
Progress in Nonlinear Dynamics and Chaos 
Vol. 3, No. 1, 2015, 25-39 
ISSN:  2321 – 9238 (online) 
Published on 20 August 2015 
www.researchmathsci.org 
 

25 
 

Progress in 

Row and Column-Max-Average Norm and Max-Min 
Norm of Fuzzy Matrices 

Suman Maity 

Department of Applied Mathematics with Oceanology and Compute Programming 
Vidyasagar University, Midnapore - 721102, India 

email: maitysuman2012@gmail.com 

Received 12 July 2015; accepted 16 August 2015 

Abstract. In this paper, we define two new type of operators of fuzzy matrices denoted by 
the symbol ⊕ and .⊗ Using these operators of fuzzy matrices we define row-max-
average norm, column-max-average norm. Here instead of addition of fuzzy matrices we 
use the operator ⊕  and instead of multiplication of fuzzy matrices we use the 
operator .⊗ We also define Pseudo norm of fuzzy matrices and max-min norm. 
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1. Introduction 
The study of linear algebra has become more and more popular in the last few decades. 
People are attracted to this subject because of its beauty and its connection with many 
other pure and applied areas. In theoretical development of the subject as well as in many 
application, one often needs to measure the length of vectors. For this purpose, norm 
functions are consider on a vector space.  

A norm on a real vector space V is a function  satisfying   

    1.  0>u  for any nonzero .Vu ∈  

    2.  urru |=|  for any Rr ∈  and u ∈V. 

    3.  vuvu +≤+  for any ., Vvu ∈  

The norm is a measure of the size of the vector u  where condition (1) requires the size to 
be positive, condition (2) requires the size to be scaled as the vector is scaled, and 
condition (3) is known as the triangle inequality and has its origin in the notion of 

distance in 3R . The condition (2) is called homogeneous condition and this condition 
ensure that the norm of the zero vector in V is 0; this condition is often included in the 
definition of a norm. 

      Common example of norms on nR  are the pl  norms,where ∞≤≤ p1 , defined by  
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above with 1<<0 p , then it does not satisfy the triangle inequality, hence is not a norm. 
Given a norm on a real vector space V, one can compare the norms of vectors, discuss 
convergence of sequence of vectors, study limits and continuity of transformations, and 
consider approximation problems such as finding the nearest element in a subset or a 
subspace of V to a given vector. These problems arise naturally in analysis, numerical 
analysis, differential equations, Markov chains, etc. 
       The norm of a matrix is a measure of how large its elements are. It is a way of 
determining the "size" of a matrix that is necessarily related to how many rows or 
columns the matrix has. The norm of a square matrix A is a non negative real number 

denoted by A . There are several different ways of defining a matrix norm but they all 

share the following properties: 

1. 0≥A  for any square matrixA . 

2. 0=A  iff the matrix 0=A . 

3. AKKA |=|  for any scalerK . 

4. BABA +≤+  for any square matrix BA, . 

5. BAAB ≤  

 
Different types of matrix norm: 
 
The 1-norm 

A 1= |)|(max
1=1

ij

n

inj
a∑

≤≤
 

The infinity norm 

∞
A = |)|(max

1=1
ij

n

jni
a∑

≤≤
 

The infinity norm of a square matrix is the maximum of the absolute row sum. Simply we 
sum the absolute values along each row and then take the biggest answer. 

Euclidean norm 

2

1=1=

)(= ij

n

j

n

i
E

aA ∑∑  

The Euclidean norm of a square matrix is the square root of the sum of all the squares of 
the elements. This is similar to ordinary "Pythagorean" length where the size of a vector 
is found by taking the square root of the sum of the squares of all the elements. 
      Any definition you can define of which satisfies the five condition mentioned at the 
beginning of this section is a definition of a norm. There are many many possibilities, but 
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the three given above are among the most commonly used. 
Like vector norm and matrix norm, norm of a fuzzy matrix is also a function 

[0,1])(: →FM n.  which satisfies the following properties  

            1. 0≥A  for any fuzzy matrix A . 

2. 0=A  iff the fuzzy matrixA =0. 

3. AKKA |=|  for any scaler [0,1]∈K . 

4. BABA +≤+  for any two fuzzy matrix A  and B . 

5. BAAB ≤  for any two fuzzy matrix A  and B . 

In this project paper we will define different type of norm on fuzzy matrices. 
 

2. Fuzzy matrix 
We know that matrices play an important role in various areas such as mathematics, 
physics, statistics, engineering, social sciences and many others. Several works on 
classical matrices are available in different journals even in books also. But in our real 
life problems in social science, medical science, environment etc. do not always involve 
crisp data. Consequently, we can not successfully use traditional classical matrices 
because of various types of uncertainties present in our daily life problems. Nowa days 
probability, fuzzy sets, intuitionistic fuzzy sets, vague sets, rough sets are used as 
mathematical tools for dealing uncertainties. Fuzzy matrices arise in many application, 
one of which is as adjacency matrices of fuzzy relations and fuzzy relational equations 
have important applications in pattern classification and in handing fuzziness in 
knowledge based systems. 
            Fuzzy matrices were introduce for the first time by Thomason [42], who 
discussed the convergence of powers of fuzzy matrix.  Ragab et al. [33,34] presented 
some properties of the min-max composition of fuzzy matrices. Hashimoto [18,19] 
studied the canonical form of a transitive fuzzy matrix. Hemashina et al. [20] Investigated 
iterates of fuzzy circulant matrices. Powers and nilpotent conditions of matrices over a 
distributive lattice are consider by Tan [41]. After that Pal, Bhowmik, Adak, Shyamal, 
Mondal have done lot of works on fuzzy, intuitionistic fuzzy, interval-valued fuzzy, etc. 
matrices [1-12,25-32,35-39]. 

The elements of a fuzzy matrix  having values in the closed interval [0,1]. We 
can still see that all fuzzy matrices are matrices but every matrix in general is not a fuzzy 
matrix. We see the fuzzy interval, i.e. the unit interval is a subset of reals. Thus a matrix 
in general is not a fuzzy matrix since the unit interval [0,1] is contained in the set of reals. 
The big question is can we add two fuzzy matrices A and B and get the sum of them to be 
fuzzy matrix. The answer in general is not possible for the sum of two fuzzy matrices 
may turn out to be a matrix which is not a fuzzy matrix. If we add above two fuzzy 
matrix A and B then all entries in A+B will not lie in [0,1], hence A+B is only just a 
matrix and not a fuzzy matrix.  

So only in case of fuzzy matrices the max or min operation are defined. Clearly 
under the max or min operation the resultant matrix is again a fuzzy matrix. In general to 
add two matrix we use max operation.  

We see the product of two fuzzy matrices under usual matrix multiplication is not 
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a fuzzy matrix. So we need to define a compatible operation analogous to product so that 
the product again happens to be a fuzzy matrix. However even for this new operation if 
the product XY is to be defined we need the number of columns of X is equal to the 
number of rows of Y. The two types of operation which we can have are max-min 
operation and min-max operation. 
              In [23], we introduced max-norm and square-max norm of fuzzy matrices and 
some properties of this two norm.  
              In this paper, we we have introduced two new operators on fuzzu matrices 
denoted by the symbol ⊕ and ⊗ . Using these operators we define different types of 
norm of fuzzy matrices. 

 
Definition 1. [41] A fuzzy matrix (FM) of order $m\times n$ is defined as � ��
��� , ���� 	 where ���� is the membership value of the ij-th element ���in A.  
 An nn×  fuzzy matrix R is called reflexive iff 1=iir  for all i=1,2,...,n. It is called α -

reflexive iff α≥iir  for all i=1,2,...,n where [0,1]∈α . It is called weakly reflexive iff 

ijii rr ≥  for all i,j=1,2,...,n. An nn×  fuzzy matrix R is called irreflexive iff 0=iir  for all 

i=1,2,...,n.  
 

Definition 2. An nn×  fuzzy matrix S is called symmetric iff jiij ss =  for all i,j=1,2,....,n. 

It is called antisymmetric iff nISS ≤′∧  where nI  is the usual unit matrix.  

 Note that the condition nISS ≤′∧ , means that 0=jiij ss ∧  for all ji ≠  and 

1≤iis  for all i. So if 1=ijS  then 0=jis , which the crisp case. 

 

Definition 3. An nn×  fuzzy matrix N is called nilpotent iff 0=nN  (the zero matrix). If 

0=mN  and 01 ≠−mN ; nm ≤≤1  then N is called nilpotent of degree m. An nn×  

fuzzy matrix E is called idempotent iff EE =2 . It is called transitive iff EE ≤2 . It is 

called compact iff EE ≥2 .  
 
3. New opertors of fuzzy matrices 
We already discussed addition and multiplication of fuzzy matrices in introduction. We 
used max operation to add fuzzy matrices and min-max operation to multiply fuzzy 
matrices till now. But here we will define new type of operators of fuzzy matrices 
denoted by the symbol ⊕  and ⊗ . Instead of addition of fuzzy matrices we will use the 
operator ⊕  and instead of multiplication we will use the operator ⊗ . This two new 
operators are define by the following way. 

If 
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Must be remember that in this type of multiplication, fuzzy matrices will be of same 
order. 

Proposition 1. [23] ),(),(),( 21212211 bbaababa ∨∨∨ +≤++  

4. Row-max-average Norm 
Here we will define a new type of norm called Row-Max-Average norm. We will used 
new type of operators of fuzzy matrices for this norm. Here, at first we will find 
maximum element in each row. Then we will determine the average of the maximum 

element. Row-max-average norm of a fuzzy matrix A is denoted by 
RMA

A  and define 

by 
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Lemma 1. All the conditions of norm are satisfied by )(
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(i) As all 0≥ija  so according to the definition of Row-max-average norm obviously 

0≥
RMA

A . 
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Now 0=
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(ii) Here we define a new type of scaler multiplication as follows 
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Hence all the conditions of norm are satisfied by Row-max-average.  
 
5. Properties of row-max-average Norm 
Properties 1. If A  and B  are two fuzzy matrices then 
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Properties 3. If A  and B  are two fuzzy matrices and BA ≤  then
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6. Column-max-average norm 
Like Row-max-average norm we will define Column-max-average norm. Here we will 
find maximum element in each column and then average of the maximum elements. Here 
we will also use the new type of operators of fuzzy matrices. The Column-max-average 
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(i) As all 0≥ija  so according to the definition of Column-max-average norm obviously  
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Hence all the conditions of norm are satisfied by Column-max-average norm. 
 

Note 1. Relation between Row-max-average norm and Column-max-average norm 

is 
CMA

T

RMA
AA = .  

Note 2. If A  is symmetric i.e TAA =  then 
CMARMA

AA = .  

7. Pseudo norm on fuzzy matrix 
Pseudo norm on fuzzy matrices is a one type of norm but there is a difference between 
norm on fuzzy matrix and pseudo norm on fuzzy matrix. Pseudo norm of a fuzzy matrix 
fulfill the following conditions 

1. 0≥A  for any fuzzy matrix A . 

2. if 0=A  then 0=A . 

3. AkkA |=|  for any scaler [0,1]∈k . 

4. BABA +≤+  for any two fuzzy matrix A  and B . 

5. BAAB ≤  for any two fuzzy matrix A  and B . 

Clearly except condition-2 all the condition of norm on fuzzy matrix and pseudo norm on 
fuzzy matrix are same. 
 
8. Max-min Norm 
Max-min norm is an example of pseudo norm on fuzzy matrix. Here, first we will find 
the maximum element in each row and then minimum of the maximum elements. In this 
norm, we will use the new type of addition and multiplication of fuzzy matrices which 
already we use in case of Row-Max-Average norm. Max-Min norm of a fuzzy matrix A 

is denoted by 
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A  and define by .)(=
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Lemma 3. All the conditions of pseudo norm of fuzzy matrix are satisfied b
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9. Conclusion 
In this paper, we define two new types of operators on fuzzy matrices. Using this 
operators we define different types of norm such as row-max-average norm, column-
max-average norm.  Using these norm we can define conditional number to check 
whether a system of linear equation is ill posed or well posed. Norm of fuzzy matrices 
can take a effective contribution to solve a fuzzy system of linear equation. 
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