments m1,m2 : GΘ → [0, 1] such that

∑
X∈GΘ mi(X) = 1, i = 1, 2. The general principle

of the Proportional Conflict Redistribution Rules (PCR for short) is:

• apply the conjunctive rule (1.8) or (1.9) depending on theory, i.e. GΘ can be either 2Θ or
DΘ,

• calculate the total or partial conflicting masses,

• then redistribute the conflicting mass (total or partial) proportionally on non-empty sets
involved in the model according to all integrity constraints.

The way the conflicting mass is redistributed yields to five versions of PCR, denoted PCR1,
PCR2, . . . , PCR5 as it will be shown in the sequel. The PCR combination rules work for any
degree of conflict k12 ∈ [0, 1] or k12...s ∈ [0, 1], for any DSm models (Shafer’s model, free DSm
model or any hybrid DSm model). PCR rules work both in DST and DSmT frameworks and
for static or dynamical fusion problematic. The sophistication/complexity (but correctness) of
proportional conflict redistribution increases from the first PCR1 rule up to the last rule PCR5.
The development of different PCR rules presented here comes from the fact that the first initial
PCR rule developed (PCR1) does not preserve the neutral impact of VBA. All other improved
rules PCR2-PCR5 preserve the commutativity, the neutral impact of VBA and propose, upon
to our opinion, a more and more exact solution for the conflict management to satisfy as best
as possible the condition 1 (in section 1) that any satisfactory combination rule must tend to.
The general proof for the neutrality of VBA within PCR2, PCR3, PCR4 and PCR5 rules is
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given in section 1.11.1 and some numerical examples are given in the section related with the
presentation of each rule.

1.7 The PCR1 rule

1.7.1 The PCR1 formula

PCR1 is the simplest and the easiest version of proportional conflict redistribution for com-
bination. PCR1 is described in details in [20]. The basic idea for PCR1 is only to compute
the total conflicting mass k12 (not worrying about the partial conflicting masses). The total
conflicting mass is then distributed to all non-empty sets proportionally with respect to their
corresponding non-empty column sum of the associated mass matrix. The PCR1 is defined
∀(X 6= ∅) ∈ GΘ by:

• For the combination of s = 2 sources

mPCR1(X) = [
∑

X1,X2∈GΘ

X1∩X2=X

m1(X1)m2(X2)] +
c12(X)

d12
· k12 (1.21)

where c12(X) is the non-zero sum of the column of X in the mass matrix M =

[
m1

m2

]

(where mi for i = 1, 2 is the row vector of belief assignments committed by the source i to
elements of GΘ), i.e. c12(X) = m1(X) +m2(X) 6= 0, k12 is the total conflicting mass, and
d12 is the sum of all non-zero column sums of all non-empty sets (in many cases d12 = 2,
but in some degenerate cases it can be less) (see [20]).

• For the combination of s ≥ 2 sources

mPCR1(X) = [
∑

X1,X2,...,Xs∈GΘ

X1∩X2∩...∩Xs=X

s∏

i=1

mi(Xi)] +
c12...s(X)

d12...s
· k12...s (1.22)

where c12...s(X) is the non-zero sum of the column of X in the mass matrix, i.e. c12...s(X) =
m1(X) +m2(X) + . . . +ms(X) 6= 0, k12...s is the total conflicting mass, and d12...s is the
sum of all non-zero column sums of all non-empty sets (in many cases d12...s = s, but in
some degenerate cases it can be less).

PCR1 is an alternative combination rule to WAO (Weighted Average Operator) proposed by
Jøsang, Daniel and Vannoorenberghe in [11]. Both are particular cases of WO (The Weighted
Operator) because the conflicting mass is redistributed with respect to some weighting factors.
In the PCR1, the proportionalization is done for each non-empty set with respect to the non-
zero sum of its corresponding mass matrix - instead of its mass column average as in WAO.
But, PCR1 extends WAO, since PCR1 works also for the degenerate cases when all column
sums of all non-empty sets are zero because in such cases, the conflicting mass is transferred
to the non-empty disjunctive form of all non-empty sets together; when this disjunctive form
happens to be empty, then either the problem degenerates truly to a void problem and thus
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all conflicting mass is transferred onto the empty set, or we can assume (if one has enough
reason to justify such assumption) that the frame of discernment might contain new unknown
hypotheses all summarized by θ0 and under this assumption all conflicting mass is transferred
onto the unknown possible θ0.

A nice feature of PCR1 rule, is that it works in all cases (degenerate and non degenerate).
PCR1 corresponds to a specific choice of proportionality coefficients in the infinite continuum
family8 of possible rules of combination involving conjunctive consensus operator. The PCR1
on the power set and for non-degenerate cases gives the same results as WAO (as Philippe
Smets pointed out); yet, for the storage requirement in a dynamic fusion when the associativity
is requested, one needs to store for PCR1 only the last sum of masses, besides the previous con-
junctive rule’s result, while in WAO one needs also to store the number of the steps (see [20] for
details) – and both rules become quasi-associative. In addition to WAO, we propose a general
formula for PCR1 (WAO for non-degenerate cases).

Unfortunately, a severe limitation of PCR1 (as for WAO) is the non-preservation of the
neutral impact of the VBA as shown in [20]. In other words, for s ≥ 1, one gets form1(.) 6= mv(.),
. . . , ms(.) 6= mv(.):

mPCR1(.) = [m1 ⊕ . . . ms ⊕mv](.) 6= [m1 ⊕ . . .ms](.)

For the cases of the combination of only one non-vacuous belief assignment m1(.) with the vacu-
ous belief assignment mv(.) where m1(.) has mass assigned to an empty element, say m1(∅) > 0
as in Smets’ TBM, or as in DSmT dynamic fusion where one finds out that a previous non-empty
element A, whose mass m1(A) > 0, becomes empty after a certain time, then this mass of an
empty set has to be transferred to other elements using PCR1, but for such case [m1 ⊕mv](.)
is different from m1(.). This severe drawback of WAO and PCR1 forces us to develop the
next PCR rules satisfying the neutrality property of VBA with better redistributions of the
conflicting information.

1.7.2 Example for PCR1 (degenerate case)

For non degenerate cases with Shafer’s model, PCR1 and WAO provide the same results. So it is
interesting to focus the reader’s attention on the difference between PCR1 and WAO in a simple
degenerate case corresponding to a dynamic fusion problem. Let’s take the following example
showing the restriction of applicability of static-WAO9. As example, let’s consider three different
suspects A, B and C in a criminal investigation (i.e. Θ = {A,B,C}) and the two following
simple Bayesian witnesses reports

m1(A) = 0.3 m1(B) = 0.4 m1(C) = 0.3

m2(A) = 0.5 m2(B) = 0.1 m2(C) = 0.4

The conjunctive consensus is

m12(A) = 0.15 m12(B) = 0.04 m12(C) = 0.12

8pointed out independently by Inagaki in 1991 and Lefèvre, Colot and Vannoorenberghe in 2002.
9static-WAO stands for the WAO rule proposed in [11, 12] based on Shafer’s model for the implicit static

fusion case (i.e. Θ remains invariant with time), while dynamic-WAO corresponds to Daniel’s improved version
of WAO using (1.20).
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with the conflicting mass k12 = 0.69. Now let’s assume that a little bit later, one learns that
B = ∅ because the second suspect brings a strong alibi, then the initial consensus on B (i.e.
m12(B) = 0.04) must enter now in the new conflicting mass k′12 = 0.69 + 0.04 = 0.73 since
B = ∅. Applying the PCR1 formula, one gets now:

mPCR1|12(B) = 0

mPCR1|12(A) = 0.15 +
0.8

0.8 + 0.7
· 0.73 = 0.5393

mPCR1|12(C) = 0.12 +
0.7

0.8 + 0.7
· 0.73 = 0.4607

Let’s remind (see section 4.3) that in this case, the static-WAO provides

mWAO|12(B) = 0 mWAO|12(A) = 0.4420 mWAO|12(C) = 0.3755

We can verify easily that mPCR1|12(A) +mPCR1|12(B) +mPCR1|12(C) = 1 while mWAO|12(A) +
mWAO|12(B) + mWAO|12(C) = 0.8175 < 1. This example shows clearly the difference between
PCR1 and static-WAO originally proposed in [11, 12] and the ability of PCR1 to deal with
degenerate/dynamic cases contrariwise to original WAO. The improved dynamic-WAO version
suggested by Daniel coincides with PCR1.

1.8 The PCR2 rule

1.8.1 The PCR2 formula

In PCR2, the total conflicting mass k12 is distributed only to the non-empty sets involved in the
conflict (not to all non-empty sets) and taken the canonical form of the conflict proportionally
with respect to their corresponding non-empty column sum. The redistribution is then more
exact (accurate) than in PCR1 and WAO. A nice feature of PCR2 is the preservation of the
neutral impact of the VBA and of course its ability to deal with all cases/models.

A non-empty set X1 ∈ GΘ is considered involved in the conflict if there exists another
set X2 ∈ GΘ which is neither included in X1 nor includes X1 such that X1 ∩ X2 = ∅ and
m12(X1 ∩X2) > 0. This definition can be generalized for s ≥ 2 sources.

• The PCR2 formula for two sources (s = 2) is ∀(X 6= ∅) ∈ GΘ,

mPCR2(X) = [
∑

X1,X2∈GΘ

X1∩X2=X

m1(X1)m2(X2)] + C(X)
c12(X)

e12
· k12 (1.23)

where

C(X) =

{
1, if X involved in the conflict,

0, otherwise;

and where c12(X) is the non-zero sum of the column of X in the mass matrix, i.e.
c12(X) = m1(X) + m2(X) 6= 0, k12 is the total conflicting mass, and e12 is the sum
of all non-zero column sums of all non-empty sets only involved in the conflict (resulting
from the conjunctive normal form of their intersection after using the conjunctive rule).
In many cases e12 = 2, but in some degenerate cases it can be less.
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• For the the combination of s ≥ 2 sources, the previous PCR2 formula can be easily
generalized as follows ∀(X 6= ∅) ∈ GΘ:

mPCR2(X) = [
∑

X1,X2,...,Xs∈GΘ

X1∩X2∩...∩Xs=X

s∏

i=1

mi(Xi)] + C(X)
c12...s(X)

e12...s
· k12...s (1.24)

where

C(X) =

{
1, if X involved in the conflict,

0, otherwise;

and c12...s(X) is the non-zero sum of the column of X in the mass matrix, i.e. c12...s(X) =
m1(X) + m2(X) + . . . +ms(X) 6= 0, k12...s is the total conflicting mass, and e12...s is the
sum of all non-zero column sums of all non-empty sets involved in the conflict (in many
cases e12...s = s, but in some degenerate cases it can be less).

In the degenerate case when all column sums of all non-empty sets involved in the conflict
are zero, then the conflicting mass is transferred to the non-empty disjunctive form of all sets
together which were involved in the conflict together. But if this disjunctive form happens
to be empty, then the problem reduces to a degenerate void problem and thus all conflicting
mass is transferred to the empty set or we can assume (if one has enough reason to justify
such assumption) that the frame of discernment might contain new unknown hypotheses all
summarized by θ0 and under this assumption all conflicting mass is transferred onto the unknown
possible θ0.

1.8.2 Example for PCR2 versus PCR1

Let’s have the frame of discernment Θ = {A,B}, Shafer’s model (i.e. all intersections empty),
and the following two bba’s:

m1(A) = 0.7 m1(B) = 0.1 m1(A ∪B) = 0.2

m2(A) = 0.5 m2(B) = 0.4 m2(A ∪B) = 0.1

The sums of columns of the mass matrix are

c12(A) = 1.2 c12(B) = 0.5 c12(A ∪B) = 0.3

Then the conjunctive consensus yields

m12(A) = 0.52 m12(B) = 0.13 m12(A ∪B) = 0.02

with the total conflict k12 = m12(A ∩B) = 0.33.

• Applying the PCR1 rule yields (d12 = 1.2 + 0.5 + 0.3 = 2):

mPCR1|12(A) = m12(A) +
c12(A)

d12
· k12 = 0.52 +

1.2

2
· 0.33 = 0.7180

mPCR1|12(B) = m12(B) +
c12(B)

d12
· k12 = 0.13 +

0.5

2
· 0.33 = 0.2125

mPCR1|12(A ∪B) = m12(A ∪B) +
c12(A ∪B)

d12
· k12 = 0.02 +

0.3

2
· 0.33 = 0.0695
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• While applying the PCR2 rule yields (e12 = 1.2 + 0.5 = 1.7):

mPCR2(A) = m12(A) +
c12(A)

e12
· k12 = 0.52 +

1.2

1.7
· 0.33 = 0.752941

mPCR2(B) = m12(B) +
c12(B)

e12
· k12 = 0.12 +

0.5

1.7
· 0.33 = 0.227059

mPCR2(A ∪B) = m12(A ∪B) = 0.02

1.8.3 Example of neutral impact of VBA for PCR2

Let’s keep the previous example and introduce now a third but totally ignorant source mv(.)
and examine the result of the combination of the 3 sources with PCR2. So, let’s start with

m1(A) = 0.7 m1(B) = 0.1 m1(A ∪B) = 0.2

m2(A) = 0.5 m2(B) = 0.4 m2(A ∪B) = 0.1

mv(A) = 0.0 mv(B) = 0.0 mv(A ∪B) = 1.0

The sums of columns of the mass matrix are

c12v(A) = 1.2 c12v(B) = 0.5 c12v(A ∪B) = 1.3

Then the conjunctive consensus yields

m12v(A) = 0.52 m12v(B) = 0.13 m12v(A ∪B) = 0.02

with the total conflict k12v = m12v(A ∩ B) = 0.33. We get naturally m12v(.) = m12(.) because
the vacuous belief assignment mv(.) has no impact in the conjunctive consensus.

Applying the PCR2 rule yields:

mPCR2|12v(A) = m12v(A) +
c12v(A)

e12v
· k12v = 0.52 +

1.2

1.2 + 0.5
· 0.33 = 0.752941

mPCR2|12v(B) = m12v(B) +
c12v(B)

e12v
· k12v = 0.52 +

0.5

1.2 + 0.5
· 0.33 = 0.227059

mPCR2|12v(A ∪B) = m12v(A ∪B) = 0.02

In this example one sees that the neutrality property of VBA is effectively well satisfied since

mPCR2|12v(.) = mPCR2|12(.)

A general proof for neutrality of VBA within PCR2 is given in section 1.11.1.

1.9 The PCR3 rule

1.9.1 Principle of PCR3

In PCR3, one transfers partial conflicting masses, instead of the total conflicting mass, to non-
empty sets involved in partial conflict (taken the canonical form of each partial conflict). If
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an intersection is empty, say A ∩ B = ∅, then the mass m(A ∩ B) of the partial conflict is
transferred to the non-empty sets A and B proportionally with respect to the non-zero sum
of masses assigned to A and respectively to B by the bba’s m1(.) and m2(.). The PCR3 rule
works if at least one set between A and B is non-empty and its column sum is non-zero.

When both sets A and B are empty, or both corresponding column sums of the mass matrix
are zero, or only one set is non-empty and its column sum is zero, then the mass m(A ∩ B) is
transferred to the non-empty disjunctive form u(A) ∪ u(B) defined in (1.25); if this disjunctive
form is empty then m(A ∩ B) is transferred to the non-empty total ignorance; but if even the
total ignorance is empty then either the problem degenerates truly to a void problem and thus
all conflicting mass is transferred onto the empty set, or we can assume (if one has enough
reason to justify such assumption) that the frame of discernment might contain new unknown
hypotheses all summarized by θ0 and under this assumption all conflicting mass is transferred
onto the unknown possible θ0.

If another intersection, say A∩C ∩D = ∅, then again the mass m(A∩C ∩D) > 0 is trans-
ferred to the non-empty sets A, C, and D proportionally with respect to the non-zero sum of
masses assigned to A, C, and respectively D by the sources; if all three sets A, C, D are empty
or the sets which are non-empty have their corresponding column sums equal to zero, then the
mass m(A ∩ C ∩ D) is transferred to the non-empty disjunctive form u(A) ∪ u(C) ∪ u(D); if
this disjunctive form is empty then the mass m(A ∩ C ∩ D) is transferred to the non-empty
total ignorance; but if even the total ignorance is empty (a completely degenerate void case) all
conflicting mass is transferred onto the empty set (which means that the problem is truly void),
or (if we prefer to adopt an optimistic point of view) all conflicting mass is transferred onto
a new unknown extra and closure element θ0 representing all missing hypotheses of the frame Θ.

The disjunctive form is defined10 as [18]:





u(X) = X ifX is a singleton

u(X ∪ Y ) = u(X) ∪ u(Y )

u(X ∩ Y ) = u(X) ∪ u(Y )

(1.25)

1.9.2 The PCR3 formula

• For the combination of two bba’s, the PCR3 formula is given by: ∀(X 6= ∅) ∈ GΘ,

10These relationships can be generalized for any number of sets.
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mPCR3(X) = [
∑

X1,X2∈GΘ

X1∩X2=X

m1(X1)m2(X2)]

+ [c12(X) ·
∑

Y ∈GΘ

Y ∩X=∅

m1(Y )m2(X) +m1(X)m2(Y )

c12(X) + c12(Y )
]

+ [
∑

X1,X2∈(GΘ\{X})∩∅

X1∩X2=∅
u(X1)∪u(X2)=X

[m1(X1)m2(X2) +m1(X2)m2(X1)]]

+ [φΘ(X)
∑

X1,X2∈(GΘ\{X})∩∅

X1∩X2=∅
u(X1)=u(X2)=∅

[m1(X1)m2(X2) +m1(X2)m2(X1)]] (1.26)

where all sets are in canonical form, c12(Xi) (Xi ∈ GΘ) is the non-zero sum of the mass
matrix column corresponding to the set Xi, i.e. c12(Xi) = m1(Xi) + m2(Xi) 6= 0, and
where φΘ(.) is the characteristic function of the total ignorance (assuming | Θ |= n)
defined by {

φΘ(X) = 1 ifX = θ1 ∪ θ2 ∪ . . . ∪ θn (total ignorance)

φΘ(X) = 0 otherwise
(1.27)

• For the fusion of s ≥ 2 bba’s, one extends the above procedure to formulas (1.25) and
(1.26) to more general ones. One then gets the following PCR3 general formula. Let
GΘ = {X1, . . . ,Xn} 6= ∅ (GΘ being either the power-set or hyper-power set depending on
the model we want to deal with), n ≥ 2, ∀X 6= ∅, X ∈ GΘ, one has:

mPCR3(X) = m12...s(X)

+ c12...s(X) ·
s−1∑

k=1

SPCR3
1 (X, k) +

s∑

k=1

SPCR3
2 (X, k)

+ φΘ(X)
s∑

k=1

SPCR3
3 (X, k) (1.28)

For convenience, the following notation is used

m12...s(X) =
∑

X1,...,Xs∈GΘ

X1∩...∩Xs=X

s∏

k=1

mk(Xk)

m12...s(
k⋂

j=1

Xij ) = m12...s(Xi1 ∩ . . . ∩Xik)

SPCR3
1 (X, k) ,

∑

Xi1
,...,Xik

∈GΘ\{X}
{i1,...,ik}∈Pk({1,2,...,n})

X∩Xi1
∩...∩Xik

=∅

Ri1,...,ikk (X)
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with

Ri1,...,ikk (X) ,
m12...s(X ∩Xi1 ∩ . . . ∩Xik)

c12...s(X) +
∑k

j=1 c12...s(Xij )

and

SPCR3
2 (X, k) ,

∑

Xi1
,...,Xik

∈(GΘ\{X})∩∅

{i1,...,ik}∈Pk({1,2,...,n})
Xi1

∩...∩Xik
=∅

u(Xi1
)∪...∪u(Xik

)=X

m12...s(
k⋂

j=1

Xij )

SPCR3
3 (X, k) ,

∑

Xi1
,...,Xik

∈(GΘ\{X})∩∅

{i1,...,ik}∈Pk({1,2,...,n})
Xi1

∩...∩Xik
=∅

u(Xi1
)=...=u(Xik

)=∅

m12...s(
k⋂

j=1

Xij )

where ∅ is the set of elements (if any) which have been forced to be empty by the integrity
constraints of the model of the problem (in case of dynamic fusion) and (Pk({1, 2, . . . , n})
is the set of all subsets ok k elements from {1, 2, . . . , n} (permutations of n elements taken
by k), the order of elements doesn’t count.

The sum
∑s

k=1 S
PCR3
2 (X, k) in (1.28) is for cases when Xi1 ,. . . , Xik become empty in

dynamic fusion; their intersection mass is transferred to their disjunctive form: u(Xi1) ∪
. . . ∪ u(Xik) 6= ∅.

The sum
∑s

k=1 S
PCR3
3 (X, k) in (1.28) is for degenerate cases, i.e. when Xi1 ,. . . , Xik

and their disjunctive form become empty in dynamic fusion; their intersection mass is
transferred to the total ignorance.

PCR3 preserves the neutral impact of the VBA and works for any cases/models.

1.9.3 Example for PCR3

Let’s have the frame of discernment Θ = {A,B,C}, Shafer’s model (i.e. all intersections empty),
and the 2 following Bayesian bba’s

m1(A) = 0.6 m1(B) = 0.3 m1(C) = 0.1

m2(A) = 0.4 m2(B) = 0.4 m2(C) = 0.2

The sums of columns of the mass matrix are

c12(A) = 1.0 c12(B) = 0.7 c12(C) = 0.3

Then the conjunctive consensus yields

m12(A) = 0.24 m12(B) = 0.12 m12(C) = 0.02
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with the total conflict k12 = m12(A∩B)+m12(A∩C)+m12(B∩C) = 0.36+0.16+0.10 = 0.62,
which is a sum of factors.

Applying the PCR3 rule yields for this very simple (Bayesian) case:

mPCR3|12(A) = m12(A) + c12(A) · m1(B)m2(A) +m1(A)m2(B)

c12(A) + c12(B)

+ c12(A) · m1(C)m2(A) +m1(A)m2(C)

c12(A) + c12(C)

= 0.24 + 1 · 0.3 · 0.4 + 0.6 · 0.4
1 + 0.7

+ 1 · 0.1 · 0.4 + 0.6 · 0.2
1 + 0.3

= 0.574842

mPCR3|12(B) = m12(B) + c12(B) · m1(A)m2(B) +m1(B)m2(A)

c12(B) + c12(A)

+ c12(B) · m1(C)m2(B) +m1(B)m2(C)

c12(B) + c12(C)

= 0.12 + 0.7 · 0.6 · 0.4 + 0.3 · 0.4
0.7 + 1

+ 0.7 · 0.1 · 0.4 + 0.3 · 0.2
0.7 + 0.3

= 0.338235

mPCR3|12(C) = m12(C) + c12(C) · m1(C)m2(A) +m1(A)m2(C)

c12(C) + c12(A)

+ c12(C) · m1(C)m2(B) +m1(B)m2(C)

c12(C) + c12(B)

= 0.02 + 0.3 · 0.1 · 0.4 + 0.6 · 0.2
0.3 + 1

+ 0.3 · 0.1 · 0.4 + 0.2 · 0.3
0.3 + 0.7

= 0.086923

Note that in this simple case, the two last sums involved in formula (1.26) are equal to
zero because here there doesn’t exist positive mass products m1(X1)m2(X2) to compute for
any X ∈ 2Θ, X1,X2 ∈ 2Θ \ {X} such that X1 ∩X2 = ∅ and u(X1) ∪ u(X2) = X, neither for
X1 ∩X2 = ∅ and u(X1) = u(X2) = ∅.

In this example, PCR3 provides a result different from PCR1 and PCR2 (PCR2 provides
same result as PCR1) since

mPCR1(A) = 0.24 +
1

1 + 0.7 + 0.3
· 0.62 = 0.550

mPCR1(B) = 0.12 +
0.7

1 + 0.7 + 0.3
· 0.62 = 0.337

mPCR1(C) = 0.02 +
0.3

1 + 0.7 + 0.3
· 0.62 = 0.113

1.9.4 Example of neutral impact of VBA for PCR3

Let’s keep the previous example and introduce now a third but totally ignorant source mv(.)
and examine the result of the combination of the 3 sources with PCR3. Θ denotes here for
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notation convenience A ∪B ∪ C. So, Let’s start with

m1(A) = 0.6 m1(B) = 0.3 m1(C) = 0.1

m2(A) = 0.4 m2(B) = 0.4 m2(C) = 0.2

mv(A) = 0.0 mv(B) = 0.0 mv(C) = 0.0 mv(Θ) = 1

The sums of columns of the mass matrix are

c12v(A) = 1, c12v(B) = 0.7, c12v(C) = 0.3, c12v(Θ) = 1

The conjunctive consensus yields

m12v(A) = 0.24 m12v(B) = 0.12 m12v(C) = 0.02

with the total conflict k12v = m12v(A∩B)+m12v(A∩C)+m12v(B∩C) = 0.36+0.16+0.10 = 0.62,
which is a sum of factors. We get naturally m12v(.) = m12(.) because the vacuous belief assign-
ment mv(.) has no impact on the conjunctive consensus.

Applying the PCR3 rule yields for this case

mPCR3|12v(A) =m12v(A)

+ c12v(A) · [m1(B)m2(A)mv(Θ)

c12v(A) + c12v(B)
+
m1(A)m2(B)mv(Θ)

c12v(A) + c12v(B)
]

+ c12v(A) · [m1(C)m2(A)mv(Θ)

c12v(A) + c12v(C)
+
m1(A)m2(C)mv(Θ)

c12v(A) + c12v(C)
]

=0.24 + 1 · 0.3 · 0.4 · 1 + 0.6 · 0.4 · 1
1 + 0.7

+ 1 · 0.1 · 0.4 · 1 + 0.6 · 0.2 · 1
1 + 0.3

=0.574842 = mPCR3|12(A)

Similarly, one obtains

mPCR3|12v(B) =0.12 + 0.7 · 0.6 · 0.4 · 1 + 0.3 · 0.4 · 1
0.7 + 1

+ 0.7 · 0.1 · 0.4 · 1 + 0.3 · 0.2 · 1
0.7 + 0.3

=0.338235 = mPCR3|12(B)

mPCR3|12v(C) =0.02 + 0.3 · 0.1 · 0.4 · 1 + 0.6 · 0.2 · 1
0.3 + 1

+ 0.3 · 0.1 · 0.4 · 1 + 0.2 · 0.3 · 1
0.3 + 0.7

=0.086923 = mPCR3|12(C)

In this example one sees that the neutrality property of VBA is effectively well satisfied by
PCR3 rule since

mPCR3|12v(.) = mPCR3|12(.)

A general proof for neutrality of VBA within PCR3 is given in section 1.11.1.
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1.10 The PCR4 rule

1.10.1 Principle of PCR4

PCR4 redistributes the partial conflicting mass to the elements involved in the partial conflict,
considering the canonical form of the partial conflict. PCR4 is an improvement of previous PCR
rules but also of Milan Daniel’s minC operator [18]. Daniel uses the proportionalization with
respect to the results of the conjunctive rule, but not with respect to the masses assigned to each
set by the sources of information as done in PCR1-3 and also as in the most effective PCR5 rule
explained in the next section. Actually, PCR4 also uses the proportionalization with respect
to the results of the conjunctive rule, but with PCR4 the conflicting mass m12(A ∩ B) when
A ∩ B = ∅ is distributed to A and B only because only A and B were involved in the conflict
(A ∪ B was not involved in the conflict since m12(A ∩ B) = m1(A)m2(B) + m2(A)m1(B)),
while minC redistributes m12(A ∩B) to A, B, and A ∪B in both of its versions a) and b) (see
section 5 and [18] for details). Also, for the mixed elements such as C ∩ (A ∪B) = ∅, the mass
m(C ∩ (A∪B)) is redistributed to C, A∪B, A∪B ∪C in minC version a), and worse in minC
version b) to A, B, C, A∪B, A∪C, B∪C and A∪B∪C (see example in section 5). PCR4 rule
improves this and redistributes the mass m(C ∩ (A∪B)) to C and A∪B only, since only them
were involved in the conflict: i.e. m12(C ∩ (A ∪ B)) = m1(C)m2(A ∪ B) + m2(C)m1(A ∪ B),
clearly the other elements A, B, A∪B∪C that get some mass in minC were not involved in the
conflict C ∩ (A ∪ B). If at least one conjunctive rule result is null, then the partial conflicting
mass which involved this set is redistributed proportionally to the column sums corresponding
to each set. Thus PCR4 does a more exact redistribution than both minC versions (versions
a) and b)) explained in section 5. The PCR4 rule partially extends Dempster’s rule in the
sense that instead of redistributing the total conflicting mass as within Dempster’s rule, PCR4
redistributes partial conflicting masses, hence PCR4 does a better refined redistribution than
Dempster’s rule; PCR4 and Dempster’s rule coincide for Θ = {A,B}, in Shafer’s model, with
s ≥ 2 sources, and such that m12...s(A) > 0, m12...s(B) > 0, and m12...s(A ∪ B) = 0. Thus
according to authors opinion, PCR4 rule redistributes better than Dempster’s rule since in
PCR one goes on partial conflicting, while Dempster’s rule redistributes the conflicting mass to
all non-empty sets whose conjunctive mass is nonzero, even those not involved in the conflict.

1.10.2 The PCR4 formula

The PCR4 formula for s = 2 sources: ∀X ∈ GΘ \ {∅}

mPCR4(X) = m12(X) · [1 +
∑

Y ∈GΘ

Y ∩X=∅

m12(X ∩ Y )

m12(X) +m12(Y )
] (1.29)

with m12(X) and m12(Y ) nonzero. m12(.) corresponds to the conjunctive consensus, i.e.

m12(X) ,
∑

X1,X2∈GΘ

X1∩X2=X

m1(X1)m2(X2) .

If at least one of m12(X) or m12(Y ) is zero, the fraction is discarded and the mass m12(X ∩ Y )
is transferred to X and Y proportionally with respect to their non-zero column sum of masses;
if both their column sums of masses are zero, then one transfers to the partial ignorance X ∪Y ;
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if even this partial ignorance is empty then one transfers to the total ignorance.

Let G = {X1, . . . ,Xn} 6= ∅ (GΘ being either the power-set or hyper-power set depending on
the model we want to deal with), n ≥ 2, ∀X 6= ∅, X ∈ GΘ, the general PCR4 formula for s ≥ 2
sources is given by ∀X ∈ GΘ \ {∅}

mPCR4(X) = m12...s(X) · [1 +

s−1∑

k=1

SPCR4(X, k)] (1.30)

with

SPCR4(X, k) ,
∑

Xi1
,...,Xik

∈GΘ\{X}
{i1,...,ik}∈Pk({1,2,...,n})

X∩Xi1
∩...∩Xik

=∅

m12...s(X ∩Xi1 ∩ . . . ∩Xik)

m12...s(X) +
∑k

j=1m12...s(Xij )
(1.31)

with all m12...s(X), m12...s(X1), . . . , m12...s(Xn) nonzero and where the first term of the right
side of (1.30) corresponds to the conjunctive consensus between s sources (i.e. m12...s(.)). If at
least one of m12...s(X), m12...s(X1), . . . , m12...s(Xn) is zero, the fraction is discarded and the
mass m12...s(X∩X1∩X2∩ . . .∩Xk) is transferred to X, X1, . . . , Xk proportionally with respect
to their corresponding column sums in the mass matrix.

1.10.3 Example for PCR4 versus minC

Let’s consider Θ = {A,B}, Shafer’s model and the the two following bba’s:

m1(A) = 0.6 m1(B) = 0.3 m1(A ∪B) = 0.1

m2(A) = 0.2 m2(B) = 0.3 m2(A ∪B) = 0.5

Then the conjunctive consensus yields :

m12(A) = 0.44 m12(B) = 0.27 m12(A ∪B) = 0.05

with the conflicting mass

k12 = m12(A ∩B) = m1(A)m2(B) +m1(B)m2(A) = 0.24

Applying PCR4 rule, one has the following proportional redistribution11 to satisfy

x

0.44
=

y

0.27
=

0.24

0.44 + 0.27
≈ 0.3380

from which, one deduces x = 0.1487 and y = 0.0913 and thus

mPCR4(A) = 0.44 + 0.1487 = 0.5887

mPCR4(B) = 0.27 + 0.0913 = 0.3613

mPCR4(A ∪B) = 0.05

11x is the part of conflict redistributed to A, y is the part of conflict redistributed to B.
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while applying minC (version a) and b)) are equivalent in this 2D case), one uses the following
proportional redistribution12

x

0.44
=

y

0.27
=

z

0.05
=

0.24

0.44 + 0.27 + 0.05
≈ 0.31578

Whence x = 0.44 · (0.24/0.76) ≈ 0.138947, y = 0.27 · (0.24/0.76) ≈ 0.085263, z = 0.05 ·
(0.24/0.76) ≈ 0.015789, so that

mminC(A) ≈ 0.44 + 0.138947 = 0.578948

mminC(B) ≈ 0.27 + 0.085263 = 0.355263

mminC(A ∪B) ≈ 0.05 + 0.015789 = 0.065789

Therefore, one sees clearly the difference between PCR4 and minC rules. It can be noted
here that minC gives the same result as Dempster’s rule, but the result drawn from minC and
Dempster’s rules is less exact in comparison to PCR4 because minC and Dempster’s rules re-
distribute a fraction of the conflicting mass to A∪B too, although A∪B is not involved in any
conflict (therefore A ∪B doesn’t deserve anything).

We can remark also that in the 2D Bayesian case, the PCR4, minC, and Dempster’s rules
give the same results. For example, let’s take Θ = {A,B}, Shafer’s model and the two following
bba’s

m1(A) = 0.6 m1(B) = 0.4

m2(A) = 0.1 m2(B) = 0.9

The conjunctive consensus yields m12(A) = 0.06, m12(B) = 0.36 with the conflicting mass

k12 = m12(A ∩B) = m1(A)m2(B) +m1(B)m2(A) = 0.58

PCR4, MinC and Dempster’s rules provide

mPCR4(A) = mminC(A) = mDS(A) = 0.142857

mPCR4(B) = mminC(B) = mDS(B) = 0.857143

1.10.4 Example of neutral impact of VBA for PCR4

Let’s consider the previous example with Θ = {A,B}, Shafer’s model and the the two following
bba’s:

m1(A) = 0.6 m1(B) = 0.3 m1(A ∪B) = 0.1

m2(A) = 0.2 m2(B) = 0.3 m2(A ∪B) = 0.5

Then the conjunctive consensus yields :

m12(A) = 0.44 m12(B) = 0.27 m12(A ∪B) = 0.05

with the conflicting mass

k12 = m12(A ∩B) = m1(A)m2(B) +m1(B)m2(A) = 0.24

12z is the part of conflict redistributed to A ∪B.
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The canonical form c(A ∩ B) = A ∩ B, thus k12 = m12(A ∩ B) = 0.24 will be distributed
to A and B only proportionally with respect to their corresponding m12(.), i.e. with respect to
0.44 and 0.27 respectively. One gets:

mPCR4|12(A) = 0.5887 mPCR4|12(B) = 0.3613 mPCR4|12(A ∪B) = 0.05

Now let’s introduce a third and vacuous belief assignment mv(A∪B) = 1 and combine altogether
m1(.), m2(.) and mv(.) with the conjunctive consensus. One gets

m12v(A) = 0.44 m12v(B) = 0.27 m12v(A ∪B) = 0.05 m12v(A ∩B ∩ (A ∪B)) = 0.24

Since the canonical form c(A ∩ B ∩ (A ∪ B)) = A ∩ B, m12v(A ∩ B ∩ (A ∪ B)) = 0.24 will be
distributed to A and B only proportionally with respect to their corresponding m12v(.), i.e.
with respect to 0.44 and 0.27 respectively, therefore exactly as above. Thus

mPCR4|12v(A) = 0.5887 mPCR4|12v(B) = 0.3613 mPCR4|12v(A ∪B) = 0.05

In this example one sees that the neutrality property of VBA is effectively well satisfied by
PCR4 rule since

mPCR4|12v(.) = mPCR4|12(.)

A general proof for neutrality of VBA within PCR4 is given in section 1.11.1.

1.10.5 A more complex example for PCR4

Let’s consider now a more complex example involving some null masses (i.e. m12(A) = m12(B) =
0 ) in the conjunctive consensus between sources. So, let’s consider Θ = {A,B,C,D}, Shafer’s
model and the two following belief assignments:

m1(A) = 0 m1(B) = 0.4 m1(C) = 0.5 m1(D) = 0.1

m2(A) = 0.6 m2(B) = 0 m2(C) = 0.1 m2(D) = 0.3

The conjunctive consensus yields here m12(A) = m12(B) = 0, m12(C) = 0.05, m12(D) = 0.03
with the total conflicting mass

k12 = m12(A ∩B) +m12(A ∩ C) +m12(A ∩D)

+m12(B ∩ C) +m12(B ∩D) +m12(C ∩D)

= 0.24 + 0.30 + 0.06 + 0.04 + 0.12 + 0.16 = 0.92

Because m12(A) = m12(B) = 0, the denominator m12(A) + m12(B) = 0 and the transfer
onto A and B should be done proportionally to m2(A) and m1(B), thus:

x

0.6
=

y

0.4
=

0.24

0.6 + 0.4
= 0.24

whence x = 0.144, y = 0.096.

m12(A ∩ C) = 0.30 is transferred to A and C:

x

0.6
=

z

0.5 + 0.1
=

0.30

1.2
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whence x = z = 0.6 · (0.30/1.2) = 0.15.

m12(A ∩D) = 0.06 is transferred to A and D:

x

0.6
=

w

0.3 + 0.1
=

0.06

1

whence x = 0.6 · (0.06) = 0.036 and w = 0.4 · (0.06) = 0.024.

m12(B ∩ C) = 0.04 is transferred to B and C:

y

0.4
=

z

0.6
=

0.04

1

whence y = 0.4 · (0.04) = 0.016 and z = 0.6 · (0.04) = 0.024.

m12(B ∩D) = 0.12 is transferred to B and D:

y

0.4
=

w

0.4
=

0.12

0.8
= 0.15

whence y = 0.4 · (0.15) = 0.06 and w = 0.4 · (0.15) = 0.06.

The partial conflict m12(C ∩ D) = 0.16 is proportionally redistributed to C and D only
according to

z

0.05
=

w

0.03
=

0.16

0.05 + 0.03
= 2

whence z = 0.10 and w = 0.06. Summing all redistributed partial conflicts, one finally gets:

mPCR4(A) = 0 + 0.144 + 0.150 + 0.036 = 0.330

mPCR4(B) = 0 + 0.096 + 0.016 + 0.016 = 0.172

mPCR4(C) = 0.05 + 0.15 + 0.024 + 0.10 = 0.324

mPCR4(D) = 0.03 + 0.024 + 0.06 + 0.06 = 0.174

while minC provides13

mminC(A) = mminC(B) = mminC(A ∪B) = 0.08

mminC(C) = 0.490 mminC(D) = 0.270

The distinction between PCR4 and minC here is that minC transfers equally the 1/3 of con-
flicting mass m12(A ∩ B) = 0.24 onto A, B and A ∪ B, while PCR4 redistributes it to A and
B proportionally to their masses m2(A) and m1(B). Upon to authors opinions, the minC re-
distribution appears less exact than PCR4 since A ∪B is not involved into the partial conflict
A ∩B and we don’t see a reasonable justification on minC transfer onto A ∪B in this case.

13It can be proven that versions a) and b) of minC provide here same result because in this specific example
m12(A) = m12(B) = m12(A ∪B) = 0.
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1.11 The PCR5 rule

1.11.1 Principle of PCR5

Similarly to PCR2-4, PCR5 redistributes the partial conflicting mass to the elements involved
in the partial conflict, considering the canonical form of the partial conflict. PCR5 is the most
mathematically exact redistribution of conflicting mass to non-empty sets following the logic of
the conjunctive rule. But this is harder to implement. PCR5 satisfies the neutrality property of
VBA also. In order to understand the principle of PCR5, let’s start with examples going from
the easiest to the more complex one.

Proof of neutrality of VBA for PCR2-PCR5: PCR2, PCR3, PCR4 and PCR5 rules preserve the
neutral impact of the VBA because in any partial conflict, as well in the total conflict which is a
sum of all partial conflicts, the canonical form of each partial conflict does not include Θ since Θ
is a neutral element for intersection (conflict), therefore Θ gets no mass after the redistribution
of the conflicting mass. This general proof for neutrality of VBA works in dynamic or static
cases for all PCR2-5, since the total ignorance, say It, can not escape the conjunctive normal
form, i.e. the canonical form of It ∩A is A, where A is any set included in DΘ.

1.11.1.1 A two sources example 1 for PCR5

Suppose one has the frame of discernment Θ = {A,B} of exclusive elements, and 2 sources of
evidences providing the following bba’s

m1(A) = 0.6 m1(B) = 0 m1(A ∪B) = 0.4

m2(A) = 0 m2(B) = 0.3 m2(A ∪B) = 0.7

Then the conjunctive consensus yields :

m12(A) = 0.42 m12(B) = 0.12 m12(A ∪B) = 0.28

with the conflicting mass

k12 = m12(A ∩B) = m1(A)m2(B) +m1(B)m2(A) = 0.18

Therefore A and B are involved in the conflict (A ∪ B is not involved), hence only A and B
deserve a part of the conflicting mass, A∪B does not deserve. With PCR5, one redistributes the
conflicting mass 0.18 to A and B proportionally with the masses m1(A) and m2(B) assigned
to A and B respectively. Let x be the conflicting mass to be redistributed to A, and y the
conflicting mass redistributed to B, then

x

0.6
=

y

0.3
=

x+ y

0.6 + 0.3
=

0.18

0.9
= 0.2

whence x = 0.6 · 0.2 = 0.12, y = 0.3 · 0.2 = 0.06. Thus:

mPCR5(A) = 0.42 + 0.12 = 0.54

mPCR5(B) = 0.12 + 0.06 = 0.18

mPCR5(A ∪B) = 0.28
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This result is equal to that of PCR3 and even PCR2, but different from PCR1 and PCR4 in
this specific example. PCR1 and PCR4 yield:

mPCR1(A) = 0.42 +
0.6 + 0

2
· 0.18 = 0.474

mPCR1(B) = 0.12 +
0 + 0.3

2
· 0.18 = 0.147

mPCR1(A ∪B) = 0.28 +
0.4 + 0.7

2
· 0.18 = 0.379

mPCR4(A) = 0.42 + 0.42 · 0.18

0.42 + 0.12
= 0.56

mPCR4(B) = 0.12 + 0.12 · 0.18

0.12 + 0.42
= 0.16

mPCR4(A ∪B) = 0.28

In summary, here are the results obtained from Dempster’s rule (DS), (DSmH), (PCR1),
(PCR4) and (PCR5):

A B A ∪B
mDS 0.512 0.146 0.342
mDSmH 0.420 0.120 0.460
mPCR1 0.474 0.147 0.379
mPCR4 0.560 0.160 0.280
mPCR5 0.540 0.180 0.280

1.11.1.2 A two sources example 2 for PCR5

Now let’s modify a little the previous example and consider now:

m1(A) = 0.6 m1(B) = 0 m1(A ∪B) = 0.4

m2(A) = 0.2 m2(B) = 0.3 m2(A ∪B) = 0.5

Then the conjunctive consensus yields :

m12(A) = 0.50 m12(B) = 0.12 m12(A ∪B) = 0.20

with the conflicting mass

k12 = m12(A ∩B) = m1(A)m2(B) +m1(B)m2(A) = 0.18

The conflict k12 is the same as in previous example, which means that m2(A) = 0.2 did not
have any impact on the conflict; why?, because m1(B) = 0. Therefore A and B are involved
in the conflict (A ∪ B is not involved), hence only A and B deserve a part of the conflicting
mass, A∪B does not deserve. With PCR5, one redistributes the conflicting mass 0.18 to A and
B proportionally with the masses m1(A) and m2(B) assigned to A and B respectively. The
mass m2(A) = 0.2 is not considered to the weighting factors of the redistribution. Let x be the
conflicting mass to be redistributed to A, and y the conflicting mass redistributed to B. By the
same calculations one has:

x

0.6
=

y

0.3
=

x+ y

0.6 + 0.3
=

0.18

0.9
= 0.2
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whence x = 0.6 · 0.2 = 0.12, y = 0.3 · 0.2 = 0.06. Thus, one gets now:

mPCR5(A) = 0.50 + 0.12 = 0.62

mPCR5(B) = 0.12 + 0.06 = 0.18

mPCR5(A ∪B) = 0.20 + 0 = 0.20

We did not take into consideration the sum of masses of column A, i.e. m1(A) + m2(A) =
0.6 + 0.2 = 0.8, since clearly m2(A) = 0.2 has no impact on the conflicting mass.

In this second example, the result obtained by PCR5 is different from WAO, PCR1, PCR2,
PCR3 and PCR4 because

mWAO(A) = 0.50 +
0.6 + 0.2

2
· 0.18 = 0.572

mWAO(B) = 0.12 +
0 + 0.3

2
· 0.18 = 0.147

mWAO(A ∪B) = 0.20 +
0.4 + 0.5

2
· 0.18 = 0.281

mPCR1(A) = 0.50 +
0.6 + 0.2

0.8 + 0.3 + 0.9
· 0.18 = 0.572

mPCR1(B) = 0.12 +
0 + 0.3

0.8 + 0.3 + 0.9
· 0.18 = 0.147

mPCR1(A ∪B) = 0.20 +
0.4 + 0.5

0.8 + 0.3 + 0.9
· 0.18 = 0.281

mPCR2(A) = 0.50 +
0.6 + 0.2

0.8 + 0.3
· 0.18 ≈ 0.631

mPCR2(B) = 0.12 +
0 + 0.3

0.8 + 0.3
· 0.18 ≈ 0.169

mPCR2(A ∪B) = 0.20

mPCR3(A) = 0.50 + 0.8 · [0.6 · 0.3 + 0.2 · 0
0.8 + 0.3

] ≈ 0.631

mPCR3(B) = 0.12 + 0.3 · [0.6 · 0.3 + 0.2 · 0
0.8 + 0.3

] ≈ 0.169

mPCR3(A ∪B) = 0.20

mPCR4(A) = 0.50 + 0.50 · 0.18

0.50 + 0.12
≈ 0.645

mPCR4(B) = 0.12 + 0.12 · 0.18

0.50 + 0.12
≈ 0.155

mPCR4(A ∪B) = 0.20

The results obtained with Dempster’s rule (DS) and DSm Hybrid rule are:
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mDS(A) = 0.610

mDS(B) = 0.146

mDS(A ∪B) = 0.244

mDSmH(A) = 0.500

mDSmH(B) = 0.120

mDSmH(A ∪B) = 0.380

Let’s examine from this example the convergence of the PCR5 result by introducing a small
positive increment on m1(B), i.e. one starts now with the PCR5 combination of the following
bba’s

m1(A) = 0.6 m1(B) = ε m1(A ∪B) = 0.4 − ε
m2(A) = 0.2 m2(B) = 0.3 m2(A ∪B) = 0.5

Then the conjunctive consensus yields: m12(A) = 0.50 − 0.2 · ε, m12(B) = 0.12 + 0.5 · ε,
m12(A ∪B) = 0.20 − 0.5 · ε with the conflicting mass

k12 = m12(A ∩B) = m1(A)m2(B) +m1(B)m2(A) = 0.18 + 0.2 · ε

Applying the PCR5 rule for ε = 0.1, ε = 0.01,ε = 0.001 and ε = 0.0001 one gets the following
result:

ε mPCR5(A) mPCR5(B) mPCR5(A ∪B)

0.1 0.613333 0.236667 0.15
0.01 0.619905 0.185095 0.195
0.001 0.619999 0.180501 0.1995
0.0001 0.62 0.180050 0.19995

Table 1.8: Convergence of PCR5

From Table 1.8, one can see that when ε tend towards zero, the results tends towards the
previous result mPCR5(A) = 0.62, mPCR5(B) = 0.18 and mPCR5(A ∪B) = 0.20. Let’s explain
now in details how this limit can be achieved formally. With PCR5, one redistributes the partial
conflicting mass 0.18 to A and B proportionally with the masses m1(A) and m2(B) assigned to
A and B respectively, and also the partial conflicting mass 0.2 ·ε to A and B proportionally with
the masses m2(A) and m1(B) assigned to A and B respectively, thus one gets now two weighting
factors in the redistribution for each corresponding set A and B. Let x1 be the conflicting mass
to be redistributed to A, and y1 the conflicting mass redistributed to B from the first partial
conflicting mass 0.18. This first partial proportional redistribution is then done according

x1

0.6
=

y1

0.3
=

x1 + y1

0.6 + 0.3
=

0.18

0.9
= 0.2
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whence x1 = 0.6 · 0.2 = 0.12, y1 = 0.3 · 0.2 = 0.06. Now let x2 be the conflicting mass to
be redistributed to A, and y2 the conflicting mass redistributed to B from the second partial
conflicting mass 0.2 · ε. This first partial proportional redistribution is then done according

x2

0.2
=
y2

ε
=
x2 + y2

0.2 + ε
=

0.2 · ε
0.2 + ε

whence x2 = 0.2 · 0.2·ε
0.2+ε , y2 = ε 0.2·ε

0.2+ε . Thus one gets the following result

mPCR5(A) = m12(A) + x1 + x2 = (0.50 − 0.2 · ε) + 0.12 + 0.2 · 0.2 · ε
0.2 + ε

mPCR5(B) = m12(B) + y1 + y2 = (0.12 + 0.5 · ε) + 0.06 + ε
0.2 · ε
0.2 + ε

mPCR5(A ∪B) = m12(A ∪B) = 0.20 − 0.5ε

From these formal expressions of mPCR5(.), one sees directly that

lim
ε→0

mPCR5(A) = 0.62 lim
ε→0

mPCR5(B) = 0.18 lim
ε→0

mPCR5(A ∪B) = 0.20

1.11.1.3 A two sources example 3 for PCR5

Let’s go further modifying this time the previous example and considering:

m1(A) = 0.6 m1(B) = 0.3 m1(A ∪B) = 0.1

m2(A) = 0.2 m2(B) = 0.3 m2(A ∪B) = 0.5

Then the conjunctive consensus yields :

m12(A) = 0.44 m12(B) = 0.27 m12(A ∪B) = 0.05

with the conflicting mass

k12 = m12(A ∩B) = m1(A)m2(B) +m1(B)m2(A) = 0.18 + 0.06 = 0.24

The conflict k12 is now different from the two previous examples, which means that m2(A) = 0.2
and m1(B) = 0.3 did make an impact on the conflict; why?, because m2(A)m1(B) = 0.2 · 0.3 =
0.06 was added to the conflicting mass. Therefore A and B are involved in the conflict (A∪B is
not involved), hence only A and B deserve a part of the conflicting mass, A∪B does not deserve.
With PCR5, one redistributes the partial conflicting mass 0.18 to A and B proportionally with
the masses m1(A) and m2(B) assigned to A and B respectively, and also the partial conflicting
mass 0.06 to A and B proportionally with the masses m2(A) and m1(B) assigned to A and B
respectively, thus one gets two weighting factors of the redistribution for each corresponding
set A and B respectively. Let x1 be the conflicting mass to be redistributed to A, and y1 the
conflicting mass redistributed to B from the first partial conflicting mass 0.18. This first partial
proportional redistribution is then done according

x1

0.6
=

y1

0.3
=

x1 + y1

0.6 + 0.3
=

0.18

0.9
= 0.2
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whence x1 = 0.6 · 0.2 = 0.12, y1 = 0.3 · 0.2 = 0.06. Now let x2 be the conflicting mass to
be redistributed to A, and y2 the conflicting mass redistributed to B from second the partial
conflicting mass 0.06. This second partial proportional redistribution is then done according

x2

0.2
=

y2

0.3
=

x2 + y2

0.2 + 0.3
=

0.06

0.5
= 0.12

whence x2 = 0.2 · 0.12 = 0.024, y2 = 0.3 · 0.12 = 0.036. Thus:

mPCR5(A) = 0.44 + 0.12 + 0.024 = 0.584

mPCR5(B) = 0.27 + 0.06 + 0.036 = 0.366

mPCR5(A ∪B) = 0.05 + 0 = 0.05

The result is different from PCR1, PCR2, PCR3 and PCR4 since one has14:

mPCR1(A) = 0.536

mPCR1(B) = 0.342

mPCR1(A ∪B) = 0.122

mPCR2(A) = mPCR3(A) ≈ 0.577

mPCR2(B) = mPCR3(B) ≈ 0.373

mPCR2(A ∪B) = mPCR3(A ∪B) = 0.05

mPCR4(A) ≈ 0.589

mPCR4(B) ≈ 0.361

mPCR4(A ∪B) = 0.05

Dempster’s rule (DS) and DSm Hybrid rule (DSmH), give for this example:

mDS(A) =
0.44

1− 0.24
≈ 0.579 mDS(B) =

0.27

1− 0.24
≈ 0.355 mDS(A ∪B) =

0.05

1− 0.24
≈ 0.066

mDSmH(A) = 0.440 mDSmH(B) = 0.270 mDSmH(A ∪B) = 0.290

One clearly sees that mDS(A∪B) gets some mass from the conflicting mass although A∪B
does not deserve any part of the conflicting mass since A∪B is not involved in the conflict (only
A and B are involved in the conflicting mass). Dempster’s rule appears to authors opinions
less exact than PCR5 and Inagaki’s rules [10] because it redistribute less exactly the conflicting
mass than PCR5, even than PCR4 and minC, since Dempter’s rule takes the total conflicting
mass and redistributes it to all non-empty sets, even those not involved in the conflict. It can
be shown [9] that Inagaki’s fusion rule [10] (with an optimal choice of tuning parameters) can
become in some cases very close to (PCR5) but upon our opinion (PCR5) result is more exact
(at least less ad-hoc than Inagaki’s one).

14The verification is left to the reader.
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1.11.2 The PCR5 formula

Before explaining the general procedure to apply for PCR5 (see next section), we give here the
PCR5 formula for s = 2 sources: ∀X ∈ GΘ \ {∅}

mPCR5(X) = m12(X) +
∑

Y ∈GΘ\{X}
X∩Y=∅

[
m1(X)2m2(Y )

m1(X) +m2(Y )
+

m2(X)2m1(Y )

m2(X) +m1(Y )
] (1.32)

where all sets involved in the formula are in canonical form, m12(.) corresponds to the con-
junctive consensus, i.e. m12(X) ,

∑
X1,X2∈GΘ

X1∩X2=X

m1(X1)m2(X2) and where all denominators are

different from zero. If a denominator is zero, that fraction is discarded.

Let G = {X1, . . . ,Xn} 6= ∅ (GΘ being either the power-set or hyper-power set depending on the
model we want to deal with), n ≥ 2, the general PCR5 formula for s ≥ 2 sources is given by
∀X ∈ GΘ \ {∅}

mPCR5(X) = m12...s(X) +
∑

2≤t≤s
1≤r1,...,rt≤s

1≤r1<r2<...<rt−1<(rt=s)

∑

Xj2
,...,Xjt∈GΘ\{X}

{j2,...,jt}∈Pt−1({1,...,n})
X∩Xj2

∩...∩Xjs=∅
{i1,...,is}∈Ps({1,...,s})

(
∏r1
k1=1mik1

(X)2) · [∏t
l=2(

∏rl
kl=rl−1+1mikl

(Xjl)]

(
∏r1
k1=1mik1

(X)) + [
∑t

l=2(
∏rl
kl=rl−1+1mikl

(Xjl)]
(1.33)

where i, j, k, r, s and t in (1.33) are integers. m12...s(X) corresponds to the conjunctive consen-
sus on X between s sources and where all denominators are different from zero. If a denominator
is zero, that fraction is discarded; Pk({1, 2, . . . , n}) is the set of all subsets of k elements from
{1, 2, . . . , n} (permutations of n elements taken by k), the order of elements doesn’t count.

Let’s prove here that (1.33) reduces to (1.32) when s = 2. Indeed, if one takes s = 2 in
general PCR5 formula (1.33), let’s note first that:

• 2 ≤ t ≤ s becomes 2 ≤ t ≤ 2, thus t = 2.

• 1 ≤ r1, r2 ≤ (s = 2), or r1, r2 ∈ {1, 2}, but because r1 < r2 one gets r1 = 1 and r2 = 2.

• m12...s(X) becomes m12(X)

• Xj2 , . . . ,Xjt ∈ GΘ \ {X} becomes Xj2 ∈ GΘ \ {X} because t = 2.

• {j2, . . . , jt} ∈ Pt−1({1, . . . , n}) becomes j2 ∈ P1({1, . . . , n}) = {1, . . . , n}

• the condition X ∩Xj2 ∩ . . . ∩Xjs = ∅ becomes X ∩Xj2 = ∅

• {i1, . . . , is} ∈ Ps({1, . . . , s}) becomes {i1, i2} ∈ P2({1, 2}) = {{1, 2}, {2, 1}}

Thus (1.33) becomes when s = 2,
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mPCR5(X) = m12(X)+

∑

t=2
r1=1,r2=2

∑

Xj2
∈GΘ\{X}

j2∈{1,...,n}
X∩Xj2

=∅
{i1,i2}∈{{1,2},{2,1}}

(
∏1
k1=1mik1

(X)2) · [∏2
l=2(

∏rl
kl=rl−1+1mikl

(Xjl)]

(
∏1
k1=1mik1

(X)) + [
∑2

l=2(
∏rl
kl=rl−1+1mikl

(Xjl)]
(1.34)

After elementary algebraic simplification, it comes

mPCR5(X) = m12(X) +
∑

Xj2
∈GΘ\{X}

j2∈{1,...,n}
X∩Xj2

=∅
{i1,i2}∈{{1,2},{2,1}}

mi1(X)2 · [∏2
k2=2mik2

(Xj2 ]

mi1(X) + [
∏2
k2=2mik2

(Xj2 ]
(1.35)

Since
∏2
k2=2mik2

(Xj2) = mi2(Xj2) and condition ”Xj2 ∈ GΘ \ {X} and j2 ∈ {1, . . . , n}” are

equivalent to Xj2 ∈ GΘ \ {X}, one gets:

mPCR5(X) = m12(X) +
∑

Xj2
∈GΘ\{X}

X∩Xj2
=∅

{i1,i2}∈{{1,2},{2,1}}

mi1(X)2 ·mi2(Xj2)

mi1(X) +mi2(Xj2)
(1.36)

This formula can also be written as (denoting Xj2 as Y )

mPCR5(X) = m12(X) +
∑

Y ∈GΘ\{X}
X∩Y=∅

[
m1(X)2m2(Y )

m1(X) +m2(Y )
+

m2(X)2m1(Y )

m2(X) +m1(Y )
] (1.37)

which is the same as formula (1.32). Thus the proof is completed.

1.11.3 The PCR5 formula for Bayesian beliefs assignments

For Θ = {θ1, θ2, . . . , θn} with Shafer’s model and s = 2 Bayesian equally reliable sources, i.e.
when quantitative bba’s m1(.) and m2(.) reduce to subjective probability measures P1(.) and
P2(.), after elementary algebraic derivations, the (PCR5) formula for combination of two sources
reduces to the following simple formula, PPCR5

12 (∅) = 0 and ∀θi ∈ Θ,

PPCR5
12 (θi) = P1(θi)

n∑

j=1

P1(θi)P2(θj)

P1(θi) + P2(θj)
+ P2(θi)

n∑

j=1

P2(θi)P1(θj)

P2(θi) + P1(θj)

=
∑

s=1,2

Ps(θi)[

n∑

j=1

Ps(θi)Ps′ 6=s(θj)
Ps(θi) + Ps′ 6=s(θj)

] (1.38)

This formula can be extended for s > 2 sources. One can verify moreover that PPCR5
12 (.) defines

a subjective-combined probability measure satisfying all axioms of classical Probability Theory.
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Proof: From (1.36), when replacing general bba m1(.) and m2(.) by probabilistic masses P1(.)
and P2(.) one gets:

P12(xi) = P1(xi)P2(xi) + P1(xi)
∑

j 6=i

P1(xi)P2(xj)

P1(xi) + P2(xj)
+ P2(xi)

∑

j 6=i

P2(xi)P1(xj)

P2(xi) + P1(xj)

By splitting P1(xi)P2(xi) into two equal parts, one gets

P12(xi) =
1

2
P1(xi)P2(xi)+P1(xi)

∑

j 6=i

P1(xi)P2(xj)

P1(xi) + P2(xj)
+

1

2
P1(xi)P2(xi)+P2(xi)

∑

j 6=i

P2(xi)P1(xj)

P2(xi) + P1(xj)

P12(xi) = P1(xi)[
1

2
P2(xi) +

∑

j 6=i

P1(xi)P2(xj)

P1(xi) + P2(xj)
] + P2(xi)[

1

2
P1(xi) +

∑

j 6=i

P2(xi)P1(xj)

P2(xi) + P1(xj)
]

P12(xi) = P1(xi)[
n∑

j=1

P1(xi)P2(xj)

P1(xi) + P2(xj)
− P1(xi)P2(xi)

P1(xi) + P2(xi)
+

1

2
P2(xi)]

+ P2(xi)[

n∑

j=1

P2(xi)P1(xj)

P2(xi) + P1(xj)
− P2(xi)P1(xi)

P2(xi) + P1(xi)
+

1

2
P1(xi)]

P12(xi) = P1(xi)[
n∑

j=1

P1(xi)P2(xj)

P1(xi) + P2(xj)
− 2P1(xi)P2(xi)

2(P1(xi) + P2(xi))
+
P2(xi)(P1(xi) + P2(xi))

2(P1(xi) + P2(xi))
]

+ P2(xi)[

n∑

j=1

P2(xi)P1(xj)

P2(xi) + P1(xj)
− 2P2(xi)P1(xi)

2(P2(xi) + P1(xi))
+
P1(xi)(P2(xi) + P1(xi))

2(P2(xi) + P1(xi))
]

P12(xi) = P1(xi)[
n∑

j=1

P1(xi)P2(xj)

P1(xi) + P2(xj)
] + P1(xi)[

P 2
2 (xi)− P1(xi)P2(xi)

2(P1(xi) + P2(xi))
]

+ P2(xi)[

n∑

j=1

P2(xi)P1(xj)

P2(xi) + P1(xj)
] + P2(xi)[

P 2
1 (xi)− P2(xi)P1(xi)

2(P2(xi) + P1(xi))
]

P12(xi) = P1(xi)[
n∑

j=1

P1(xi)P2(xj)

P1(xi) + P2(xj)
] + P2(xi)[

n∑

j=1

P2(xi)P1(xj)

P2(xi) + P1(xj)
]

+
P1(xi)P

2
2 (xi)− P 2

1 (xi)P2(xi)

2(P1(xi) + P2(xi))
+
P2(xi)P

2
1 (xi)− P 2

2 (xi)P1(xi)

2(P2(xi) + P1(xi))

P12(xi) = P1(xi)[

n∑

j=1

P1(xi)P2(xj)

P1(xi) + P2(xj)
] + P2(xi)[

n∑

j=1

P2(xi)P1(xj)

P2(xi) + P1(xj)
]

+
P1(xi)P

2
2 (xi)− P 2

1 (xi)P2(xi) + P2(xi)P
2
1 (xi)− P 2

2 (xi)P1(xi)

2(P1(xi) + P2(xi))
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P12(xi) = P1(xi)[

n∑

j=1

P1(xi)P2(xj)

P1(xi) + P2(xj)
] + P2(xi)[

n∑

j=1

P2(xi)P1(xj)

P2(xi) + P1(xj)
] +

0

2(P1(xi) + P2(xi))

P12(xi) = P1(xi)[

n∑

j=1

P1(xi)P2(xj)

P1(xi) + P2(xj)
] + P2(xi)[

n∑

j=1

P2(xi)P1(xj)

P2(xi) + P1(xj)
]

which completes the proof. 222

More concisely, the formula (1.38) can be rewritten as:

P12(xi) =
∑

s=1,2

Ps(xi)[

n∑

j=1

Ps(xi)Ps′ 6=s(xj)
Ps(xi) + Ps′ 6=s(xj)

] (1.39)

1.11.4 General procedure to apply the PCR5

Here is the general procedure to apply PCR5:

1. apply the conjunctive rule;

2. calculate all partial conflicting masses separately;

3. if A∩B = ∅ then A, B are involved in the conflict; redistribute the mass m12(A∩B) > 0
to the non-empty sets A and B proportionally with respect to

a) the non-zero masses m1(A) and m2(B) respectively,

b) the non-zero masses m2(A) and m1(B) respectively, and

c) other non-zero masses that occur in some products of the sum of m12(A ∩B);

4. if both sets A and B are empty, then the transfer is forwarded to the disjunctive form
u(A) ∪ u(B), and if this disjunctive form is also empty, then the transfer is forwarded to
the total ignorance in a closed world (or to the empty set if the open world approach is
preferred); but if even the total ignorance is empty one considers an open world (i.e. new
hypotheses might exist) and the transfer is forwarded to the empty set; if say m1(A) = 0
or m2(B) = 0, then the product m1(A)m2(B) = 0 and thus there is no conflicting mass
to be transferred from this product to non-empty sets; if both products m1(A)m2(B) =
m2(A)m1(B) = 0 then there is no conflicting mass to be transferred from them to non-
empty sets; in a general case15 , for s ≥ 2 sources, the mass m12...s(A1∩A2∩ . . .∩ . . . Ar) >
0, with 2 ≤ r ≤ s, where A1 ∩ A2 ∩ . . . ∩ Ar = ∅, resulted from the application of
the conjunctive rule, is a sum of many products; each non-zero particular product is
proportionally redistributed to A1, A2, . . . , Ar with respect to the sub-products of masses
assigned to A1, A2, . . . , Ar respectively by the sources; if both sets A1, A2, . . . , Ar are

15An easier calculation method, denoted PCR5-approximate for s ≥ 3 bba’s, which is an approximation of
PCR5, is to first combine s− 1 bba’s altogether using the conjunctive rule, and the result to be again combined
once more with the s-th bba also using the conjunctive rule; then the weighting factors will only depend on
m12...(s−1)(.) and ms(.) only - instead of depending on all bba’s m1(.), m2(.), . . . , ms(.). PCR5-approximate
result however depends on the chosen order of the sources.
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empty, then the transfer is forwarded to the disjunctive form u(A1)∪ u(A2)∪ . . .∪ u(Ar),
and if this disjunctive form is also empty, then the transfer is forwarded to the total
ignorance in a closed world (or to the empty set if the open world approach is preferred);
but if even the total ignorance is empty one considers an open world (i.e. new hypotheses
might exist) and the transfer is forwarded to the empty set;

5. and so on until all partial conflicting masses are redistributed;

6. add the redistributed conflicting masses to each corresponding non-empty set involved in
the conflict;

7. the sets not involved in the conflict do not receive anything from the conflicting masses
(except some partial or total ignorances in degenerate cases).

The more hypotheses and more masses are involved in the fusion, the more difficult is
to implement PCR5. Yet, it is easier to approximate PCR5 by first combining s − 1 bba’s
through the conjunctive rule, then by combining again the result with the s-th bba also using
the conjunctive rule – in order to reduce very much the calculations of the redistribution of
conflicting mass.

1.11.5 A 3-source example for PCR5

Let’s see a more complex example using PCR5. Suppose one has the frame of discernment
Θ = {A,B} of exclusive elements, and 3 sources such that:

m1(A) = 0.6 m1(B) = 0.3 m1(A ∪B) = 0.1

m2(A) = 0.2 m2(B) = 0.3 m2(A ∪B) = 0.5

m3(A) = 0.4 m3(B) = 0.4 m3(A ∪B) = 0.2

Then the conjunctive consensus yields : m123(A) = 0.284, m123(B) = 0.182 and m123(A∪B) =
0.010 with the conflicting mass k123 = m123(A ∩B) = 0.524, which is a sum of factors.

1. Fusion based on PCR5:

In the long way, each product occurring as a term in the sum of the conflicting mass
should be redistributed to the non-empty sets involved in the conflict proportionally to
the masses (or sub-product of masses) corresponding to the respective non-empty set. For
example, the product m1(A)m3(B)m2(A∪B) = 0.6 ·0.4 ·0.5 = 0.120 occurs in the sum of
k123, then 0.120 is proportionally distributed to the sets involved in the conflict; because
c(A ∩B ∩ (A ∪B)) = A ∩B the transfer is done to A and B with respect to 0.6 and 0.4.
Whence:

x

0.6
=

y

0.4
=

0.12

0.6 + 0.4

whence x = 0.6·0.12 = 0.072, y = 0.4·0.12 = 0.048, which will be added to the masses of A
and B respectively. Another example, the product m2(A)m1(B)m3(B) = 0.2 · 0.3 · 0.4 =
0.024 occurs in the sum of k123, then 0.024 is proportionally distributed to A, B with
respect to 0.20 and 0.3 · 0.4 = 0.12 respectively. Whence:

x

0.20
=

y

0.12
=

0.024

0.32
= 0.075
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whence x = 0.20 · 0.024
0.32 = 0.015 and y = 0.12 · 0.024

0.32 = 0.009, which will be added to the
masses of A, and B respectively.

But this procedure is more difficult, that’s why we can use the following crude approach:

2. Fusion based on PCR5-approximate:

If s sources are involved in the fusion, then first combine using the conjunctive rule s− 1
sources, and the result will be combined with the remaining source.

We resolve now this 3-source example by combining the first two sources

m1(A) = 0.6 m1(B) = 0.3 m1(A ∪B) = 0.1

m2(A) = 0.2 m2(B) = 0.3 m2(A ∪B) = 0.5

with the DSm classic rule (i.e. the conjunctive consensus on hyper-power set DΘ) to get

m12(A) = 0.44 m12(B) = 0.27

m12(A ∪B) = 0.05 m12(A ∩B) = 0.24

Then one combines m12(.) with m3(.) still with the DSm classic rule and one gets as preliminary
step for PCR5-version b just above-mentioned

m123(A) = 0.284 m123(B) = 0.182

m123(A ∪B) = 0.010 m123(A ∩B) = 0.524

The conflicting mass has been derived from

m123(A ∩B) = [m12(A)m3(B) +m3(A)m12(B)] + [m3(A)m12(A ∩B) +m3(B)m12(A ∩B)

+m3(A ∪B)m12(A ∩B)]

= [0.44 · 0.4 + 0.4 · 0.27] + [0.4 · 0.24 + 0.4 · 0.24 + 0.2 · 0.24] = 0.524

But in the last brackets A ∩ B = ∅, therefore the masses of m3(A)m12(A ∩ B) = 0.096,
m3(B)m12(A ∩ B) = 0.096, and m3(A ∩ B)m12(A ∩ B) = 0.048 are transferred to A, B,
and A ∪ B respectively. In the first brackets, 0.44 · 0.4 = 0.176 is transferred to A and B
proportionally to 0.44 and 0.4 respectively:

x

0.44
=

y

0.40
=

0.176

0.84

whence

x = 0.44 · 0.176

0.84
= 0.09219 y = 0.40 · 0.176

0.84
= 0.08381

Similarly, 0.4 · 0.27 = 0.108 is transferred to A and B proportionally to 0.40 and 0.27 and one
gets:

x

0.40
=

y

0.27
=

0.108

0.67

whence

x = 0.40 · 0.108

0.67
= 0.064478 y = 0.27 · 0.108

0.67
= 0.043522
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Adding all corresponding masses, one gets the final result with PCR5 (version b), denoted here
with index PCR5b|{12}3 to emphasize that one has applied the version b) of PCR5 for the
combination of the 3 sources by combining first the sources 1 and 2 together :

mPCR5b|{12}3(A) = 0.536668 mPCR5b|{12}3(B) = 0.405332 mPCR5b|{12}3(A∪B) = 0.058000

1.11.6 On the neutral impact of VBA for PCR5

Let’s take again the example given in section 1.11.1.3 with Θ = {A,B}, Shafer’s model and the
two bba’s

m1(A) = 0.6 m1(B) = 0.3 m1(A ∪B) = 0.1

m2(A) = 0.2 m1(B) = 0.3 m1(A ∪B) = 0.5

Then the conjunctive consensus yields :

m12(A) = 0.44 m12(B) = 0.27 m12(A ∪B) = 0.05

with the conflicting mass

k12 = m12(A ∩B) = m1(A)m2(B) +m1(B)m2(A) = 0.18 + 0.06 = 0.24

The canonical form c(A∩B) = A∩B, thus m12(A∩B) = 0.18+0.06 = 0.24 will be distributed to
A and B only proportionally with respect to their corresponding masses assigned by m1(.) and
m2(.), i.e: 0.18 redistributed to A and B proportionally with respect to 0.6 and 0.3 respectively,
and 0.06 redistributed to A and B proportionally with respect to 0.2 and 0.3 respectively. One
gets as computed above (see also section 1.11.1.3):

mPCR5|12(A) = 0.584 mPCR5|12(B) = 0.366 mPCR5|12(A ∪B) = 0.05

Now let’s introduce a third and vacuous belief assignment mv(A∪B) = 1 and combine altogether
m1(.), m2(.) and mv(.) with the conjunctive consensus. One gets

m12v(A) = 0.44 m12v(B) = 0.27 m12v(A ∪B) = 0.05 m12v(A ∩B ∩ (A ∪B)) = 0.24

Since the canonical form c(A∩B∩(A∪B)) = A∩B, m12v(A∩B∩(A∪B)) = 0.18+0.06 = 0.24
will be distributed to A and B only (therefore nothing to A ∪ B) proportionally with respect
to their corresponding masses assigned by m1(.) and m2(.) (because mv(.) is not involved since
all its masses assigned to A and B are zero: mv(A) = mv(B) = 0), i.e: 0.18 redistributed to A
and B proportionally with respect to 0.6 and 0.3 respectively, and 0.06 redistributed to A and
B proportionally with respect to 0.2 and 0.3 respectively, therefore exactly as above. Thus

mPCR5|12v(A) = 0.584 mPCR5|12v(B) = 0.366 mPCR5|12v(A ∪B) = 0.05

In this example one sees that the neutrality property of VBA is effectively well satisfied by
PCR5 rule since

mPCR5|12v(.) = mPCR5|12(.)

A general proof for neutrality of VBA within PCR5 is given in section 1.11.1.
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1.11.7 PCR6 as alternative to PCR5 when s > 2

In this volume, Arnaud Martin and Christophe Osswald have proposed the following alternative
rule to PCR5 for combining more than two sources altogether (i.e. s ≥ 3). This new rule denoted
PCR6 does not follow back on the track of conjunctive rule as PCR5 general formula does, but
it gets better intuitive results. For s = 2 PCR5 and PCR6 coincide. The general formula for
PCR616 is:

mPCR6(∅) = 0,

and ∀A ∈ GΘ \ ∅

mPCR6(A) = m12...s(A) +

s∑

i=1

mi(A)2
∑

s−1∩
k=1

Yσi(k)∩A≡∅

(Yσi(1)
,...,Yσi(s−1))∈(GΘ)s−1




s−1∏

j=1

mσi(j)(Yσi(j))

mi(A)+

s−1∑

j=1

mσi(j)(Yσi(j))



,

with mi(A) +
s−1∑

j=1

mσi(j)(Yσi(j)) 6= 0 and where m12...s(.) is the conjunctive consensus rule and

σi counts from 1 to s avoiding i, i.e.:

{
σi(j) = j if j < i,
σi(j) = j + 1 if j ≥ i,

A detailed presentation of PCR6 and application of this rule can be found in Chapters 2
and 11.

1.11.8 Imprecise PCR5 fusion rule (imp-PCR5)

The (imp-PCR5) formula is a direct extension of (PCR5) formula (1.33) using addition, multi-
plication and division operators on sets [18]. It is given for the combination of s ≥ 2 sources by
mI
PCR5(∅) = 0 and ∀X ∈ GΘ \ {∅}:

mI
PCR5(X) =

[ ∑

X1,X2,...,Xs∈GΘ

(X1∩X2∩...∩Xs)=X

∏

i=1,...,s

mI
i (Xi)

]

�
[ ∑

2≤t≤s
1≤r1,...,rt≤s

1≤r1<r2<...<rt−1<(rt=s)

∑

Xj2
,...,Xjt∈GΘ\{X}

{j2,...,jt}∈Pt−1({1,...,n})

X∩Xj2
∩...∩Xjs=∅

{i1,...,is}∈Ps({1,...,s})

[NumI(X) �DenI(X)]
]

(1.40)

16Two extensions of PCR6 (i.e. PCR6f and PCR6g) are also proposed by A. Martin and C. Osswald in [13].
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where all sets are in canonical form and where NumI(X) and DenI(X) are defined by

NumI(X) ,
[ ∏

k1=1,...,r1

mI
ik1

(X)2
]
�

[ ∏

l=2,...,t

(
∏

kl=rl−1+1,...,rl

mI
ikl

(Xjl)
]

(1.41)

DenI(X) ,
[ ∏

k1=1,...,r1

mI
ik1

(X)
]
�
[ ∑

l=2,...,t

(
∏

kl=rl−1+1,...,rl

mI
ikl

(Xjl)
]

(1.42)

where all denominators-sets DenI(X) involved in (1.40) are different from zero. If a denominator-
set DenI(X) is such that inf(DenI(X)) = 0, then the fraction is discarded. When s = 2 (fusion
of only two sources), the previous (imp-PCR5) formula reduces to its simple following fusion
formula: mI

PCR5(∅) = 0 and ∀X ∈ GΘ \ {∅}

mI
PCR5(X) = mI

12(X)+
∑

Y ∈GΘ\{X}
X∩Y =∅

[(mI
1(X)2mI

2(Y )) � (mI
1(X) +mI

2(Y ))]�

[(mI
2(X)2mI

1(Y )) � (mI
2(X) +mI

1(Y ))] (1.43)

with

mI
12(X) ,

∑

X1,X2∈GΘ

X1∩X2=X

mI
1(X1) �mI

2(X2)

1.11.9 Examples for imprecise PCR5 (imp-PCR5)

Example no 1:

Let’s consider Θ = {θ1, θ2}, Shafer’s model and two independent sources with the same imprecise
admissible bba as those given in the table below, i.e.

mI
1(θ1) = [0.1, 0.2] ∪ {0.3} mI

1(θ2) = (0.4, 0.6) ∪ [0.7, 0.8]

mI
2(θ1) = [0.4, 0.5] mI

2(θ2) = [0, 0.4] ∪ {0.5, 0.6}

Working with sets, one gets for the conjunctive consensus

mI
12(θ1) = [0.04, 0.10] ∪ [0.12, 0.15] mI

12(θ2) = [0, 0.40] ∪ [0.42, 0.48]

while the conflicting imprecise mass is given by

kI12 ≡ mI
12(θ1 ∩ θ2) = [mI

1(θ1) �mI
2(θ2)] � [mI

1(θ2) �mI
2(θ1)] = (0.16, 0.58]

Using the PCR5 rule for Proportional Conflict redistribution,
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• one redistributes the partial imprecise conflicting mass mI
1(θ1) � mI

2(θ2) to θ1 and θ2
proportionally to mI

1(θ1) and mI
2(θ2). Using the fraction bar symbol instead of � for

convenience to denote the division operator on sets, one has

xI1
[0.1, 0.2] ∪ {0.3} =

yI1
[0, 0.4] ∪ {0.5, 0.6} =

([0.1, 0.2] ∪ {0.3}) � ([0, 0.4] ∪ {0.5, 0.6})
([0.1, 0.2] ∪ {0.3}) � ([0, 0.4] ∪ {0.5, 0.6})

=
[
[0, 0.08] ∪ [0.05, 0.10] ∪ [0.06, 0.12] ∪ [0, 0.12] ∪ {0.15, 0.18}

]

�

[
[0.1, 0.6] ∪ [0.6, 0.7] ∪ [0.7, 0.8] ∪ [0.3, 0.7] ∪ {0.8, 0.9}

]

=
[0, 0.12] ∪ {0.15, 0.18}

[0.1, 0.8] ∪ {0.9}
whence

xI1 = [
[0, 0.12] ∪ {0.15, 0.18}

[0.1, 0.8] ∪ {0.9} ] � ([0.1, 0.2] ∪ {0.3})

=
[0, 0.024] ∪ [0.015, 0.030] ∪ [0.018, 0.036] ∪ [0, 0.036] ∪ {0.045, 0.048}

[0.1, 0.8] ∪ {0.9}

=
[0, 0.036] ∪ {0.045, 0.048}

[0.1, 0.8] ∪ {0.9}

= [
0

0.8
,
0.036

0.1
] ∪ [

0

0.9
,
0.036

0.9
] ∪ [

0.045

0.8
,
0.045

0.1
] ∪ [

0.048

0.8
,

0.048

0.1
]

= [0, 0.36] ∪ [0, 0.04] ∪ [0.05625, 0.45000] ∪ [0.06, 0.48] = [0, 0.48]

yI1 = [
[0, 0.12] ∪ {0.15, 0.18}

[0.1, 0.8] ∪ {0.9} ] � (0, 0.4] ∪ {0.5, 0.6})

=
[
[0, 0.048] ∪ [0, 0.060] ∪ [0, 0.072] ∪ [0, 0.6] ∪ [0, 0.072]

∪ {0, 075, 0.090, 0.090, 0.108}
]

� [0.1, 0.8] ∪ {0.9}

=
[0, 0.072] ∪ {0, 075, 0.090, 0.108}

[0.1, 0.8] ∪ {0.9}

= [
0

0.8
,
0.072

0.1
] ∪ [

0

0.9
,
0.072

0.9
] ∪ [

0.075

0.8
,
0.075

0.1
]

∪ [
0.090

0.8
,

0.090

0.1
] ∪ [

0.108

0.8
,

0.108

0.1
] ∪ {0.075

0.9
,

0.090

0.9
,
0.108

0.9
}

= [0, 0.72] ∪ [0, 0.08] ∪ [0.09375, 0.75] ∪ [0.1125, 0.9] ∪ [0.135, 1.08]

∪ {0.083333, 0.1, 0.12}
= [0, 1.08] ≈ [0, 1]

• one redistributes the partial imprecise conflicting mass mI
1(θ2) � mI

2(θ1) to θ1 and θ2
proportionally to mI

1(θ2) and mI
2(θ1). One gets now the following proportionalization

xI2
[0.4, 0.5]

=
yI2

(0.4, 0.6) ∪ [0.7, 0.8]
=

([0.4, 0.5] � ((0.4, 0.6) ∪ [0.7, 0.8])

([0.4, 0.5] � ((0.4, 0.6) ∪ [0.7, 0.8])

=
(0.16, 0.30) ∪ [0.28, 0.40]

(0.8, 1.1) ∪ [1.1, 1.3]
=

(0.16, 0.40]

(0.8, 1.3]
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whence

xI2 =
(0.16, 0.40]

(0.8, 1.3]
� [0.4, 0.5] =

(0.064, 0.200]

(0.8, 1.3]
= (

0.064

1.3
,
0.200

0.8
) = (0.049231, 0.250000)

yI2 =
(0.16, 0.40]

(0.8, 1.3]
� (0.4, 0.6) ∪ [0.7, 0.8] =

(0.064, 0.240) ∪ (0.112, 0.320]

(0.8, 1.3]

=
(0.064, 0.320]

(0.8, 1.3]
= (

0.064

1.3
,

0.320

0.8
) = (0.049231, 0.400000)

Hence, one finally gets with imprecise PCR5,

mI
PCR5(θ1) = mI

12(θ1) � xI1 � xI2

= ([0.04, 0.10] ∪ [0.12, 0.15]) � [0, 0.48] � (0.049231, 0.250000)

= ([0.04, 0.10] ∪ [0.12, 0.15]) � (0.049231, 0.73)

= (0.089231, 0.83) ∪ (0.169231, 0.88) = (0.089231, 0.88)

mI
PCR5(θ2) = mI

12(θ2) � yI1 � yI2

= ([0, 0.40] ∪ [0.42, 0.48]) � [0, 1] � (0.049231, 0.400000) ≈ [0, 1]

mI
PCR5(θ1 ∩ θ2) = 0

Example no 2:

Let’s consider a more simple example with Θ = {θ1, θ2}, Shafer’s model and two independent
sources with the following imprecise admissible bba

mI
1(θ1) = (0.2, 0.3) mI

1(θ2) = [0.6, 0.8]

mI
2(θ1) = [0.4, 0.7) mI

2(θ2) = (0.5, 0.6]

Working with sets, one gets for the conjunctive consensus

mI
12(θ1) = (0.08, 0.21) mI

12(θ2) = (0.30, 0.48)

The total (imprecise) conflict between the two imprecise quantitative sources is given by

kI12 ≡ mI
12(θ1 ∩ θ2) = [mI

1(θ1) �mI
2(θ2)] � [mI

1(θ2) �mI
2(θ1)]

= ((0.2, 0.3) � (0.5, 0.6]) � ([0.4, 0.7] � [0.6, 0.8])

= (0.10, 0.18) � [0.24, 0.56) = (0.34, 0.74)

Using the PCR5 rule for Proportional Conflict redistribution of partial (imprecise) conflict
mI

1(θ1) �mI
2(θ2), one has

xI1
(0.2, 0.3)

=
yI1

(0.5, 0.6]
=

(0.2, 0.3) � (0.5, 0.6]

(0.2, 0.3) � (0.5, 0.6]
=

(0.10, 0.18)

(0.7, 0.9)
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whence

xI1 =
(0.10, 0.18)

(0.7, 0.9)
� (0.2, 0.3) =

(0.02, 0.054)

(0.7, 0.9)
= (

0.02

0.9
,
0.054

0.7
) = (0.022222, 0.077143)

yI1 =
(0.10, 0.18)

(0.7, 0.9)
� (0.5, 0.6] =

(0.050, 0.108)

(0.7, 0.9)
= (

0.050

0.9
,

0.108

0.7
) = (0.055556, 0.154286)

Using the PCR5 rule for Proportional Conflict redistribution of partial (imprecise) conflict
mI

1(θ2) �mI
2(θ1), one has

xI2
[0.4, 0.7)

=
yI2

[0.6, 0.8]
=

[0.4, 0.7) � [0.6, 0.8]

[0.4, 0.7) � [0.6, 0.8]
=

[0.24, 0.56)

[1, 1.5)

whence

xI2 =
[0.24, 0.56)

[1, 1.5)
� [0.4, 0.7) =

[0.096, 0.392)

[1, 1.5)
= (

0.096

1.5
,

0.392

1
) = (0.064, 0.392)

yI2 =
[0.24, 0.56)

[1, 1.5)
� [0.6, 0.8] =

[0.144, 0.448)

[1, 1.5)
= (

0.144

1.5
,

0.448

1
) = (0.096, 0.448)

Hence, one finally gets with imprecise PCR5,

mI
PCR5(θ1) = mI

12(θ1) � xI1 � xI2

= (0.08, 0.21) � (0.022222, 0.077143) � (0.064, 0.392)

= (0.166222, 0.679143)

mI
PCR5(θ2) = mI

12(θ2) � yI1 � yI2

= (0.30, 0.48) � (0.055556, 0.154286) � (0.096, 0.448)

= (0.451556, 1.08229) ≈ (0.451556, 1]

mI
PCR5(θ1 ∩ θ2) = 0

1.12 More numerical examples and comparisons

In this section, we present some numerical examples and comparisons of PCR rules with other
rules proposed in literature.

1.12.1 Example 1

Let’s consider the frame of discernment Θ = {A,B,C}, Shafer’s model (i.e. all intersections
empty), and the 2 following Bayesian bba’s

m1(A) = 0.6 m1(B) = 0.3 m1(C) = 0.1

m2(A) = 0.4 m2(B) = 0.4 m2(C) = 0.2

Then the conjunctive consensus yields : m12(A) = 0.24, m12(B) = 0.12 and m12(C) = 0.02
with the conflicting mass k12 = m12(A∩B)+m12(A∩C)+m12(B∩C) = 0.36+0.16+0.10 = 0.62,
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which is a sum of factors.

From the PCR1 and PCR2 rules, one gets

mPCR1(A) = 0.550 mPCR2(A) = 0.550

mPCR1(B) = 0.337 mPCR2(B) = 0.337

mPCR1(C) = 0.113 mPCR2(C) = 0.113

And from the PCR3 and PCR5 rules, one gets

mPCR3(A) = 0.574842 mPCR5(A) = 0.574571

mPCR3(B) = 0.338235 mPCR5(B) = 0.335429

mPCR3(C) = 0.086923 mPCR5(C) = 0.090000

Dempster’s rule is a particular case of proportionalization, where the conflicting mass is redis-
tributed to the non-empty sets A1, A2, . . . proportionally to m12(A1), m12(A2), . . . respectively
(for the case of 2 sources) and similarly for n sources, i.e.

x

0.24
=

y

0.12
=

z

0.02
=

0.62

0.38

whence x = 0.24 · 0.62
0.38 = 0.391579, y = 0.12 · 0.62

0.38 = 0.195789, z = 0.02 · 0.62
0.38 = 0.032632.

Dempster’s rule yields

mDS(A) = 0.24 + 0.391579 = 0.631579

mDS(B) = 0.12 + 0.195789 = 0.315789

mDS(C) = 0.02 + 0.032632 = 0.052632

Applying PCR4 for this example, one has

x1

0.24
=

y1

0.12
=

0.36

0.24 + 0.12

therefore x1 = 0.24 and y1 = 0.12;

x2

0.24
=

z1
0.02

=
0.16

0.24 + 0.02
=

0.16

0.26

therefore x2 = 0.24(0.16/0.26) = 0.147692 and z1 = 0.02(0.16/0.26) = 0.012308:

y2

0.12
=

z2
0.02

=
0.10

0.12 + 0.02
=

0.10

0.14

therefore y2 = 0.12(0.10/0.14) = 0.085714 and z2 = 0.02(0.10/0.14) = 0.014286. Summing all
of them, one gets finally:

mPCR4(A) = 0.627692 mPCR4(B) = 0.325714 mPCR4(C) = 0.046594

It can be shown that minC combination provides same result as PCR4 for this example.
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1.12.2 Example 2

Let’s consider the frame of discernment Θ = {A,B}, Shafer’s model (i.e. all intersections
empty), and the following two bba’s:

m1(A) = 0.7 m1(B) = 0.1 m1(A ∪B) = 0.2

m2(A) = 0.5 m2(B) = 0.4 m2(A ∪B) = 0.1

Then the conjunctive consensus yields m12(A) = 0.52, m12(B) = 0.13 and m12(A ∪ B) = 0.02
with the total conflict k12 = m12(A ∩B) = 0.33.

From PCR1 and PCR2 rules, one gets:

mPCR1(A) = 0.7180 mPCR2(A) = 0.752941

mPCR1(B) = 0.2125 mPCR2(B) = 0.227059

mPCR1(A ∪B) = 0.0695 mPCR2(A ∪B) = 0.02

From PCR3 and PCR5 rules, one gets

mPCR3(A) = 0.752941 mPCR5(A) = 0.739849

mPCR3(B) = 0.227059 mPCR5(B) = 0.240151

mPCR3(A ∪B) = 0.02 mPCR5(A ∪B) = 0.02

From Dempster’s rule:

mDS(A) = 0.776119 mDS(B) = 0.194030 mDS(A ∪B) = 0.029851

From PCR4, one has
x

0.52
=

y

0.13
=

0.33

0.52 + 0.13
=

0.33

0.65

therefore x = 0.52(0.33/0.65) = 0.264 and y = 0.13(0.33/0.65) = 0.066. Summing, one gets:

mPCR4(A) = 0.784 mPCR4(B) = 0.196 mPCR4(A ∪B) = 0.02

From minC, one has

x

0.52
=

y

0.13
=

z

0.02
=

0.33

0.52 + 0.13 + 0.02
=

0.33

0.67

therefore x = 0.52(0.33/0.67) = 0.256119, y = 0.13(0.33/0.67) = 0.064030 and z = 0.02(0.33/0.02) =
0.009851. Summing, one gets same result as with the Demspter’s rule in this second example:

mminC(A) = 0.776119 mminC(B) = 0.194030 mminC(A ∪B) = 0.029851

1.12.3 Example 3 (Zadeh’s example)

Let’s consider the famous Zadeh’s example17 [31] with Θ = {A,B,C}, Shafer’s model and the
two following belief assignments

m1(A) = 0.9 m1(B) = 0 m1(C) = 0.1

m2(A) = 0 m2(B) = 0.9 m2(C) = 0.1

17A detailed discussion on this example can be found in [18] (Chap. 5, p. 110).
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The conjunctive consensus yields for this case, m12(A) = m12(b) = 0, m12(C) = 0.01. The
masses committed to partial conflicts are given by

m12(A ∩B) = 0.81 m12(A ∩ C) = m12(B ∩ C) = 0.09

and the conflicting mass by

k12 = m1(A)m2(B) +m1(A)m2(C) +m2(B)m1(C) = 0.81 + 0.09 + 0.09 = 0.99

The first partial conflict m12(A ∩B) = 0.9 · 0.9 = 0.81 is proportionally redistributed to A and
B according to

x1

0.9
=

y1

0.9
=

0.81

0.9 + 0.9

whence x1 = 0.405 and y1 = 0.405.

The second partial conflict m12(A ∩ C) = 0.9 · 0.1 = 0.09 is proportionally redistributed to
A and C according to

x2

0.9
=

y2

0.1
=

0.09

0.9 + 0.1

whence x2 = 0.081 and y2 = 0.009.

The third partial conflict m12(B ∩C) = 0.9 · 0.1 = 0.09 is proportionally redistributed to B
and C according to

x3

0.9
=

y3

0.1
=

0.09

0.9 + 0.1

whence x3 = 0.081 and y3 = 0.009.

After summing all proportional redistributions of partial conflicts to corresponding elements
with PCR5, one finally gets:

mPCR5(A) = 0 + 0.405 + 0.081 = 0.486

mPCR5(B) = 0 + 0.405 + 0.081 = 0.486

mPCR5(C) = 0.01 + 0.009 + 0.009 = 0.028

The fusion obtained from other rules yields:

• with Dempster’s rule based on Shafer’s model, one gets the counter-intuitive result

mDS(C) = 1

• with Smets’ rule based on Open-World model, one gets

mS(∅) = 0.99 mS(C) = 0.01

• with Yager’s rule based on Shafer’s model, one gets

mY (A ∪B ∪ C) = 0.99 mDS(C) = 0.01
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• with Dubois & Prade’s rule based on Shafer’s model, one gets

mDP (A∪B) = 0.81 mDP (A∪C) = 0.09 mDP (B ∪C) = 0.09 mDP (C) = 0.01

• with the classic DSm rule based on the free-DSm model, one gets

mDSmC(A ∩B) = 0.81 mDSmC(A ∩ C) = 0.09

mDSmC(B ∩ C) = 0.09 mDSmC(C) = 0.01

• with the hybrid DSm rule based on Shafer’s model, one gets same as with Dubois & Prade
(in this specific example)

mDSmH(A ∪B) = 0.81 mDSmH(A ∪C) = 0.09

mDSmH(B ∪ C) = 0.09 mDSmH(C) = 0.01

• with the WAO rule based on Shafer’s model, one gets

mWAO(A) = 0 +
0.9 + 0

2
· 0.99 = 0.4455

mWAO(B) = 0 +
0 + 0.9

2
· 0.99 = 0.4455

mWAO(C) = 0.01 +
0.1 + 0.1

2
· 0.99 = 0.1090

• with the PCR1 rule based on Shafer’s model, one gets (same as with WAO)

mPCR1(A) = 0 +
0.9

0.9 + 0.9 + 0.2
· 0.99 = 0.4455

mPCR1(B) = 0 +
0.9

0.9 + 0.9 + 0.2
· 0.99 = 0.4455

mPCR1(C) = 0.01 +
0.2

0.9 + 0.9 + 0.2
· 0.99 = 0.1090

• with the PCR2 rule based on Shafer’s model, one gets in this example the same result as
with WAO and PCR1.

• with the PCR3 rule based on Shafer’s model, one gets

mPCR3(A) = 0 + 0.9 · [0 · 0 + 0.9 · 0.9
0.9 + 0.9

+
0.1 · 0 + 0.9 · 0.1

0.9 + 0.2
] ≈ 0.478636

mPCR3(B) = 0 + 0.9 · [0 · 0 + 0.9 · 0.9
0.9 + 0.9

+
0.1 · 0 + 0.9 · 0.1

0.9 + 0.2
] ≈ 0.478636

mPCR3(C) ≈ 0.042728

• With the PCR4 rule based on Shafer’s model, m12(A ∩B) = 0.81 is distributed to A and
B with respect to their m12(.) masses, but because m12(A) and m12(B) are zero, it is
distributed to A and B with respect to their corresponding column sum of masses, i.e.
with respect to 0.9 + 0 = 0.9 and 0 + 0.9 = 0.9;

x1

0.9
=

y1

0.9
=

0.81

0.09 + 0.09
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whence x1 = 0.405 and y1 = 0.405.

m(A ∩ C) = 0.09 is redistributed to A and C proportionally with respect to their corre-
sponding column sums, i.e. 0.9 and 0.2 respectively:

x/0.9 = z/0.2 = 0.09/1.1

wence x = 0.9 · (0.09/1.1) = 0.073636 and z = 0.2 · (0.09/1.1) = 0.016364.

m(B ∩ C) = 0.09 is redistributed to B and C proportionally with respect to their corre-
sponding column sums, i.e. 0.9 and 0.2 respectively:

y/0.9 = z/0.2 = 0.09/1.1

wence y = 0.9 · (0.09/1.1) = 0.073636 and z = 0.2 · (0.09/1.1) = 0.016364.

Summing one gets:

mPCR4(A) = 0.478636 mPCR4(B) = 0.478636 mPCR4(C) = 0.042728

• With the minC rule based on Shafer’s model, one gets:

mminC(A) = 0.405 mminC(B) = 0.405 mminC(C) = 0.190

• With the PCR5 rule based on Shafer’s model, the mass m12(A ∩ B) = 0.9 · 0.9 = 0.81 is
proportionalized according to

x

0.9
=

y

0.9
=

0.81

0.9 + 0.9

whence x = 0.405 and y = 0.405. Similarly, m12(A ∩ C) = 0.09 is proportionalized
according to

x

0.9
=

z

0.9
=

0.09

0.9 + 0.1

whence x = 0.081 and z = 0.009; Similarly, m12(B ∩ C) = 0.09 is proportionalized
according to

y

0.9
=

z

0.1
=

0.09

0.9 + 0.1

whence y = 0.081 and z = 0.009. Summing one gets:

mPCR5(A) = 0 + 0.405 + 0.081 = 0.486

mPCR5(B) = 0 + 0.405 + 0.081 = 0.486

mPCR5(C) = 0.01 + 0.009 + 0.009 = 0.028
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1.12.4 Example 4 (hybrid model)

Let’s consider a hybrid model on Θ = {A,B,C} where A ∩ B = ∅, while A ∩ C 6= ∅ and
B ∩C 6= ∅. This model corresponds to a hybrid model [18]. Then only the mass m12(A∩B) of
partial conflict A∩B will be transferred to other non-empty sets, while the masses m12(A∩C)
stays on A∩C and m12(B ∩C) stays on B ∩C. Let’s consider two sources of evidence with the
following basic belief assignments

m1(A) = 0.5 m1(B) = 0.4 m1(C) = 0.1

m2(A) = 0.6 m2(B) = 0.2 m2(C) = 0.2

Using the table representation, one has

A B C A ∩B A ∩C B ∩ C
m1 0.5 0.4 0.1
m2 0.6 0.2 0.2

m12 0.3 0.08 0.02 0.34 0.16 0.10

Thus, the conjunctive consensus yields

m12(A) = 0.30 m12(B) = 0.08 m12(C) = 0.02

m12(A ∩B) = 0.34 m12(A ∩C) = 0.16 m12(B ∩ C) = 0.10

• with the PCR1 rule, m12(A∩B) = 0.34 is the only conflicting mass, and it is redistributed
to A, B and C proportionally with respect to their corresponding columns’ sums: 0.5 +
0.6 = 1.1, 0.4 + 0.2 = 0.6 and 0.1 + 0.2 = 0.3. The sets A ∩ C and B ∩ C don’t get
anything from the conflicting mass 0.34 since their columns’ sums are zero. According to
proportional conflict redistribution of PCR1, one has

x

1.1
=

y

0.6
=

z

0.3
=

0.34

1.1 + 0.6 + 0.3
= 0.17

Therefore, one gets the proportional redistributions for A, B and C

x = 1.1 · 0.17 = 0.187 y = 0.6 · 0.17 = 0.102 z = 0.3 · 0.17 = 0.051

Thus the final result of PCR1 is given by

mPCR1(A) = 0.30 + 0.187 = 0.487

mPCR1(B) = 0.08 + 0.102 = 0.182

mPCR1(C) = 0.02 + 0.051 = 0.071

mPCR1(A ∩ C) = 0.16

mPCR1(B ∩ C) = 0.10

• with the PCR2 rule, m12(A ∩B) = 0.34 is redistributed to A and B only with respect to
their corresponding columns’ sums: 0.5+ 0.6 = 1.1 and 0.4+ 0.2 = 0.6. The set C doesn’t
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get anything since C was not involved in the conflict. According to proportional conflict
redistribution of PCR2, one has

x

1.1
=

y

0.6
=

0.34

1.1 + 0.6
= 0.2

Therefore, one gets the proportional redistributions for A and B

x = 1.1 · 0.2 = 0.22 y = 0.6 · 0.2 = 0.12

Thus the final result of PCR2 is given by

mPCR2(A) = 0.30 + 0.22 = 0.52

mPCR2(B) = 0.08 + 0.12 = 0.20

mPCR2(C) = 0.02

mPCR2(A ∩C) = 0.16

mPCR2(B ∩C) = 0.10

• PCR3 gives the same result like PCR2 since there is only a partial conflicting mass which
coincides with the total conflicting mass.

• with the PCR4 rule, m12(A ∩ B) = 0.34 is redistributed to A and B proportionally
with respect to m12(A) = 0.30 and m12(B) = 0.08. According to proportional conflict
redistribution of PCR4, one has

x

0.30
=

y

0.08
=

0.34

0.30 + 0.08

Therefore, one gets the proportional redistributions for A and B

x = 0.30 · (0.34/0.38) ≈ 0.26842 y = 0.08 · (0.34/0.38) ≈ 0.07158

Thus the final result of PCR4 is given by

mPCR4(A) = 0.30 + 0.26842 = 0.56842

mPCR4(B) = 0.08 + 0.07158 = 0.15158

mPCR4(C) = 0.02

mPCR4(A ∩ C) = 0.16

mPCR4(B ∩ C) = 0.10

• with the PCR5 rule, m12(A ∩B) = 0.34 is redistributed to A and B proportionally with
respect to m1(A) = 0.5, m2(B) = 0.2 and then with respect to m2(A) = 0.6, m1(B) = 0.4.
According to proportional conflict redistribution of PCR5, one has

x1

0.5
=

y1

0.2
=

0.10

0.5 + 0.2
= 0.10/0.7

x2

0.6
=

y2

0.4
=

0.24

0.6 + 0.4
= 0.24

Therefore, one gets the proportional redistributions for A and B

x1 = 0.5 · (0.10/0.7) = 0.07143 y1 = 0.2 · (0.10/0.7) = 0.02857

x2 = 0.6 · 0.24 = 0.144 y2 = 0.4 · 0.24 = 0.096
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Thus the final result of PCR5 is given by

mPCR5(A) = 0.30 + 0.07143 + 0.144 = 0.51543

mPCR5(B) = 0.08 + 0.02857 + 0.096 = 0.20457

mPCR5(C) = 0.02

mPCR5(A ∩ C) = 0.16

mPCR5(B ∩ C) = 0.10

1.12.5 Example 5 (Target ID tracking)

This example is drawn from Target ID (identification) tracking application pointed out by Dezert
and al. in [5]. The problem consists in updating bba on ID of a target based on a sequence of
uncertain attribute measurements expressed as sensor’s bba. In such case, a problem can arise
when the fusion rule of the predicted ID bba with the current observed ID bba yields to commit
certainty on a given ID of the frame Θ (the set of possible target IDs under consideration).
If this occurs once, then the ID bba remains unchanged by all future observations, whatever
the value they can take ! By example, at a given time the ID system finds with ”certainty”
that a target is a truck, and then during next, say 1000 scans, all the sensor reports claim
with high belief that target is a car, but the ID system is unable to doubt itself of his previous
ID assessment (certainty state plays actually the role of an absorbing/black hole state). Such
behavior of a fusion rule is what we feel drastically dangerous, specially in defence applications
and better rules than the classical ones have to be used to avoid such severe drawback. We
provide here a simple numerical example and we compare the results for the new rules presented
in this chapter. So let’s consider here Shafer’s model, a 2D frame Θ = {A,B} and two bba
m1(.) and m2(.) with

A B A ∪B
m1 1 0 0
m2 0.1 0.9 0

m1(.) plays here the role of a prior (or predicted) target ID bba for a given time step and m2(.)
is the observed target ID bba drawn from some attribute measurement for the time step under
consideration. The conjunctive operator of the prior bba and the observed bba is then

m12(A) = 0.1 m12(A ∩B) = 0.9

Because we are working with Shafer’s model, one has to redistribute the conflicting massm12(A∩
B) = 0.9 in some manner onto the non conflicting elements of power-set. Once the fusion/update
is obtained at a given time, we don’t keep in memory m1(.) and m2(.) but we only use the fusion
result as new prior18 bba for the fusion with the next observation, and this process is reitered
at every observation time. Let’s examine the result of the rule after at first observation time
(when only m2(.) comes in).

• With minC rule: minC rule distributes the whole conflict to A since m12(B) = 0, thus:

mminC|12(A) = 1

18For simplicity, we don’t introduce a prediction ID model here and we just consider as predicted bba for time
k + 1, the updated ID bba available at time k (i.e. the ID state transition matrix equals identity matrix).



62 PCR RULES FOR INFORMATION FUSION

• With PCR1-PCR4 rules: Using PCR1-4, they all coincide here. One has x/1.1 =
y/0.9 = 0.9/2 = 0.45, whence x = 1.1 · (0.45) = 0.495 and y = 0.9 · (0.45) = 0.405. Hence

mPCR1−4|12(A) = 0.595 mPCR1−4|12(B) = 0.405

• With PCR5 rule: One gets x/1 = y/0.9 = 0.9/1.9, whence x = 1 · (0.9/1.9) = 0.473684
and y = 0.9 · (0.9/1.9) = 0.426316. Hence

mPCR5|12(A) = 0.573684 mPCR5|12(B) = 0.426316

Suppose a new observation, expressed by m3(.) comes in at next scan with

m3(A) = 0.4 m3(B) = 0.6

and examine the result of the new target ID bba update based on the fusion of the previous
result with m3(.).

• With minC rule: The conjunctive operator applied on mminC|12(.) and m3(.) yields now

m(minC|12)3(A) = 0.4 m(minC|12)3(A ∩B) = 0.6

Applying minC rule again, one distributes the whole conflict 0.6 to A and one finally
gets19:

mminC|(12)3(A) = 1

Therefore, minC rule does not respond to the new tracking ID observations.

• With PCR1-PCR4 rules: The conjunctive operator applied on mPCR1−4|12(.) and
m3(.) yields now

m(PCR1−4|12)3(A) = 0.238 m(PCR1−4|12)3(B) = 0.243 m(PCR1−4|12)3(A ∩B) = 0.519

– For PCR1-3: x/0.995 = y/1.005 = 0.519/2 = 0.2595, so that x = 0.995 · (0.2595) =
0.258203 and y = 1.005 · (0.2595) = 0.260797. Hence:

mPCR1−3|(12)3(A) = 0.496203 mPCR1−3|(12)3(B) = 0.503797

Therefore PCR1-3 rules do respond to the new tracking ID observations.

– For PCR4: x/0.238 = y/0.243 = 0.519/(0.238 + 0.243) = 0.519/0.481, so that
x = 0.238 · (0.519/0.481) = 0.256802 and y = 0.243 · (0.519/0.481) = 0.262198.
Hence:

mPCR4|(12)3(A) = 0.494802 mPCR4|(12)3(B) = 0.505198

Therefore PCR4 rule does respond to the new tracking ID observations.

19For convenience, we use the notation mminC|(12)3(A) instead of mminC|(minC|12)3(.), and similarly with PCR
indexes.
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• With PCR5 rule: The conjunctive operator applied on mPCR5|12(.) and m3(.) yields
now

m(PCR5|12)3(A) = 0.229474 m(PCR5|12)3(B) = 0.255790 m(PCR5|12)3(A∩B) = 0.514736

Then: x/0.573684 = y/0.6 = (0.573684 · 0.6)/(0.573684 + 0.6) = 0.293273, so that
x = 0.573684 · 0.293273 = 0.168246 and y = 0.6 · 0.293273 = 0.175964. Also: x/0.4 =
y/0.426316 = (0.4 · 0.426316)/(0.4 + 0.426316) = 0.206369, so that x = 0.4 · 0.206369 =
0.082548 and y = 0.426316∆0.206369 = 0.087978. Whence:

mPCR5|(12)3(A) = 0.480268 mPCR5|(12)3(B) = 0.519732

Therefore PCR5 rule does respond to the new tracking ID observations.

It can moreover be easily verified that Dempster’s rule gives the same results as minC here,
hence does not respond to new observations in target ID tracking problem.

1.13 On Ad-Hoc-ity of fusion rules

Each fusion rule is more or less ad-hoc. Same thing for PCR rules. There is up to the present
no rule that fully satisfies everybody. Let’s analyze some of them.

Dempster’s rule transfers the total conflicting mass to non-empty sets proportionally with
their resulting masses. What is the reasoning for doing this? Just to swell the masses of non-
empty sets in order to sum up to 1 and preserve associativity?

Smets’ rule transfers the conflicting mass to the empty set. Why? Because, he says, we
consider on open world where unknown hypotheses might be. This approach does not make
difference between all origins of conflicts since all different conflicting masses are committed
with the same manner to the empty set. Not convincing. And what about real closed worlds?

Yager’s rule transfers all the conflicting mass only to the total ignorance. Should the inter-
nal structure of partial conflicting mass be ignored?

Dubois-Prade’s rule and DSm hybrid rule transfer the conflicting mass to the partial and
total ignorances upon the principle that between two conflicting hypotheses one is right. Not
completely justified either. What about the case when no hypothesis is right?

PCR rules are based on total or partial conflicting masses, transferred to the corresponding
sets proportionally with respect to some functions (weighting coefficients) depending on their
corresponding mass matrix columns. But other weighting coefficients can be found.

Inagaki [10], Lefèvre-Colot-Vannoorenberghe [12] proved that there are infinitely many fu-
sion rules based on the conjunctive rule and then on the transfer of the conflicting mass, all of
them depending on the weighting coefficients/factors that transfer that conflicting mass. How
to choose them, what parameters should they rely on – that’s the question! There is not a
precise measure for this. In authors’ opinion, neither DSm hybrid rule nor PCR rules are not
more ad-hoc than other fusion rules.
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1.14 On quasi-associativity and quasi-Markovian properties

1.14.1 Quasi-associativity property

Let m1(.),m2(.),m3(.) : GΘ 7→ [0, 1] be any three bba’s, and a fusion rule denoted by ⊕
operating on these masses. One says that this fusion rule is associative if and only if:

∀A ∈ GΘ, ((m1 ⊕m2)⊕m3)(A) = (m1 ⊕ (m2 ⊕m3))(A) (1.44)

which is also equal to (m1 ⊕m2 ⊕m3)(A).

Only three fusion rules based on the conjunctive operator are known associative: Dempster’s
rule in DST, Smets’ rule (conjunctive consensus based on the open-world assumption), and the
DSm classic rule on free DSm model. All alternative rules developed in literature so far do not
hold the associativity. Although, some rules such as Yager’s, Dubois & Prade’s, DSm hybrid,
WAO, minC, PCR rules, which are not associative become quasi-associative if one stores the
result of the conjunctive rule at each time when a new bba arises in the combination process.
Instead of combining it with the previous result of the rule, we combine the new bba with the
stored conjunctive rule’s result.

1.14.2 Quasi-Markovian property

Let m1(.),m2(.), . . . ,mn(.) : GΘ 7→ [0, 1] be any n ≥ 3 masses, and a fusion rule denoted by
⊕ operating on these masses. One says that this fusion rule satisfies Markovian property or
Markovian requirement (according to Ph. Smets) if and only if:

∀A ∈ GΘ, andn ≥ 3, (m1⊕m2⊕ . . .⊕mn)(A) = ((m1⊕m2⊕ . . .⊕mn−1)⊕mn)(A) (1.45)

Similarly, only three fusion rules derived from the conjunctive rule are known satisfying the
Markovian requirement, i.e. Dempster’s rule, Smets’ TBM’s rule, and the DSm classic rule on
free DSm model. In an analoguous way as done for quasi-associativity, we can transform a
non-Markovian fusion rule based on conjunctive rule into a Markovian fusion rule by keeping
in the computer’s memory the results of the conjunctive rule - see next section.

1.14.3 Algorithm for Quasi-Associativity and Quasi-Markovian
Requirement

The following algorithm will help transform a fusion rule into an associative and Markovian
fusion rule. Let’s call a rule which first uses the conjunctive rule and then the transfer of the
conflicting mass to empty or non-empty sets quasi-conjunctive rule. the following algorithm
is proposed in order to restore the associativity and Markovian requirements to any quasi-
conjunctive based rules.

Let’s consider a rule R© formed by using: first the conjunctive rule, noted by C©, and second
the transfer/redistribution of the conflicting mass to empty or non-empty sets, noted by the
operator O(.) (no matter how the transfer is done, either proportionally with some parameters,
or transferred to partial or total ignorances and/or to the empty set; if all conflicting mass is
transferred to the empty set, as in Smets’ rule, there is no need for transformation into an as-
sociative or Markovian rule since Smets’ rule has already these properties). Clearly R© ≡ O( C©).
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The idea is simple; we store the conjunctive rule’s result (before doing the transfer) and, when
a new mass arises, one combines this new mass with the conjunctive rule’s result, not with the
result after the transfer of conflicting mass.

Let’s have two bba’s m1(.), m2(.) defined as previously.

a) One applies the conjunctive rule to m1(.) and m2(.) and one stores the result20:

mc(1,2)(.) , [m1 C©m2](.) = [m2 C©m1](.).

b) One applies the operator O(.) of transferring conflicting mass to the non-empty sets,
i.e. O(mc(1,2)(.)). This calculation completely does the work of our fusion rule, i.e.
[m1 R©m2](.) = O(mc(1,2)(.)) that we compute for decision-making purpose.

c) When a new bba, m3(.), arises, we combine using the conjunctive rule this m3(.) with
the previous conjunctive rule’s result mc(1,2)(.), not with O(mc(1,2)(.)). Therefore (by
notation): [mc(1,2) C©m3](.) = mc(c(1,2),3)(.). One stores this results, while deleting the
previous one stored.

d) Now again we apply the operator O(.) to transfer the conflicting mass, i.e. compute
O(mc(c(1,2),3)(.)) needed for decision-making.

e) . . . And so on the algorithm is continued for any number n ≥ 3 of bba’s.

The properties of the conjunctive rule, i.e. associativity and satisfaction of the Markovian
requirement, are passed on to the fusion rule R© too. One remarks that the algorithm gives the
same result if one applies the rule R© to all n ≥ 3 bba’s together, and then one does the transfer
of conflicting mass based on the conjunctive rule’s result only.

For each rule we may adapt our algorithm and store, besides the conjunctive rule’s result,
more information if needed. For example, for the PCR1-3 rules we also need the sum of column
masses to be stored. For PCR5-6 we need to store all bba’s in a mass matrix.

Generalization: The previous algorithm can be extended in a similar way if one considers in-
stead of the conjunctive rule applied first, any associative (respectively Markovian) rule applied
first and next the transfer of masses.

In this section we have proposed a fusion algorithm that transforms a quasi-conjunctive
fusion rule (which first uses the conjunctive rule and then the transfer of conflicting masses
to non-empty sets, except for Smets’ rule) to an associative and Markovian rule. This is very
important in information fusion since the order of combination of masses should not matter, and
for the Markovian requirement the algorithm allows the storage of information of all previous
masses into the last result (therefore not necessarily to store all the masses), which later will
be combined with the new mass. In DSmT, using this fusion algorithm for n ≥ 3 sources, the
DSm hybrid rule and PCRi become commutative, associative and Markovian. Some numerical
examples of the application of this algorithm can be found in [19].

20where the symbol , means by definition.
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1.15 Conclusion

We have presented in this chapter five versions of the Proportional Conflict Redistribution rule
of combination in information fusion, which are implemented as follows: first one uses the con-
junctive rule, then one redistribute the conflicting mass to non-empty sets proportionally with
respect to either the non-zero column sum of masses (for PCR1, PCR2, PCR3) or with respect
to the non-zero masses (of the corresponding non-empty set) that enter in the composition of
each individual product in the partial conflicting masses (PCR5). PCR1 restricted from the
hyper-power set to the power set and without degenerate cases gives the same result as WAO
as pointed out by P. Smets in a private communication. PCR1 and PCR2 redistribute the total
conflicting mass, while PCR3 and PCR5 redistribute partial conflicting masses. PCR1-3 uses
the proportionalization with respect to the sum of mass columns, PCR4 with respect to the re-
sults of the conjunctive rule, and PCR5 with respect to the masses entered in the sum products
of the conflicting mass. PCR4 is an improvement of minC and Dempster’s rules. From PCR1 to
PCR2, PCR3, PCR4, PCR5 one increases the complexity of the rules and also the exactitude of
the redistribution of conflicting masses. All the PCR rules proposed in this chapter preserve the
neutral impact of the vacuous belief assignment but PCR1 and work for any hybrid DSm model
(including Shafer’s model). For the free DSm model, i.e. when all intersections not empty, there
is obviously no need for transferring any mass since there is no conflicting mass, the masses of
the intersections stay on them. Thus only DSm classic rule is applied, no PCR1-5, no DSm
hybrid rule and no other rule needed to apply. In this chapter, PCR, minC and Dempster’s
rules are all compared with respect to the conjunctive rule (i.e. the conjunctive rule is applied
first, then the conflicting mass is redistributed following the way the conjunctive rule works).
Therefore, considering the way each rule works, the rule which works closer to the conjunctive
rule in redistributing the conflicting mass is considered better than other rule. This is not a
subjective comparison between rules, but only a mathematical one.
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Smets from the Université Libre de Bruxelles, Belgium for their interesting discussions during
preliminary stage of this work. We are also very grateful to Dr. Milan Daniel from Institute of
Computer Science, Prague, Czech Republic, and to Dr. Arnaud Martin and Christophe Osswald
from ENSIETA, Brest, France for their fruitful comments, criticisms and deep examination of
this chapter.

1.16 References

[1] Daniel M., Distribution of Contradictive Belief Masses in Combination of Belief Functions,
Information, Uncertainty and Fusion, Eds. Bouchon-Meunier B., Yager R. R., and Zadeh
L. A., Kluwer Academic Publishers, 2000, pp. 431-446.

[2] Daniel M., Associativity in Combination of Belief Functions, Proceedings of 5th Work-
shop on Uncertainty Processing (WUPES 2000), Ed. Vejnarová, J., Edičńı odděleńı VŠE
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