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Abstract

The concept of intuitionistic neutrosophic soft sets can be utilized as a mathematical tool to
deal with imprecise and unspecified information. In this paper, we apply the concept of intuitionistic
neutrosophic soft sets to graphs. We introduce the concepts of intuitionistic neutrosophic soft graphs,
and present applications of intuitionistic neutrosophic soft graphs in a multiple-attribute decision-
making problems. We also present an algorithm of our proposed method.
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1 Introduction

Zadeh [38] introduced the concept of fuzzy set, characterized by a membership function in [0, 1], which is
very useful in dealing with uncertainty, imprecision and vagueness. Since then, many higher order fuzzy
sets [5, 40] have been introduced in literature to solve many real life problems involving ambiguity and
uncertainty. Atanassov [5] introduced the concept of intuitionistic fuzzy sets (IFSs) as a extension of
Zadeh’s fuzzy set [38]. The concept of IFS can be viewed as an alternative approach for when available
information is not sufficient to define the impreciseness by the conventional fuzzy set. In fuzzy sets
the degree of acceptance is considered only but IFS is described by a membership(truth-membership)
function and a non-membership(falsity-membership) function, the only requirement is that the sum
of both values is less than and equal to one. However IFSs cannot deal with all types of uncertainty,
including indeterminate information and inconsistent information, which exist commonly in different real-
world problems. Smarandache[31] introduced the idea of neutrosophic set theory from philosophical point
of view. Its prominent characteristic is that a truth-membership degree, an indeterminacy membership
degree and a falsity membership degree, in non-standard unit interval ]0−, 1+[, are independently assigned
to each element in the set. Moderately, it has been discovered that without a specific description,
neutrosophic sets are difficult to apply in the real applications. After analyzing this difficulty, Wang et
al.[33] presented the idea of single-valued neutrosophic set (SVNS) from scientific or engineering point of
view, as an instance of the neutrosophic set and an extension of IFS, and provide its various properties.
SVNSs represent uncertainty, incomplete, imprecise, indeterminate and inconsistent information which
exist in real world. On the other hand, Bhowmik and Pal [7] introduced intuitionistic neutrosophic set
(INS) and discussed some of its properties.
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Molodtsov [26] introduced soft set theory as a new mathematical tool for dealing with imprecision. Soft
sets introduced by Molodtsov gave us new technique for dealing with uncertainty after specifying set
of parameters. Soft sets has many applications in several fields including operations research, decision-
making, probability theory, and smoothness of functions, measurement theory [10, 12, 13]. Some new
operations are proposed for defining soft sets [26]. Maji et al [21, 22, 24] proposed fuzzy soft sets,
intuitionistic fuzzy soft sets (IFSSs) and neutrosophic soft sets (NSSs) by combining fuzzy, intuitionistic
fuzzy and neutrosophic set theories with soft set theory. Said and Smarandache [30] proposed intuitionistic
neutrosophic soft set (INSSs) and its application in decision making-problems. Broumi [11] introduced
generalized neutrosophic soft set. Sahin and Kucuk [32] defined similarity and entropy of neutrosophic
soft set. Ye [37] proposed correlation coefficients of neutrosophic soft set and its application in decision-
making problem. Ye [36] also defined multi criteria decision-making method using aggregation operators.
Akram and Nawaz [1] have introduced the concept of soft graphs and some operation on soft graphs.
Certain concepts of fuzzy soft graphs and intuitionistic fuzzy soft graphs are discussed in [2, 3, 29].
Akram and Shahzadi [4] have introduced neutrosophic soft graphs. In this paper, we apply the concept
of intuitionistic neutrosophic soft sets to graphs. We introduce the notions of intuitionistic neutrosophic
soft graphs and present applications of intuitionistic neutrosophic soft graphs in a multiple-attribute
decision-making problems.

2 Intuitionistic neutrosophic soft graphs

Definition 2.1. [30] Let U be an initial universe, and let P be the set of all parameters. N (U) denotes
the set of all INSSs of U . Let N be a subset of P . A pair (F,N) is called an intuitionistic neutrosophic

soft set INSS over U .

Let N (V ) denotes the set of all INSSs of V and N (E) denotes the set of all INSSs of E.

Definition 2.2. An intuitionistic neutrosophic soft graph on a nonempty V is an ordered 3-tuple G =
(F,K,N) such that

1. N is a non-empty set of parameters,

2. (F,N) is an INSS over V ,

3. (K,N) is an intuitionistic neutrosophic soft relation on V , i.e., K : N → N (V ×V ), whereN (V ×V )
is intuitionistic neutrosophic power set,

4. (F (e),K(e)) is an ING for all e ∈ N .

That is,
TK(e)(xy) ≤ min{TF (e)(x), TF (e)(y)},

IK(e)(xy) ≤ min{IF (e)(x), IF (e)(y)},

FK(e)(xy) ≤ max{FF (e)(x), FF (e)(y)},

such that 0 ≤ TK(e)(xy) + IK(e)(xy) + FK(e)(xy) ≤ 2 ∀ e ∈ N, x, y ∈ V .

The intuitionistic neutrosophic graph (ING) (F (e),K(e)) is denoted by H(e). Note that TK(e)(xy) =
IK(e)(xy) = 0 and FK(e)(xy) = 1 for all xy ∈ V × V − E, e /∈ N . (F,N) is called an intuitionistic
neutrosophic soft vertex and (K,N) is called an intuitionistic neutrosophic soft edge.
Thus, ((F,N), (K,N)) is called an INSG if

TK(e)(xy) ≤ min{TF (e)(x), TF (e)(y)},
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IK(e)(xy) ≤ min{IF (e)(x), IF (e)(y)},

FK(e)(xy) ≤ max{FF (e)(x), FF (e)(y)},

such that 0 ≤ TK(e)(xy) + IK(e)(xy) + FK(e)(xy) ≤ 2 ∀ e ∈ N, x, y ∈ V . In other words, an INSG is a
parameterized family of INGs. The class of all INSGs is denoted by INS(G∗). The order of an INSG is

O(G) =
(

∑

ei∈N

(
∑

w∈V

TF (ei)(w)),
∑

ei∈N

(
∑

w∈V

IF (ei)(w)),
∑

ei∈N

(
∑

v∈V

FF (ei)(w))
)

.

The size of an INSG is

S(G) =
(

∑

ei∈N

(
∑

wv∈E

TK(ei)(wv)),
∑

ei∈N

(
∑

wv∈E

IK(ei)(wv)),
∑

ei∈N

(
∑

wv∈E

FK(ei)(wv))
)

.

Example 2.3. Consider a simple graphG∗ = (V,E) such that V = {w1, w2, w3, w4} andE = {w1w2, w2w3,
w1w3, w1w5, }. Let N = {e1, e2, e3} be a set of parameters and let (F,N) be an INSS over V with intu-
itionistic neutrosophic approximation function F : N → N (V ) defined by
F (e1) = {(w1, 0.4, 0.5, 0.3), (w2, 0.5, 0.4, 0.6), (w3, 0.6, 0.5, 0.4), },
F (e2) = {(w1, 0.6, 0.2, 0.3), (w3, 0.6, 0.5, 0.3), (w5, 0.7, 0.5, 0.4)},
F (e3) = {(w1, 0.8, 0.5, 0.4), (w2, 0.5, 0.5, 0.3), (w5, 0.6, 0.5, 0.4)}. Let (K,N) be an INSS over E with intu-
itionistic neutrosophic approximation function K : N → N (E) defined by
K(e1) = {(w1w2, 0.3, 0.3, 0.6), (w2w3, 0.5, 0.4, 0.6)},
K(e2) = {(w1w3, 0.6, 0.2, 0.2), (w1w5, 0.6, 0.1, 0.4)},
K(e3) = {(w1w2, 0.4, 0.5, 0.4), (w1w3, 0.6, 0.5, 0.3)}.
Clearly, H(e1) = (F (e1),K(e1)), H(e2) = (F (e2),K(e2)) and H(e3) = (F (e3),K(e3)) are INGs corre-
sponding to the parameters e1, e2 and e3, respectively as shown in Figure 2.1.

b

b b b

b

b
b b
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Figure 2.1: Intuitionistic neutrosophic soft graph G = {H(e1),H(e2),H(e3)}.

Hence G = {H(e1),H(e2),H(e3)} is an INSG of G∗. Tabular representation of an INSG is given in
Table 1.
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Table 1: Tabular representation of an intuitionistic neutrosophic soft graph.

F w1 w2 w3 w4 w5

e1 (0.4, 0.5, 0.3) (0.5, 0.4, 0.6) (0.6, 0.5, 0.4) (0.0, 0.0, 0.0) (0.0,0.0,0.0)
e2 (0.6, 0.2, 0.3) (0.0, 0.0, 0.0) (0.6, 0.5, 0.3) (0.0, 0.0, 0.0) (0.7,0.5,0.4)
e3 (0.8, 0.5, 0.4) (0.5, 0.5, 0.3) (0.6, 0.5, 0.4) (0.0, 0.0, 0.0) (0.0,0.0,0.0)

K w1w2 w2w3 w1w3 w1w5

e1 (0.3, 0.3, 0.6) (0.5, 0.4, 0.6) (0.0, 0.0, 0.0) (0.0, 0.0, 0.0)
e2 (0.0, 0.0, 0.0) (0.0, 0.0, 0.0) (0.6, 0.2, 0.2) (0.6, 0.1, 0.4)
e3 (0.4, 0.5, 0.4) (0.0, 0.0, 0.0) (0.6, 0.5, 0.3) (0.0, 0.0, 0.0)

The order of INSG is G is O(G) =
(

(0.4+ 0.5+ 0.6)+ (0.6+ 0.6+ 0.7)+ (0.8+ 0.5+ 0.6), (0.5+ 0.4+

0.5)+(0.2+0.5+0.5)+(0.5+0.5+0.5), (0.3+0.6+0.4)+(0.3+0.3+0.4)+(0.4+0.3+0.4)
)

= (5.3, 4.1, 3.4).

The size of intuitionistic neutrosophic soft graph G is S(G) =
(

(0.3+0.5)+(0.6+0.6)+(0.4+0.6), (0.3+

0.4) + (0.2 + 0.1) + (0.5 + 0.5), (0.6 + 0.6) + (0.2 + 0.4) + (0.4 + 0.3)
)

= (3.0, 2.0, 2.5).

Definition 2.4. Let G1 = (F1,K1, N1) and G2 = (F2,K2, N2) be two INSGs of G∗

1 and G∗

2, respectively.
The Cartesian product of G1 and G2 is an INSG G = G1 × G2 = (F,K,N1 × N2), where (F = F1 ×
F2, N1 ×N2) is an intuitionistic neutrosophic soft set over V = V1 × V2, (K = K1 ×K2, N1 ×N2) is an
INSS over E = {((w, v1), (w, v2)) : w ∈ V1, (v1, v2) ∈ E2}∪ {((w1, v), (w2, v)) : v ∈ V2, (w1, w2) ∈ E1} and
(F,K,N1 ×N2) is intuitionistic neutrosophic soft graph such that

(i) TF (e1,e2)(w, v) = TF1(e1)(w) ∧ TF2(e2)(v),
IF (e1,e2)(w, v) = IF1(e1)(w) ∧ IF2(e2)(v),
FF (e1,e2)(w, v) = FF1(e1)(w) ∨ FF2(e2)(v) ∀ (w, v) ∈ V, (e1, e2) ∈ N1 ×N2,

(ii) TK(e1,e2)

(

(w, v1), (w, v2)
)

= TF1(e1)(w) ∧ TK2(e2)(v1, v2),

IK(e1,e2)

(

(w, v1), (w, v2)
)

= IF1(e1)(w) ∧ IK2(e2)(v1, v2),

FK(e1,e2)

(

(w, v1), (w, v2)
)

= FF1(e1)(w) ∨ FK2(e2)(v1, v2) ∀ w ∈ V1, (v1, v2) ∈ E2,

(iii) TK(e1,e2)

(

(w1, v), (w2, v)
)

= TF2(e2)(v) ∧ TK1(e1)(w1, w2),

IK(e1,e2)

(

(w1, v), (w2, v)
)

= IF2(e2)(v) ∧ IK1(e1)(w1, w2),

FK(e1,e2)

(

(w1, v), (w2, v)
)

= FF2(e2)(v) ∨ FK1(e1)(w1, w2) ∀ v ∈ V2, (w1, w2) ∈ E1.

H(e1, e2) = H1(e1)×H2(e2) for all (e1, e2) ∈ N1 ×N2 are intuitionistic neutrosophic graphs.

Definition 2.5. The cross product of G1 and G2 is an INSG G = G1 ⊚ G2 = (F,K,N1 × N2), where
(F,N1 × N2) is an INSS over V = V1 × V2, (K,N1 × N2) is an INSS over E = {((w1, v1), (w2, v2)) :
(w1, w2) ∈ E1, (v1, v2) ∈ E2} and (F,K,N1 ×N2) is INSG such that

(i) TF (e1,e2)(w, v) = TF1(e1)(w) ∧ TF2(e2)(v),
IF (e1,e2)(w, v) = IF1(e1)(w) ∧ IF2(e2)(v),
FF (e1,e2)(w, v) = FF1(e1)(w) ∨ FF2(e2)(v) ∀ (w, v) ∈ V, (e1, e2) ∈ N1 ×N2

(ii) TK(e1,e2)

(

(w1, v1), (w2, v2)
)

= TK1(e1)(w1, w2) ∧ TK2(e2)(v1, v2),

IK(e1,e2)

(

(w1, v1), (w2, v2)
)

= IK1(e1)(w1, w2) ∧ IK2(e2)(v1, v2),

FK(e1,e2)

(

(w1, v1), (w2, v2)
)

= FK1(e1)(w1, w2) ∨ FK2(e2)(v1, v2) ∀ (w1, w2) ∈ E1, (v1, v2) ∈ E2.

H(e1, e2) = H1(e1)⊚H2(e2) for all (e1, e2) ∈ N1 ×N2 are intuitionistic neutrosophic graphs.
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Definition 2.6. The lexicographic product of G1 and G2 is an INSG G = G1⊙G2 = (F,K,N1 × N2),
where (F,N1 ×N2) is an INSS over V = V1 × V2, (K,N1 ×N2) is an INSS over E = {((w, v1), (w, v2)) :
w ∈ V1, (v1, v2) ∈ E2}∪{((w1, v1), (w2, v2)) : (w1, w2) ∈ E1, (v1, v2) ∈ E2} and (F,K,N1×N2) are INSGs
such that

(i) TF (e1,e2)(w, v) = TF1(e1)(w) ∧ TF2(e2)(v),
IF (e1,e2)(w, v) = IF1(e1)(w) ∧ IF2(e2)(v),
FF (e1,e2)(w, v) = FF1(e1)(w) ∨ FF2(e2)(v) ∀ (w, v) ∈ V, (e1, e2) ∈ N1 ×N2,

(ii) TK(e1,e2)

(

(w, v1), (w, v2)
)

= TF1(e1)(w) ∧ TK2(e2)(v1, v2),

IK(e1,e2)

(

(w, v1), (w, v2)
)

= IF1(e1)(w) ∧ IK2(e2)(v1, v2),

FK(e1,e2)

(

(w, v1), (w, v2)
)

= FF1(e1)(w) ∨ FK2(e2)(v1, v2) ∀ w ∈ V1, (v1, v2) ∈ E2,

(iii) TK(e1,e2)

(

(w1, v1), (w2, v2)
)

= TK1(e1)(w1, w2) ∧ TK2(e2)(v1, v2),

IK(e1,e2)

(

(w1, v1), (w2, v2)
)

= IK1(e1)(w1, w2) ∧ IK2(e2)(v1, v2),

FK(e1,e2)

(

(w1, v1), (w2, v2)
)

= FK1(e1)(w1, w2) ∨ FK2(e2)(v1, v2) ∀ (w1, w2) ∈ E1, (v1, v2) ∈ E2.

H(e1, e2) = H1(e1)⊙H2(e2) for all (e1, e2) ∈ N1 ×N2 are INGs.

Definition 2.7. The strong product of G1 and G2 is an INSG G = G1⊗G2 = (F,K,N1 × N2), where
(F,N1 × N2) is an INSS over V = V1 × V2, (K,A × N2) is an INSS over E = {((w, v1), (w, v2)) :
w ∈ V1, (v1, v2) ∈ E2} ∪ {((w1, v), (w2, v)) : v ∈ V2, (w1, w2) ∈ E1} ∪ {((w1, v1), (w2, v2)) : (w1, w2) ∈
E1, (v1, v2) ∈ E2} and (F,K,N1 ×N2) is INSG such that

(i) TF (e1,e2)(w, v) = TF1(e1)(w) ∧ TF2(e2)(v),
IF (e1,e2)(w, v) = IF1(e1)(w) ∧ IF2(e2)(v),
FF (e1,e2)(w, v) = FF1(e1)(w) ∨ FF2(e2)(v) ∀ (w, v) ∈ V, (e1, e2) ∈ N1 ×N2,

(ii) TK(e1,e2)

(

(w, v1), (w, v2)
)

= TF1(e1)(w) ∧ TK2(e2)(v1, v2),

IK(e1,e2)

(

(w, v1), (w, v2)
)

= IF1(e1)(w) ∧ IK2(e2)(v1, v2),

FK(e1,e2)

(

(w, v1), (w, v2)
)

= FF1(e1)(w) ∨ FK2(e2)(v1, v2) ∀ w ∈ V1, (v1, v2) ∈ E2,

(iii) TK(e1,e2)

(

(w1, v), (w2, v)
)

= TF2(e2)(v) ∧ TK1(e1)(w1, w2),

IK(e1,e2)

(

(w1, v), (w2, v)
)

= IF2(e2)(v) ∧ IK1(e1)(w1, w2),

FK(e1,e2)

(

(w1, v), (w2, v)
)

= FF2(e2)(v) ∨ FK1(e1)(w1, w2) ∀ v ∈ V2, (w1, w2) ∈ E1,

(iv) TK(e1,e2)

(

(w1, v1), (w2, v2)
)

= TK1(e1)(w1, w2) ∧ TK2(e2)(v1, v2),

IK(e1,e2)

(

(w1, v1), (w2, v2)
)

= IK1(e1)(w1, w2) ∧ IK2(e2)(v1, v2),

FK(e1,e2)

(

(w1, v1), (w2, v2)
)

= FK1(e1)(w1, w2) ∨ FK2(e2)(v1, v2) ∀ (w1, w2) ∈ E1, (v1, v2) ∈ E2.

H(e1, e2) = H1(e1)⊗H2(e2) for all (e1, e2) ∈ N1 ×N2 are INGs.

Definition 2.8. The composition of G1 and G2 is an INSG G = G1[G2] = (F,K,N1 × N2), where
(F,N1 × N2) is an INSS over V = V1 × V2, (K,N1 × N2) is an INSS over E = {((w, v1), (w, v2)) : w ∈
V1, (v1, v2) ∈ E2} ∪ {((w1, v), (w2, v)) : v ∈ V2, (w1, w2) ∈ E1} ∪ {((w1, v1), (w2, v2)) : (w1, w2) ∈ E1, v1 6=
v2} and (F,K,N1 ×N2) is INSG such that

(i) TF (e1,e2)(w, v) = TF1(e1)(w) ∧ TF2(e2)(v),
IF (e1,e2)(w, v) = IF1(e1)(w) ∧ IF2(e2)(v),
FF (e1,e2)(w, v) = FF1(e1)(w) ∨ FF2(e2)(v) ∀ (w, v) ∈ V, (e1, e2) ∈ N1 ×N2,

(ii) TK(e1,e2)((w, v1), (w, v2)) = TF1(e1)(w) ∧ TK2(e2)(v1, v2),
IK(e1,e2)((w, v1), (w, v2)) = IF1(e1)(w) ∧ IK2(e2)(v1, v2),
FK(e1,e2)((w, v1), (w, v2)) = FF1(e1)(w) ∨ FK2(e2)(v1, v2) ∀ w ∈ V1, (v1, v2) ∈ E2,
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(iii) TK(e1,e2)

(

(w1, v), (w2, v)
)

= TF2(e2)(v) ∧ TK1(e1)(w1, w2),

IK(e1,e2)

(

(w1, v), (w2, v)
)

= IF2(e2)(v) ∧ IK1(e1)(w1, w2),

FK(e1,e2)

(

(w1, v), (w2, v)
)

= FF2(e2)(v) ∨ FK1(e1)(w1, w2) ∀ v ∈ V2, (w1, w2) ∈ E1,

(iv) TK(e1,e2)

(

(w1, v1), (w2, v2)
)

= TF1(e1)(w1, w2) ∧ TF2(e2)(v1) ∧ TF2(e2)(v2),

IK(e1,e2)

(

(w1, v1), (w2, v2)
)

= IF1(e1)(w1, w2) ∧ IF2(e2)(v1) ∧ IF2(e2)(v2),

FK(e1,e2)

(

(w1, v1), (w2, v2)
)

= FF1(e1)(w1, w2) ∨ FF2(e2)(v1) ∨ FF2(e2)(v2) ∀ (w1, w2) ∈ E1, where
v1 6= v2.

H(e1, e2) = H1(e1)[H2(e2)] for all (e1, e2) ∈ N1 ×N2 are INGs.

Proposition 2.9. The Cartesian product, cross product, lexicographic product, strong product and com-

position of two INSGs is an ING.

Definition 2.10. Let G1 = (F1,K1, N1) and G2 = (F2,K2, N2) be two INSGs. The intersection of G1

and G2 is an INSG denoted by G = G1 ∩ G2 = (F,K,N1 ∪ N2), where (F,N1 ∪ N2) is an INSS over
V = V1∩V2, (K,N1∪N2) is an INSS overE = E1∩E2, the truth-membership, indeterminacy-membership,
and falsity-membership functions of G for all w, v ∈ V defined by,

(i) TF (e)(v) =







TF1(e)(v) if e ∈ N1 −N2;
TF2(e)(v) if e ∈ N2 −N1;
TF1(e)(v) ∧ TF2(e)(v), if e ∈ N1 ∩N2.

IF (e)(v) =







IF1(e)(v) if e ∈ N1 −N2;
IF2(e)(v) if e ∈ N2 −N1;
IF1(e)(v) ∧ IF2(e)(v), if e ∈ N1 ∩N2.

FF (e)(v) =







FF1(e)(v) if e ∈ N1 −N2;
FF2(e)(v) if e ∈ N2 −N1;
FF1(e)(v) ∨ FF2(e)(v), if e ∈ N1 ∩N2.

(ii) TK(e)(wv) =







TK1(e)(wv) if e ∈ N1 −N2;
TK2(e)(wv) if e ∈ N2 −N1;
TK1(e)(wv) ∧ TK2(e)(wv), if e ∈ N1 ∩N2.

IK(e)(wv) =







IK1(e)(wv) if e ∈ N1 −N2;
IK2(e)(wv) if e ∈ N2 −N1;
IK1(e)(wv) ∧ IK2(e)(wv), if e ∈ N1 ∩N2.

FK(e)(wv) =







FK1(e)(wv) if e ∈ N1 −N2;
FK2(e)(wv) if e ∈ N2 −N1;
FK1(e)(wv) ∨ FK2(e)(wv), if e ∈ N1 ∩N2.

Definition 2.11. Let G1 = (F1,K1, N1) and G2 = (F2,K2, N2) be two INSGs. The union of G1 and G2

may or may not be INSG denoted by G = G1∪G2 = (F,K,N1 ∪N2), where (F,N1∪N2) is an INSS over
V = V1∪V2, (K,N1∪N2) is an INSS overE = E1∪E2, the truth-membership, indeterminacy-membership,
and falsity-membership functions of G for all w, v ∈ V defined by,

(i) TF (e)(v) =







TF1(e)(v) if e ∈ N1 −N2;
TF2(e)(v) if e ∈ N2 −N1;
TF1(e)(v) ∨ TF2(e)(v), if e ∈ N1 ∩N2.

IF (e)(v) =







IF1(e)(v) if e ∈ N1 −N2;
IF2(e)(v) if e ∈ N2 −N1;
IF1(e)(v) ∧ IF2(e)(v), if e ∈ N1 ∩N2.
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FF (e)(v) =







FF1(e)(v) if e ∈ N1 −N2;
FF2(e)(v) if e ∈ N2 −N1;
FF1(e)(v) ∧ FF2(e)(v), if e ∈ N1 ∩N2.

(ii) TK(e)(wv) =







TK1(e)(wv) if e ∈ N1 −N2;
TK2(e)(wv) if e ∈ N2 −N1;
TK1(e)(wv) ∨ TK2(e)(wv), if e ∈ N1 ∩N2.

IK(e)(wv) =







IK1(e)(wv) if e ∈ N1 −N2;
IK2(e)(wv) if e ∈ N2 −N1;
IK1(e)(wv) ∧ IK2(e)(wv), if e ∈ N1 ∩N2.

FK(e)(wv) =







FK1(e)(wv) if e ∈ N1 −N2;
FK2(e)(wv) if e ∈ N2 −N1;
FK1(e)(wv) ∧ FK2(e)(wv), if e ∈ N1 ∩N2.

Remark 2.12. Let G1 and G2 be two INSG over G∗ then G1 ∪G2 may or may not be INSG.

Definition 2.13. Let G1 and G2 be two INSGs. The join of G1 and G2 may or may not be intuitionistic
neutrosophic soft graph denoted by G1 + G2 = (F1 + F2,K1 +K2, N1 ∪N2), where (F1 + F2, N1 ∪N2)
is an intuitionistic neutrosophic soft set over V1 ∪ V2, (K1 +K2, N1 ∪N2) is an INSS over E1 ∪ E2 ∪ É
defined by

(i) (F1 + F2, N1 ∪N2) = (F1, N1) ∪ (F2, N2),

(ii) (K1 +K2, N1 ∪N2) = (K1, N1) ∪ (K2, N2) if wv ∈ E1 ∪E2,
where e ∈ N1 ∩ N2, wv ∈ É, and É is the set of all edges joining the vertices of V1 and V2, the
truth-membership, indeterminacy-membership, and falsity-membership functions are defined by

TK1+K2(e)(wv) = min{TF1(e)(w), TF2(e)(v)},

IK1+K2(e)(wv) = min{IF1(e)(w), IF2(e)(v)},

FK1+K2(e)(wv) = max{FF1(e)(w), FF2(e)(v)} ∀wv ∈ É.

Proposition 2.14. If G1 and G2 are two INSGs then their join G1+G2 may or may not be intuitionistic

neutrosophic soft graph.

Definition 2.15. The complement of an INSG G = (F,K,N) denoted by Gc = (F c,Kc, N c) is defined
as follows:

(i) N c = N ,

(ii) F c(e) = F (e),

(iii) TKc(e)(w, v) = TF (e)(w) ∧ TF (e)(v) − TK(e)(w, v),

(iv) IKc(e)(w, v) = IF (e)(w) ∧ IF (e)(v) − IK(e)(w, v), and

(v) FKc(e)(w, v) = FF (e)(w) ∨ FF (e)(v)− FK(e)(w, v), for all w, v ∈ V, e ∈ N .

Example 2.16. LetG∗ = (V,E) be a crisp graph with V = {v1, v2, v3, v4} andE = {v1v2, v1v4, v1v3, v2v3,
v3v4}. Let N = {e1, e2} be a set of parameters and let (F,N) be a INSS over V with intuitionistic neu-
trosophic approximation function F : N → N (V ) defined by
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F (e1) = {(v1, 0.4, 0.6, 0.1), (v2, 0.5, 0.4, 0.7), (v3, 0.5, 0.3, 0.4), (v4, 0.5, 0.6, 0.2)},
F (e2) = {(v1, 0.4, 0.2, 0.2), (v2, 0.5, 0.3, 0.4), (v3, 0.6, 0.3, 0.5), (v4, 0.5, 0.4, 0.2)}.
Let (K,N) be an INSS over E with intuitionistic neutrosophic approximation function K : N → N (E)
defined by
K(e1) = {(v1v2, 0.3, 0.3, 0.5), (v1v4, 0.2, 0.5, 0.2), (v1v3, 0.4, 0.3, 0.4), (v2v3, 0.5, 0.4, 0.5)},
K(e2) = {(v1v3, 0.3, 0.2, 0.5), (v1v4, 0.4, 0.1, 0.1), (v3v4, 0.5, 0.3, 0.4), (v3v2, (0.5, 0.3,

0.5)}.
Clearly, G = {H(e1) = (F (e1),K(e1)),H(e2) = (F (e2),K(e2))} is intuitionistic neutrosophic soft graphs
corresponding to the parameters e1 and e2, respectively as shown in Figure 2.2.
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Figure 2.2: INSG G = {H(e1),H(e2)}.

Now, the complement of INSG G = {H(e1),H(e2)} is the complement of INGs H(e1) and H(e2) which
are shown in Figure 2.3.
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, 0
.7)

(0.5, 0.3, 0.4) (0.5, 0.3, 0.4)

Figure 2.3: Complement of INSG Gc = {Hc(e1),H
c(e2)}

Definition 2.17. An INSG G is a complete INSG if H(e) is a complete ING for all e ∈ N , i.e.,

TK(e)(wv) = min(TF (e)(w), TF (e)(v)),

IK(e)(wv) = min(IF (e)(w), IF (e)(v)),

FK(e)(wv) = max(FF (e)(w), FF (e)(v))

∀ w, v ∈ V, e ∈ N .

Definition 2.18. An INSG G is a strong INSG if H(e) is a strong ING for all e ∈ N.

Example 2.19. Consider the simple graph G∗ = (V,E) where V = {v1, v2, v3, v4, v5, v6} and E =
{v1v2, v2v5, v3v5, v1v3, v1v4, v3v6, v5v6}. Let N = {e1, e2}. Let (F,N) be an INSS over V with its approx-
imation function F : N → N (V ) defined by
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F (e1) = {(v1, 0.4, 0.5, 0.7), (v2, 0.6, 0.5, 0.5), (v3, 0.6, 0.3, 0.5), (v4, 0.7, 0.5, 0.4), (v5, 0.7, 0.4, 0.5), (v6, 0.3, 0.5, 0.7)},

F (e2) = {(v1, 0.6, 0.4, 0.3), (v2, 0.5, 0.3, 0.8), (v3, 0.5, 0.6, 0.3), (v4, 0.8, 0.5, 0.4), (v5, 0.6, 0.3, 0.2)}.
Let (K,N) be an INSS over E with its approximation function K : N → N (E) defined by
K(e1) = {(v1v2, 0.4, 0.5, 0.7), (v1v3, 0.4, 0.3, 0.7), (v1v4, 0.4, 0.5, 0.7), (v2v5, 0.6, 0.4, 0.5), (v3v5, 0.6, 0.3, 0.5),

(v3v6, 0.3, 0.3, 0.7), (v5v6, 0.3, 0.5, 0.7)},
K(e2) = {(v1v3, 0.5, 0.4, 0.3), (v1v4, 0.6, 0.4, 0.4), (v1v2, 0.5, 0.3, 0.8), (v2v3, 0.5, 0.3, 0.8), (v2v4, 0.5, 0.3, 0.8),

(v2v5, 0.5, 0.3, 0.8)}.
H(e1) = (F (e1),K(e1)), and H(e2) = (F (e2),K(e2)) are strong INGs corresponding to the parameters
e1, and e2, respectively as shown in Figure 2.4.
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Figure 2.4: Strong INSG G = {H(e1),H(e2)}.

Hence G = {H(e1),H(e2)} is a strong INSG of G∗.

Proposition 2.20. If G1 and G2 are strong INSGs, then G1 ×G2, and G1[G2] are strong INSGs.

Remark 2.21. The union of two strong INSGs is not necessarily strong INSG.

Example 2.22. Let N1 = {e1} and N2 = {e1, e2} be the parameter sets. Let G1 and G2 be the two
strong INSGs defined as follows:
G1 = {H1(e1),H1(e2)} = {({(w1, 0.5, 0.6, 0.4), (w2, 0.7, 0.4, 0.5), (w3, 0.5, 0.8, 0.4)}, {(w1w2, 0.5, 0.4, 0.5),

(w2w3, 0.5, 0.4, 0.5)}), ({(w1, 0.4, 0.6, 0.5), (w3, 0.5, 0.7, 0.4)}, {(w1w3, 0.4, 0.6, 0.5)})},
G2 = {H2(e1)} = {(w1, 0.4, 0.9, 0.3), (w2, 0.5, 0.6, 0.4), (w1w2, 0.4, 0.6, 0.4)}.
The union of G1 and G2 is G = G1∪G2 = (H,N1∪N2), whereN1∪N2 = {e1, e2}, H(e1) = H1(e1)∪H2(e1)
and H(e2) = H1(e2) are as shown in Figure. 2.5.
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(0
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0
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0
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G1 = {H1(e1),H1(e2)}
G2 = {H2(e1)}

Figure 2.5: Strong INSGs G1 and G2.

Clearly, G = {H(e1),H(e2)} is not a strong INSG as shown in Figure. 2.6.
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Figure 2.6: Union of two strong intuitionistic neutrosophic soft graphs.

Proposition 2.23. If G1 ×G2 is strong INSG, then at least G1 or G2 must be strong INSG.

Proposition 2.24. If G1[G2] is strong INSG, then at least G1 or G2 must be strong INSG.

Definition 2.25. The complement of a strong INSG G = (F,K,N) is an INSG Gc = (F c,Kc, N c)
defined by

(i) N c = N ,

(ii) F c(e)(w) = F (e)(w) for all e ∈ N and w ∈ V ,

(iii) TKc(e)(w, v) =

{

0 if TK(e)(w, v) > 0,
min{TF (e)(w), TF (e)(v)}, if TK(e)(w, v) = 0,

IKc(e)(w, v) =

{

0 if IK(e)(w, v) > 0,
min{IF (e)(w), IF (e)(v)}, if IK(e)(w, v) = 0,

FKc(e)(w, v) =

{

0 if FK(e)(w, v) > 0,
max{FF (e)(w), FF (e)(v)}, if FK(e)(w, v) = 0,

Proposition 2.26. If G is a strong INSG over G∗, then Gc is also a strong intuitionistic neutrosophic

soft graph.

Theorem 2.27. If G and Gc are strong INSGs of G∗. Then G ∪Gc is a complete intuitionistic neutro-

sophic soft graph.

3 Isomorphism of intuitionistic neutrosophic soft graphs

Definition 3.1. Let G1 = (F1,K1, N) and G2 = (F2,K2, N) be two INSGs of G∗

1 = (V1, E1) and
G∗

2 = (V2, E2), respectively. A homomorphism fN : G1 → G2 is a mapping fN : V1 → V2 which satisfies
the following conditions:

(i) TF1(e)(v1) ≤ TF2(e)(fe(v1)), IF1(e)(v1) ≤ IF2(e)(fe(v1)), FF1(e)(v1) ≥ FF2(e)(fe(v1)),

(ii) TK1(e)(v1v2) ≤ TK2(e)(fe(v1)fe(v2)), IK1(e)(v1v2) ≤ IK2(e)(fe(v1)fe(v2)), FK1(e)(v1v2) ≥ FK2(e)(fe(v1)fe(v2)),

for all e ∈ N, v1 ∈ V1, v1v2 ∈ E1.

A bijective homomorphism is called a weak isomorphism if

TF1(e)(v1) = TF2(e)(fe(v1)), IF1(e)(v1) = IF2(e)(fe(v1)), FF1(e)(v1) = FF2(e)(fe(v1)), ∀e ∈ N, v1 ∈ V1.
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Figure 3.1: G1 = {H1(e1),H1(e2)}, and G2 = {H2(e1),H2(e2)}.

A bijective homomorphism fN : G1 → G2 such that

TK1(e)(v1v2) = TK2(e)(fe(v1)fe(v2)), IK1(e)(v1v2) = IK2(e)(fe(v1)fe(v2)), FK1(e)(v1v2) = FK2(e)(fe(v1)fe(v2)),

for all e ∈ N, v1v2 ∈ E1 is called a co-weak isomorphism.
An endomorphism of INSG G with V as the underlying set is a homomorphism of G into itself.

Definition 3.2. Let G1 = (F1,K1, N) and G2 = (F2,K2, N) be two INSGs of G∗

1 = (V1, E1) and
G∗

2 = (V2, E2), respectively. An isomorphism fN : G1 → G2 is a mapping fN : V1 → V2 which satisfies
the following conditions:

(i) TF1(e)(v1) = TF2(e)(fe(v1)), IF1(e)(v1) = IF2(e)(fe(v1)), FF1(e)(v1) = FF2(e)(fe(v1)),

(ii) TK1(e)(v1v2) = TK2(e)(fe(v1)fe(v2)), IK1(e)(v1v2) = IK2(e)(fe(v1)fe(v2)), FK1(e)(v1v2) = FK2(e)(fe(v1)fe(v2)),
for all e ∈ N, v1 ∈ V1, v1v2 ∈ E1.

Example 3.3. Let N = {e1, e2} be a parameter set. G1 = (F1,K1, N) and G2 = (F1,K2, N) be two
INSGs defined as follows:
G1 = {H1(e1),H1(e2)} = {({(v1, 0.3, 0.4, 0.7), (v2, 0.7, 0.4, 0.3)}, {(v1v2, 0.2, 0.3, 0.6)}), ({(v1, 0.3, 0.4, 0.8),

(v2, 0.2, 0.1, 0.6), (v3, 0.4, 0.5, 0.3)}, {(v1v2, 0.1, 0.1, 0.7), (v1v3, 0.1, 0.3, 0.7)})},
G2 = {H2(e1),H2(e2)} = {({(w1, 0.7, 0.4, 0.3), (w2, 0.3, 0.4, 0.7)}, {(w1w2, 0.2, 0.4, 0.6)}), ({(w1, 0.4, 0.5, 0.3),

(w2, 0.3, 0.4, 0.8), (w3, 0.2, 0.1, 0.6)}, {(w1w2, 0.1, 0.3, 0.7), (w2w3, 0.1, 0.1, 0.5)})}.
A mapping fN : V1 → V2 defined by fe1(v1) = w2, fe1(v2) = w1 and fe2(v1) = w2, fe2(v2) = w3,
and fe2(v3) = w1, then TF1(e1)(v1) = TF2(e1)(w2), IF1(e1)(v1) = IF2(e1)(w2), FF1(e1)(v1) = FF2(e1)(w2),
and TF1(e1)(v2) = TF2(e1)(w1), IF1(e1)(v2) = IF2(e1)(w1), FF1(e1)(v2) = FF2(e1)(w1), but TK1(e1)(v1v2) =
TK2(e1)(w2w1), IK1(e1)(v1v2) 6= IK2(e1)(w2w1), FK1(e1)(v1v2) = FK2(e1)(w2w1). Clearly, H1(e1) is weak
isomorphic to H2(e1). By routine computation, we can see that H1(e2) is weak isomorphic to H2(e2).
Hence G1 is weak isomorphic to G2 but not isomorphic as shown in Figure 3.1.

Example 3.4. Let N = {e1, e2} be a parameter set. G1 = (F1,K1, N) and G2 = (F1,K2, N) be two IN-
SGs as shown in Figure 3.2. A mapping fN : V1 → V2 defined by fe1(w1) = v2, fe1(w2) = v1, fe1(w3) = v4,
fe1(w4) = v3 and fe2(w1) = v1, fe2(w2) = v2, and fe2(w3) = v3. By routine computations, we can see that
G1 is co-weak isomorphic to G2 but not isomorphic as TF1(e1)(w2) = TF2(e1)(v1), IF1(e1)(w2) 6= IF2(e1)(v1),
FF1(e1)(w2) 6= FF2(e1)(v1) and TF1(e2)(w3) 6= TF2(e2)(v3), IF1(e2)(w3) 6= IF2(e2)(v3), FF1(e2)(w3) 6= FF2(e2)(v3).

Theorem 3.5. For any two isomorphic INSGs their order and size are same.

Definition 3.6. Let G be an INSG with V as the underlying set. A one-to-one, onto map fN : V → V
is an automorphism of G if
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Figure 3.2: G1 = {H1(e1),H1(e2)}, and G2 = {H2(e1),H2(e2).

(i) TF1(e)(v1) = TF2(e)(fe(v1)), IF1(e)(v1) = IF2(e)(fe(v1)), FF1(e)(v1) = FF2(e)(fe(v1)),

(ii) TK1(e)(v1v2) = TK2(e)(fe(v1)fe(v2)), IK1(e)(v1v2) = IK2(e)(fe(v1)fe(v2)), FK1(e)(v1v2) = FK2(e)(fe(v1)fe(v2)),

for all e ∈ N, v1, v2 ∈ V .

Definition 3.7. An INSG G = (F,K,N) of G∗ = (V,E) is an ordered intuitionistic neutrosophic soft

graph if satisfies the following condition:

TF (e)(v1) ≤ TF (e)(v2), IF (e)(v1) ≤ IF (e)(v2), FF (e)(v1) ≥ FF (e)(v2),

TF (e)(w1) ≤ TF (e)(w2), IF (e)(w1) ≤ IF (e)(w2), FF (e)(w1) ≥ FF (e)(w2),

for v1, v2, w1, w2 ∈ V, v1 6= w1, v2 6= w2, for all e ∈ N , imply

TK(e)(v1w1) ≤ TK(e)(v2w2), IK(e)(v1w1) ≤ IK(e)(v2w2), FK(e)(v1w1) ≥ FK(e)(v2w2) .

Proposition 3.8. Let G1, G2 and G3 are INSGs. Then the isomorphism between these intuitionistic

neutrosophic soft graphs is an equivalence relation.

Proof. Let G1 = (F1,K1, N), G2 = (F2,K2, N), and G3 = (F3,K3, N) are three INSGs with the under-
lying sets V1, V2 and V3, respectively.

(1) Reflexive: Consider identity mapping fN : V1 → V1, fe(v) = v for all v ∈ V1, satisfying
TF1(e)(v) = TF2(e)(fe(v)), IF1(e)(v) = IF2(e)(fe(v)), FF1(e)(v) = FF2(e)(fe(v)),
TK1(e)(uv) = TK2(e)(fe(u)fe(v)), IK1(e)(uv) = IK2(e)(fe(u)fe(v)), FK1(e)(uv) = FK2(e)(fe(u)fe(v)),
for all u, v ∈ V1, e ∈ N. Hence fN is an isomorphism of intuitionistic neutrosophic soft graph to
itself.

(2) Symmetric: Let fN : V1 → V2 be an isomorphism of G1 onto G2, fe(v) = v′ for all v ∈ V1, such
that
TF1(e)(v) = TF2(e)(fe(v)), IF1(e)(v) = IF2(e)(fe(v)), FF1(e)(v) = FF2(e)(fe(v)),
TK1(e)(uv) = TK2(e)(fe(u)fe(v)), IK1(e)(uv) = IK2(e)(fe(u)fe(v)), FK1(e)(uv) = FK2(e)(fe(u)fe(v)),
for all u, v ∈ V1, e ∈ N .
As fN is a bijective mapping, f−1(v′) = v for all v′ ∈ V2, then
TF2(e)(v

′) = TF1(e)(f
−1(v′)), IF2(e)(v

′) = IF1(e)(f
−1(v′)), FF2(e)(v

′) = FF1(e)(f
−1(v′)),

TK2(e)(u
′v′) = TK1(e)(f

−1(u′)f−1(v′)), IK2(e)(u
′v′) = IK1(e)(f

−1(u′)f−1(v′)),
FK2(e)(u

′v′) = FK1(e)(f
−1(u′)f−1(v′)) for all u′, v′ ∈ V2, e ∈ N.

Hence f−1 : V2 → V1 is an isomorphism from G2 to G1, that is G1
∼= G2 implies G2

∼= G1.

(3) Transitive: Let fN : V1 → V2 and gN : V2 → V3 are isomorphisms of the intuitionistic neutrosophic
soft graphs G1 onto G2 and G2 onto G3, respectively. For transitive relation we consider a bijective
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mapping gN ◦ fN : V1 → V3 such that (gN ◦ fN )(u) = ge(fe(u)) for all u ∈ V1.
As fN : V1 → V2 is an isomorphism from G1 onto G2, such that fe(v) = v′ for all v ∈ V1, then

TF1(e)(v) = TF2(e)(fe(v)) = TF2(e)(v
′), IF1(e)(v) = IF2(e)(fe(v)) = IF2(e)(v

′),
FF1(e)(v) = FF2(e)(fe(v)) = FF2(e)(v

′), and
TK1(e)(uv) = TK2(e)(fe(u)fe(v)) = TK2(e)(u

′v′), IK1(e)(uv) = IK2(e)(fe(u)fe(v)) = IK2(e)(u
′v′),

FK1(e)(uv) = FK2(e)(fe(u)fe(v)) = FK2(e)(u
′v′), for all u, v ∈ V1, e ∈ N.

As gN : V2 → V3 is an isomorphism from G2 onto G3 such that ge(v
′) = v′′ for all v′ ∈ V2,

then

TF2(e)(v
′) = TF3(e)(ge(v

′)) = TF2(e)(v
′′), IF2(e)(v

′) = IF3(e)(ge(v
′)) = IF3(e)(v

′′),
FF2(e)(v

′) = FF3(e)(ge(v
′)) = FF3(e)(v

′′), and
TK2(e)(u

′v′) = TK3(e)(ge(u
′)ge(v

′)) = TK3(e)(u
′′v′′), IK2(e)(u

′v′) = IK3(e)(ge(u
′)ge(v

′)) = IK2(e)(u
′′v′′),

FK2(e)(u
′v′) = FK3(e)(ge(u

′)ge(v
′)) = FK3(e)(u

′′v′′), for all u′, v′ ∈ V2, e ∈ N.

For transitive relation we consider a bijective mapping gN ◦ fN : V1 → V3, then

TF1(e)(v) = TF2(e)(fe(v)) = TF2(e)(v
′) = TF3(e)(ge(fe(v))),

IF1(e)(v) = IF2(e)(fe(v)) = IF2(e)(v
′) = IF3(e)(ge(fe(v))),

FF1(e)(v) = FF2(e)(fe(v)) = FF2(e)(v
′) = FF3(e)(ge(fe(v))), and

TK1(e)(uv) = TK2(e)(fe(u)fe(v)) = TK2(e)(u
′v′) = TK3(e)(ge(fe(u))ge(fe(v))),

IK1(e)(uv) = IK2(e)(fe(u)fe(v)) = IK2(e)(u
′v′) = IK3(e)(ge(fe(u))ge(fe(v))),

FK1(e)(uv) = FK2(e)(fe(u)fe(v)) = FK2(e)(u
′v′) = FK3(e)(ge(fe(u))ge(fe(v))) for all u, v ∈ V1, e ∈

N.
Therefore gN ◦ fN is an isomorphism between G1 and G3.

Hence isomorphism between INSGs by (1), (2) and (3) is an equivalence relation.

Proposition 3.9. Let G1, G2 and G3 are INSGs. Then the weak isomorphism between these INGs is a

partial order relation

Proof. Let G1 = (F1,K1, N), G2 = (F2,K2, N), and G3 = (F3,K3, N) are three INSGs with the under-
lying sets V1, V2 and V3, respectively.

(1) Reflexive: Consider identity mapping fN : V1 → V1, fe(v) = v for all v ∈ V1, satisfying
TF1(e)(v) = TF2(e)(fe(v)), IF1(e)(v) = IF2(e)(fe(v)), FF1(e)(v) = FF2(e)(fe(v)),
TK1(e)(uv) = TK2(e)(fe(u)fe(v)), IK1(e)(uv) = IK2(e)(fe(u)fe(v)), FK1(e)(uv) = FK2(e)(fe(u)fe(v)),
for all u, v ∈ V1, e ∈ N. Hence fN is a weak isomorphism of intuitionistic neutrosophic soft graph
to itself. Thus G1 is a weak isomorphic to itself.

(2) Anti symmetric: Let fN : V1 → V2 be an isomorphism of G1 onto G2, fe(v) = v′ for all v ∈ V1,
such that
TF1(e)(v) = TF2(e)(fe(v)), IF1(e)(v) = IF2(e)(fe(v)), FF1(e)(v) = FF2(e)(fe(v)),
TK1(e)(uv) ≤ TK2(e)(fe(u)fe(v)), IK1(e)(uv) ≤ IK2(e)(fe(u)fe(v)), FK1(e)(uv) ≥ FK2(e)(fe(u)fe(v)),
for all u, v ∈ V1, e ∈ N .
Let gN : V2 → V1 be an isomorphism of G2 onto G1, ge(v

′) = v for all v′ ∈ V2, such that
TF2(e)(v

′) = TF1(e)(ge(v
′)), IF2(e)(v

′) = IF1(e)(ge(v
′)), FF2(e)(v

′) = FF2(e)(ge(v
′)),

TK2(e)(u
′v′) ≤ TK1(e)(ge(u

′)ge(v
′)), IK2(e)(u

′v′) ≤ IK1(e)(ge(u
′)ge(v

′)), FK2(e)(u
′v′) ≥ FK1(e)(ge(u

′)ge(v
′)),

for all u′, v′ ∈ V2, e ∈ N .
Both weak isomorphisms fN from G1 onto G2 and gN from G2 onto G3, are holds when G1 and
G2 have same number of edges and the corresponding edges have same truth-membership degree,
indeterminacy-membership degree and falsity-membership degree corresponding to the parameter
to the set of parameters. Hence G1 and G2 are identical.
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(3) Transitive: Let fN : V1 → V2 and gN : V2 → V3 are weak isomorphisms of the intuitionistic neutro-
sophic soft graphs G1 onto G2 and G2 onto G3, respectively. For transitive relation we consider a
bijective mapping gN ◦ fN : V1 → V3 such that (gN ◦ fN )(u) = ge(fe(u)) for all u ∈ V1.
As fN : V1 → V2 is a weak isomorphism from G1 onto G2, such that fe(v) = v′ for all v ∈ V1, then

TF1(e)(v) = TF2(e)(fe(v)) = TF2(e)(v
′), IF1(e)(v) = IF2(e)(fe(v)) = IF2(e)(v

′),
FF1(e)(v) = FF2(e)(fe(v)) = FF2(e)(v

′), and
TK1(e)(uv) ≤ TK2(e)(fe(u)fe(v)) = TK2(e)(u

′v′), IK1(e)(uv) ≤ IK2(e)(fe(u)fe(v)) = IK2(e)(u
′v′),

FK1(e)(uv) ≥ FK2(e)(fe(u)fe(v)) = FK2(e)(u
′v′), for all u, v ∈ V1, e ∈ N.

As gN : V2 → V3 is an isomorphism from G2 onto G3 such that ge(v
′) = v′′ for all v′ ∈ V2,

then

TF2(e)(v
′) = TF3(e)(ge(v

′)) = TF3(e)(v
′′), IF2(e)(v

′) = IF3(e)(ge(v
′)) = IF3(e)(v

′′),
FF2(e)(v

′) = FF3(e)(ge(v
′)) = FF3(e)(v

′′), and
TK2(e)(u

′v′) ≤ TK3(e)(ge(u
′)ge(v

′)) = TK3(e)(u
′′v′′), IK2(e)(u

′v′) ≤ IK3(e)(ge(u
′)ge(v

′)) = IK3(e)(u
′′v′′),

FK2(e)(u
′v′) ≥ FK3(e)(ge(u

′)ge(v
′)) = FK3(e)(u

′′v′′), for all u′, v′ ∈ V2, e ∈ N.

For transitive relation we consider a bijective mapping gN ◦ fN : V1 → V3, then

TF1(e)(v) = TF2(e)(fe(v)) = TF2(e)(v
′) = TF3(e)(ge(fe(v))),

IF1(e)(v) = IF2(e)(fe(v)) = IF2(e)(v
′) = IF3(e)(ge(fe(v))),

FF1(e)(v) = FF2(e)(fe(v)) = FF2(e)(v
′) = FF3(e)(ge(fe(v))), and

TK1(e)(uv) ≤ TK2(e)(fe(u)fe(v)) = TK2(e)(u
′v′) ≤ TK3(e)(ge(fe(u))ge(fe(v))),

IK1(e)(uv) ≤ IK2(e)(fe(u)fe(v)) = IK2(e)(u
′v′) ≤ IK3(e)(ge(fe(u))ge(fe(v))),

FK1(e)(uv) ≥ FK2(e)(fe(u)fe(v)) = FK2(e)(u
′v′) ≥ FK3(e)(ge(fe(u))ge(fe(v))) for all u, v ∈ V1, e ∈

N.
Therefore gN ◦ fN is a weak isomorphism between G1 and G3, i.e., weak isomorphism satisfying
transitivity.

Hence isomorphism between INSGs by (1), (2) and (3) is a partial order relation.

Definition 3.10. An INSG G is self complementary if G ≈ Gc.

Proposition 3.11. Let G1 and G2 are INSGs. Then G1
∼= G2 if and only if Gc

1
∼= Gc

2.

Proof. Let G1, G2 be the two INSGs. Suppose that G1
∼= G2, then there exist a bijective mapping fN :

V1 → V2 such that fe(v) = v′ for all v ∈ V1, TF1(e)(v) = TF2(e)(fe(v)), IF1(e)(v) = IF2(e)(fe(v)), FF1(e)(v) =
FF2(e)(fe(v)), and TK1(e)(uv) = TK2(e)(fe(u)fe(v)), IK1(e)(uv) = IK2(e)(fe(u)fe(v)),
FK1(e)(uv) = FK2(e)(fe(u)fe(v)), for all u, v ∈ V1, e ∈ N. By the definition of complement of INSGs

T c
K1(e)

(uv) = TF1(e)(u) ∧ TF1(e)(v)− TK1(e)(uv),

= TF2(e)(fe(u)) ∧ TF2(e)(fe(v)) − TK2(e)(fe(u)fe(v))

= T c
K2(e)

(fe(u)fe(v)),

IcK1(e)
(uv) = IF1(e)(u) ∧ IF1(e)(v)− IK1(e)(uv),

= IF2(e)(fe(u)) ∧ TF2(e)(fe(v)) − IK2(e)(fe(u)fe(v))

= IcK2(e)
(fe(u)fe(v)),

F c
K1(e)

(uv) = FF1(e)(u) ∨ FF1(e)(v) − FK1(e)(uv),

= FF2(e)(fe(u)) ∧ FF2(e)(fe(v))− FK2(e)(fe(u)fe(v))

= F c
K2(e)

(fe(u)fe(v))
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Hence Gc
1
∼= Gc

2.
Conversely, assume that Gc

1
∼= Gc

2, then there exist an isomorphism gN : V1 → V2 such that ge(v) = v′,
TF1(e)(v) = TF2(e)(ge(v)), IF1(e)(v) = IF2(e)(ge(v)), FF1(e)(v) = FF2(e)(fe(v)), for all v ∈ V1, e ∈ N ,T c

K1(e)
(uv) =

T c
K2(e)

(ge(u)ge(v)), I
c
K1(e)

(uv) = Ic
K2(e)

(ge(u)ge(v)), F
c
K1(e)

(uv) = F c
K2(e)

(ge(u)ge(v)), for all u, v ∈ V1, e ∈
N.
By using the definition of complement of intuitionistic neutrosophic soft graph

T c
K1(e)

(uv) = T c
F1(e)

(u) ∧ T c
F1(e)

(v)− TK1(e)(uv),

T c
K2(e)

(ge(u)ge(v)) = T c
F2(e)

(ge(u)) ∧ T c
F2(e)

(ge(v)) − TK2(e)(ge(u)ge(v)),

IcK1(e)
(uv) = IcF1(e)

(u) ∧ IcF1(e)
(v)− IK1(e)(uv),

IcK2(e)
(ge(u)ge(v)) = IcF2(e)

(ge(u)) ∧ IcF2(e)
(ge(v)) − IK2(e)(ge(u)ge(v)),

F c
K1(e)

(uv) = F c
F1(e)

(u) ∨ F c
F1(e)

(v)− FK1(e)(uv),

F c
K2(e)

(ge(u)ge(v)) = F c
F2(e)

(ge(u)) ∨ F c
F2(e)

(ge(v)) − FK2(e)(ge(u)ge(v)).

As T c
K1(e)

(uv) = T c
K2(e)

(ge(u)ge(v)), I
c
K1(e)

(uv) = Ic
K2(e)

(ge(u)ge(v)), F
c
K1(e)

(uv) = F c
K2(e)

(ge(u)ge(v)), for
all u, v ∈ V1, e ∈ N, gN : V1 → V2 is an isomorphism between G1 and G2, that is G1

∼= G2.

Proposition 3.12. If G1 is co-weak isomorphic to G2, then there can be a homomorphism between Gc
1

and Gc
2.

Proposition 3.13. If G1 is weak isomorphic to G2, then G
c
1 and G

c
2 are weak isomorphic intuitionistic

neutrosophic soft graphs.

4 Applications

Intuitionistic neutrosophic soft graph has several applications in decision making problems and used to
deal with uncertainties from our different daily life problems. In this section we apply the concept of
INSSs in a decision making problems. Many practical problems can be represented by graphs. We present
an application of INSG to a multiple criteria decision-making problem. We present an algorithm for most
appropriate selection of an object in a multiple criteria decision-making problem.

Algorithm 4.1.

1. Input the set of parameters e1, e2, . . . , ek .

2. Input the INSSs (F,N) and (K,N).

3. Input the INGs H(e1),H(e2), . . . ,H(ek).

4. Calculate the score values of INGs H(e1),H(e2), . . . ,H(ek) using formula

Sij :=
√

(Tj)2 + (Ij)2 + (1− Fj)2 (4.1)

Tabular representation of score values of INGs H(ek), ∀ k.

5. Compute the choice values of Cp =
∑

j

Sij for all i = 1, 2, . . . , n and p = 1, 2, . . . , k.

6. The decision is Si if Si =
n

max
i=1

{
k

min
p=1

Cp}.

7. If i has more than one value then any one of Si may be chosen.
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An algorithm for the selection of optimal object based upon given set of information.

1. An appropriate selection of a machine for a specific task is an important decision-making problem
for a machine manufacturing corporation. The performance of a manufacturing corporation is
badly effected by the wrong selection. The main purpose in machine selection is that machine
will achieve the require tasks within possible short time and minimum cost. The main purpose
is select the machine that will complete the required task within the time available for the lowest
possible cost. Rate of productivity, automatic system and price are important aspects consider in
selection of a machine. The rate of productivity, value of product and charge of manufacturing
depends upon the performance of machine. Mr. X should be an expert or at least familiar with
the machine properties, to select a best machine among the parameters (alternatives), i.e., “price”,
“rate of productivity” and “automatic system”. Let V = {m1,m2,m3,m4,m5,m6}, set of six
machines to be consider as the universal set and N = {e1, e2, e3} be the set of parameters that
characterize the machine, the parameters e1, e2 and e3 stands for “price”, “rate of productivity” and
“automatic system”, respectively. Consider the INSS (F,N) over V which define the “efficiency of
machines” corresponding to the given parameters that Mr. X want to select. (K,N) is an INSS over
E = {m1m2,m2m3,m6m1,m1m3,m1m4,m1m5,m2m4,m2m5,m2m6,m3m4,m3m5,m3m6,m4m5,
m4m6,m5m6} define degree of truth membership, degree of indeterminacy, and degree of falsity
membership of the connection between two machines corresponding to the selected attributes e1,
e2 and e3. The INGs H(e1), H(e2) and H(e3) of INSG G = {H(e1),H(e2),H(e3)} corresponding to
the parameters “price”, “machinery size” and “automatic system”, respectively are shown in Figure
4.1.
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Figure 4.1: Intuitionistic neutrosophic soft graph G = {H(e1),H(e2),H(e3)}
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Tabular representation of score values of INGs H(e1), H(e2), and H(e3) with normalized score

function Sij =
√

(Tj)2 + (Ij)2 + (1− Fj)2 and choice value for each machinemi for i = 1, 2, 3, 4, 5, 6.

Table 2: Tabular representation of score values and choice values of H(e1).
m1 m2 m3 m4 m5 m6 ḿk

m1 0 0.62 0.62 0.80 0.67 0.71 3.42
m2 0.62 0 0 0.66 0.91 0.97 3.16
m3 0.62 0 0 0.70 0.94 0.99 3.25
m4 0.80 0.66 0.70 0 0 0.75 2.91
m5 0.67 0.91 0.94 0 0 1.0 3.52
m6 0.71 0.97 0.94 0.75 1.0 0 4.37

Table 3: Tabular representation of score values and choice values of H(e2).
m1 m2 m3 m4 m5 m6 ḿk

m1 0 0.79 0.94 1.0 0.88 0.78 4.39
m2 0.79 0 0.75 0 0.94 0 2.48
m3 0.94 0.75 0 0.95 0.93 0 3.57
m4 1.0 0 0.95 0 1.0 0.95 3.9
m5 0.88 0.94 0.93 1.0 0 1.0 4.75
m6 0.78 0 0 0.95 1.0 0 2.73

Table 4: Tabular representation of score values and choice values of H(e3).
m1 m2 m3 m4 m5 m6 ḿk

m1 0 0.94 0.94 0.95 0.99 0.81 4.63
m2 0.94 0 0.94 0.94 1.0 0.67 4.49
m3 0.94 0.94 0 0.94 0.86 0 3.68
m4 0.95 0.94 0.94 0 0 0.79 3.62
m5 0.99 1.0 0.86 0 0 0.70 3.55
m6 0.81 0.67 0 0.79 0.70 0 2.97

The decision is Si if Si =
6

max
i=1

{
3

min
p=1

mp} =
6

max
i=1

{3.42, 2.48, 3.25, 2.91, 3.52, 2.73}= 3.52. Clearly, the

maximum score value is 3.52, scored by the m5. Mr. X will buy the machine m5.

2. We present a multi-criteria decision making problem for product marketing if there are multiple
brands of a product, product marketing has intuitionistic neutrosophic behaviour. Consider Mr. X
who is a retail owner wants to maximize his profit by selling some electronic items which meets all
the requirements set by a retail outlet owner. Let V = {S1, S2, S3, S4, S5} be a set of five brands of
an item to be sold in an international market, and let N = {e1 =“price”, e2 =“quality”} be a set of
parametric factors in product marketing. Let (F,N) be the INSS over V , which describe the effec-
tiveness of the brands, TF (ek)(Si), TF (ek)(Si), and TF (ek)(Si), for i = 1, 2, . . . , 5, k = 1, 2 represents
the degree of membership (goodness), degree of indeterminacy and degree of non-membership (poor-
ness) of the brands corresponding to the parameters e1 =“price” and e2 =“quality”, respectively
and (K,N) be the INSS on E = {S1S2, S1S4, S1S3, S2S3, S3S4, S2S5, S3S5, S1S5, S4S5} describe the
relationship between brands corresponding to the parameters e1 =“price” and e2 =“quality”. The
INSG is shown in Figure 4.2. The method for selection of brand in product marketing is presented
in Algorithm 4.2.
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Algorithm 4.2.

(a) Input the set of parameters e1, e2, . . . , ek .

(b) Input the INSSs (F,N) and (K,N).

(c) Construct ING H(e1) ∩H(e2) ∩ . . . ∩H(ek).

(d) Calculate the average score values of INGs H(e) using formula

ζij :=
TjF (e) + IjF (e) + 1− FjF (e)

3
, (4.2)

Tabular representation of score values of INGs H(e).

(e) Compute the choice values of Ci =
∑

j

ζij for all i = 1, 2, . . . , n.

(f) The decision is Si if Si =
n

max
i=1

Ci.

(g) If i has more than one value then any one of Si may be chosen.

b b

b b

b

b

b b b
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Figure 4.2: Intuitionistic neutrosophic soft graph.

The ING H(e1) ∩ H(e2) is shown in Figure 4.3. and tabular representation of average score values
of ING is shown in Table 5.
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Figure 4.3: H(e1) ∩H(e2)
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Table 5: Tabular representation of score values with choice values.

S1 S2 S3 S4 S5 Ći

S1 0 0.27 0 0.23 0 0.5
S2 0.27 0 0.27 04 0 0.54
S3 0 0.27 0 0.30 0.30 0.87
S4 0.23 0 0.30 0 0 0.53
S5 0 0 0.30 0 0 0.30

Clearly, the maximum score value is 0.87, scored by the S3. Mr. X will choose the brand S3.
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