Isotropic Smarandache Curves in Complex Space C^{3}

Süha Yılmaz
(Dokuz Eylül University, Buca Educational Faculty, 35150, Buca-Izmir, Turkey)
E-mail: suha.yilmaz@deu.edu.tr

Abstract

A regular curve in complex space, whose position vector is composed by Cartan frame vectors on another regular curve, is called a isotropic Smarandache curve. In this paper, I examine isotropic Smarandache curve according to Cartan frame in Complex 3space and give some differential geometric properties of Smarandache curves. We define type-1 $e_{1} e_{3}$-isotropic Smarandache curves, type-2 $e_{1} e_{3}$-isotropic Smarandache curves and $e_{1} e_{2} e_{3}$-isotropic Smarandache curves in Complex space C^{3}.

Key Words: Complex space C^{3}, isotropic Smarandache curves, isotropic cubic.
AMS(2010): 53A05, 53B25, 53B30.

§1. Introduction

It is observe that the imaginary curve in complex space were pioneered by E. Cartan. Cartan defined his moving frame and his special equations in C^{3}. In [6], the Cartan equations of isotropic curve is extended to space C^{4}. Moreover U. Pekmen [2] wrote some characterizations of minimal curves by means of E . Cartan equations in C^{3}.

A regular curve in Euclidean 3-space, whose position vector is composed by Frenet frame vectors on another regular curve, is called Smarandache curve. M. Turgut and S. Yilmaz have defined a special case of such curves and call it Smarandache $T B_{2}$ curves in the space $E_{1}^{4}[7]$. A.T. Ali has introduced some special Smarandache curves in the Euclidean space [9]. Moreover, special Smarandache curves have been investigated by using Bishop frame in Euclidean space [10]. Special Smarandache curves according to Sabban frame have been studied by [11]. Besides some special Smarandache curves have been obtained in E_{1}^{3} by [12]. Apart from M. Turgut defined Smarandache breadth curves [8].

It is given that complex elements and complex curves to real space \mathbb{R}^{3} which are mentioned by Ferruh Semin, see [1]. In complex space C^{3} helices are characterized in [5]. In complex space C^{4}, S. Yilmaz characterized the isotropic curves with constant pseudo curvature which is called the slant isotropic helix. Yılmaz and Turgut give some characterization of isotropic helices in C^{3} [3].

Several authors introduce different types of helices and investigated their properties. For instance, Barros et. al. studied general helices in 3- dimensional Lorentzian space. Izumiya and

[^0]Takeuchi defined slant helices by the property that principal normal mekes a constant angle with a fixed direction [14]. Kula and Yayli studied spherical images of tangent and binormal indicatrices of slant helices and they have shown that spherical images are spherical helix [15]. Ali and Lopez gave some characterization of slant helices in Minkowski 3-space E_{1}^{3} [13].

In this work, using not common vector field know as Cartan frame, I introduce a new Smarandache curves in C^{3}. Also, Cartan apparatus of Smarandache curves have been formed by Cartan apparatus of given curve $\alpha=\alpha(s)$.

§2. Preliminaries

Let x_{p} be a complex analytic function of a complex variable t. Then the vector function

$$
\vec{x}(t)=\sum_{p=1}^{4} x_{p}(t) \vec{k}_{p}
$$

is called an imaginary curve, where $\vec{x}: C \rightarrow C^{4}, \vec{k}_{p}$ are standard basis unit vectors of $E^{3}[6]$.
An isotropic curve $x=x(s)$ in C^{3} is called an isotropic cubic if pseudo curvature of $x(s)$ is congruent to zero. A direction $\left(b_{1}, b_{2}, b_{3}\right)$ is a minimal direction if and only if

$$
\sum_{p=1}^{3} b_{p}^{2}=0
$$

A vector which has a minimal direction is called an isotropic vector or minimal vector. A vector $\vec{\vartheta}$ is a minimal vector if and only if $\vec{\vartheta}^{2}=0$. Common points of a complex plane and absolute are called siklik points of the plane. A plane which is tangent to the absolute is called a minimal plane, see [6]. The curves, of which the square of the distance between the two points equal to zero, are called minimal or isotropic curves [3]. Let s denote pseudo arc-length A curve is an minimal (isotropic) curve if and only if $([4,5])$

$$
\begin{equation*}
\left[\vec{x}^{\prime}(t)\right]^{2}=0 \tag{2.2}
\end{equation*}
$$

where $\frac{d \vec{x}}{d t}=\vec{x}^{\prime}(t) \neq 0$. Let be each point \vec{x} of the isotropic curve. E. Cartan frame is defined (for well-known complex number $i^{2}=-1$) as follows, (see $[1,4]$)

$$
\begin{align*}
\vec{e}_{1} & =\vec{x}^{\prime} \\
\vec{e}_{2} & =i \vec{x}^{\prime \prime} \tag{2.3}\\
\vec{e}_{3} & =-\frac{\beta}{2} \vec{x}^{\prime}+\vec{x}^{\prime \prime \prime}
\end{align*}
$$

where $\beta=\left(\vec{x}^{\prime \prime}\right)^{2}$, equation (2.3) denote by $\left\{\vec{e}_{1}, \vec{e}_{2}, \vec{e}_{3}\right\}$ the moving E. Cartan frame along the isotropic curve \vec{x} in the space C^{3}.

The inner products of these frame vectors are given by

$$
\vec{e}_{i} \cdot \vec{e}_{j}=\left\{\begin{array}{l}
0 \text { if } i+j \equiv 1,2,3,(\bmod 4) \tag{2.4}\\
1 \text { if } i+j=4
\end{array}\right\}
$$

The cross (vectoral) and fixed products of these frame vectors are given by

$$
\begin{align*}
& \vec{e}_{j} \wedge \vec{e}_{k}=i \vec{e}_{j+k-2} \tag{2.5}\\
& <\vec{e}_{1}, \vec{e}_{2} \wedge \vec{e}_{3}>=i
\end{align*}
$$

for $j, k=1,2,3, s=\int_{t_{0}}^{t}-\left[\vec{x}^{\prime}(t)\right]^{\frac{1}{4}} d t$ is a pseudo arc length, also invariant with respect to parameter t. Thus the vector \vec{e}_{1} and \vec{e}_{3} are isotropic vector, \vec{e}_{2} is real vector E. Cartan derivative formulas can be deduced from equation (2.3) as follows

$$
\begin{align*}
\vec{e}_{1}^{\prime} & =i \vec{e}_{2} \\
\vec{e}_{2}^{\prime} & =i\left(k \vec{e}_{1}+\vec{e}_{3}\right) \tag{2.6}\\
\vec{e}_{3}^{\prime} & =i k \vec{e}_{2}
\end{align*}
$$

where $k=\frac{\beta}{2}$ is called pseudo curvature of isotropic curve $x=x(s)$. These equations can be used if the minimal curve is at least of class C^{4}. Here (1) denotes derivative according to pseudo arc length s. In the rest of the paper, we will suppose pseudo curvature is non-vanishing expect in the case of an isotropic cubic. Isotropic sphere with center \vec{m} and radius $r>0$ in C^{3} is defined by

$$
S^{2}=\left\{\vec{p}=\left(p_{1}, p_{2}, p_{3}\right) \in C^{3}:(\vec{p}-\vec{m})^{2}=0\right\}
$$

§3. Type-1 $e_{1}^{\alpha} e_{3}^{\alpha}$-Isotropic Smarandache Curves

Definition 3.1 Let $\alpha=\alpha(s)$ be a unit speed regular isotropic curve in C^{3} and $\left\{e_{1}^{\alpha}, e_{2}^{\alpha}, e_{3}^{\alpha}\right\}$ be its moving Cartan frame. Type-1 $e_{1}^{\alpha} e_{3}^{\alpha}$-isotropic Smarandache curves can be defined by

$$
\begin{equation*}
\vartheta\left(s^{*}\right)=\frac{1}{\sqrt{2}}\left(e_{1}^{\alpha}+e_{3}^{\alpha}\right) . \tag{3.1}
\end{equation*}
$$

Now, we can investigate Cartan invariants of $e_{1}^{\alpha} e_{3}^{\alpha}$-isotropic Smarandache curves according to $\alpha=\alpha(s)$. Differentiating equation (3.1) with respect to pseudo arc length s, we obtain

$$
\begin{equation*}
\vartheta^{\prime}=\frac{d \vartheta}{d s^{*}} \frac{d s^{*}}{d s}=-\frac{i}{\sqrt{2}}\left(1+k^{\alpha}\right) e_{2}^{\alpha} \tag{3.2}
\end{equation*}
$$

where

$$
\begin{equation*}
\frac{d s^{*}}{d s}=\frac{\left(1+k^{\alpha}\right) i}{\sqrt{2}} \tag{3.3}
\end{equation*}
$$

The tangent isotropic vector of curve ϑ can be expressed as follow

$$
\begin{equation*}
e_{1}^{\vartheta}=-\sqrt{1+k^{\alpha}} e_{2}^{\alpha} \tag{3.4}
\end{equation*}
$$

Differentiating equation (3.4) with respect to pseudo arc length s, we obtain

$$
\begin{equation*}
\left(e_{1}^{\vartheta}\right)^{\prime} \frac{d s^{*}}{d s}=2\left(1+k^{\alpha}\right) i e_{1}^{\alpha}+\left(k^{\alpha}\right)^{\prime} e_{2}^{\alpha}+2\left(1+k^{\alpha}\right) i e_{3}^{\alpha} \tag{3.5}
\end{equation*}
$$

Substituting equation (3.3) into equation (3.5), we find

$$
\left(e_{1}^{\vartheta}\right)^{\prime}=\left(2 \sqrt{2} k^{\alpha}\right) e_{1}^{\alpha}-\left(\frac{\sqrt{2}\left(k^{\alpha}\right)^{\prime}}{1+k^{\alpha}} i\right) e_{2}^{\alpha}+2 \sqrt{2} e_{3}^{\alpha}
$$

Since $\left(e_{1}^{\vartheta}\right)^{\prime}=-i e_{2}^{\vartheta}$, the principal vector field of curve ϑ

$$
\begin{equation*}
e_{2}^{\vartheta}=\left(2 \sqrt{2} k^{\alpha}\right) e_{1}^{\alpha}-\left(\frac{\sqrt{2}\left(k^{\alpha}\right)^{\prime}}{1+k^{\alpha}}\right) i e_{2}^{\alpha}+2 \sqrt{2} e_{3}^{\alpha} \tag{3.6}
\end{equation*}
$$

Using Cartan equation $(2.6)_{3}$, we have

$$
\begin{equation*}
e_{3}^{\vartheta}=i \int k^{\vartheta}\left[2 \sqrt{2} k^{\alpha} e_{1}^{\alpha}+\frac{\sqrt{2}\left(k^{\alpha}\right)^{\prime}}{1+k^{\alpha}} e_{2}^{\alpha}+2 \sqrt{2} i e_{3}^{\alpha}\right] d s \tag{3.7}
\end{equation*}
$$

and

$$
\begin{equation*}
k^{\vartheta}=-\frac{\left(e_{3}^{\vartheta}\right)^{\prime}}{e_{2}^{\vartheta}} i \tag{3.8}
\end{equation*}
$$

Substituting equations (3.6) and (3.7) into equation (3.8), we obtain

$$
\begin{equation*}
k^{\vartheta}=\frac{\left\{i \int k^{\vartheta}\left[2 \sqrt{2} k^{\alpha} e_{1}^{\alpha}+\frac{\sqrt{2}\left(k^{\alpha}\right)^{\prime}}{1+k^{\alpha}} e_{2}^{\alpha}+2 \sqrt{2} i e_{3}^{\alpha}\right] d s\right\}^{\prime}}{2 \sqrt{2} k^{\alpha} e_{1}^{\alpha}+\frac{\sqrt{2}\left(k^{\alpha}\right)^{\prime}}{1+k^{\alpha}} e_{2}^{\alpha}+2 \sqrt{2} i e_{3}^{\alpha}} i \tag{3.9}
\end{equation*}
$$

Proposition 3.1 If ϑ a isotropic Smarandache curves in C^{3}, then $k^{\alpha}=-1$.
Proof Using equation (3.4) and definition isotropic curves, it is seen straightforwardly.
Proposition 3.2 Let $\alpha=\alpha(s)$ be a unit speed regular isotropic curve in C^{3}, If δ a isotropic cubic in C^{3}, then pseudo curvature of α satisfies $e_{3}^{\vartheta}=$ constant and $e_{2}^{\vartheta} \neq 0$.

Proof It is seen straightforwardly from definition isotrobic cubic.

§4. Type-2 $e_{1}^{\alpha} e_{3}^{\alpha}$-Isotropic Smarandache Curves

Definition 4.1 Let $\alpha=\alpha(s)$ be a unit speed regular isotropic curve in C^{3} and $\left\{e_{1}^{\alpha}, e_{2}^{\alpha}, e_{3}^{\alpha}\right\}$ be
its moving Cartan frame. Type-2 $e_{1}^{\alpha} e_{3}^{\alpha}$-isotropic Smarandache curves can be defined by

$$
\begin{equation*}
\delta\left(s^{*}\right)=\frac{i}{\sqrt{2}}\left(e_{1}^{\alpha}-e_{3}^{\alpha}\right) . \tag{4.1}
\end{equation*}
$$

Now, we can investigate Cartan invariants of type- $2 e_{1}^{\alpha} e_{3}^{\alpha}$-isotropic Smarandache curves according to $\alpha=\alpha(s)$. Differentiating equation (4.1) with respect to pseudo arc length s, we obtain

$$
\begin{equation*}
\delta^{\prime}=\frac{d \delta}{d s^{*}} \frac{d s^{*}}{d s}=-\frac{1}{\sqrt{2}}\left(k^{\alpha}-1\right) e_{2}^{\alpha} \tag{4.2}
\end{equation*}
$$

and

$$
e_{1}^{\delta} \frac{d s^{*}}{d s}=-\frac{1}{\sqrt{2}}\left(k^{\alpha}-1\right) e_{2}^{\alpha}
$$

where

$$
\begin{equation*}
\frac{d s^{*}}{d s}=\frac{\sqrt{k^{\alpha}-1}}{\sqrt{2}} \tag{4.3}
\end{equation*}
$$

The tangent isotropic vector of curve δ can be expressed as follow

$$
\begin{equation*}
e_{1}^{\delta}=-\sqrt{k^{\alpha}-1} e_{2}^{\alpha} \tag{4.4}
\end{equation*}
$$

Differentiating equation (4.4) with respect to pseudo arc length s, we obtain

$$
\begin{equation*}
e_{2}^{\delta}=\sqrt{k^{\alpha}-1} k^{\alpha} e_{1}^{\alpha}-\frac{i\left(k^{\alpha}\right)^{\prime}}{2 \sqrt{k^{\alpha}-1}} e_{2}^{\alpha}+\sqrt{k^{\alpha}-1} e_{3}^{\alpha} . \tag{4.5}
\end{equation*}
$$

Using definition, binormal vector field and pseudo curvature of isotropic Smarandache curve δ are respectively,

$$
\begin{equation*}
e_{3}^{\delta}=i \int k^{\delta}\left[\sqrt{k^{\alpha}-1} k^{\alpha} e_{1}^{\alpha}-\frac{i\left(k^{\alpha}\right)^{\prime}}{2 \sqrt{k^{\alpha}-1}} e_{2}^{\alpha}+\sqrt{k^{\alpha}-1} e_{3}^{\alpha}\right] d s \tag{4.6}
\end{equation*}
$$

and

$$
\begin{equation*}
k^{\delta}=\frac{\left\{-i \int k^{\delta}\left[\sqrt{k^{\alpha}-1} k^{\alpha} e_{1}^{\alpha}-\frac{i\left(k^{\alpha}\right)^{\prime}}{2 \sqrt{k^{\alpha}-1}} e_{2}^{\alpha}+\sqrt{k^{\alpha}-1} e_{3}^{\alpha}\right] d s\right\}^{\prime}}{\sqrt{k^{\alpha}-1} k^{\alpha} e_{1}^{\alpha}-\frac{i\left(k^{\alpha}\right)^{\prime}}{2 \sqrt{k^{\alpha}-1}} e_{2}^{\alpha}+\sqrt{k^{\alpha}-1} e_{3}^{\alpha}} i . \tag{4.7}
\end{equation*}
$$

Proposition 4.1 If δ a isotropic Smarandache curves in C^{3}, then $k^{\alpha}=1$.

Proof Using equation (4.4) and definition isotropic curves, it is seen straightforwardly.

Proposition 4.2 Let $\alpha=\alpha(s)$ be a unit speed regular isotropic curve in C^{3}, If δ a isotropic cubic in C^{3}, then pseudo curvature of α satisfies $e_{3}^{\delta}=$ constant and $e_{2}^{\delta} \neq 0$.

Proof It is seen straightforwardly from definition isotrobic cubic.

§5. $e_{1}^{\alpha} e_{2}^{\alpha} e_{3}^{\alpha}$-Isotropic Smarandache Curves

Definition 5.1 Let $\alpha=\alpha(s)$ be a unit speed regular isotropic curve in C^{3} and $\left\{e_{1}^{\alpha}, e_{2}^{\alpha}, e_{3}^{\alpha}\right\}$ be its moving Cartan frame. Type-1 $e_{1}^{\alpha} e_{3}^{\alpha}$-isotropic Smarandache curves can be defined by

$$
\begin{equation*}
\eta\left(s^{*}\right)=\frac{1}{\sqrt{3}}\left(e_{1}^{\alpha}+e_{2}^{\alpha}+e_{3}^{\alpha}\right) \tag{5.1}
\end{equation*}
$$

Now, we can investigate Cartan invariants of $e_{1}^{\alpha} e_{2}^{\alpha} e_{3}^{\alpha}$-isotropic Smarandache curves according to $\alpha=\alpha(s)$. Differentiating equation (5.1) with respect to pseudo arc length s, we have

$$
\begin{equation*}
\eta^{\prime}=\frac{d \eta}{d s^{*}} \frac{d s^{*}}{d s}=\frac{1}{\sqrt{3}}\left[i k^{\alpha} e_{1}^{\alpha}-i\left(k^{\alpha}+1\right) e_{2}^{\alpha}+i e_{3}^{\alpha}\right] \tag{5.2}
\end{equation*}
$$

and

$$
\eta^{\prime}=e_{1}^{\eta} \frac{d s^{*}}{d s}=\frac{1}{\sqrt{3}}\left[i k^{\alpha} e_{1}^{\alpha}-i\left(k^{\alpha}+1\right) e_{2}^{\alpha}+i e_{3}^{\alpha}\right]
$$

where

$$
\begin{equation*}
\frac{d s^{*}}{d s}=\frac{\sqrt{1+k^{\alpha}}}{\sqrt{3}} \tag{5.3}
\end{equation*}
$$

The tangent isotropic vector of curve η can be written as follow:

$$
\begin{equation*}
e_{1}^{\eta}=\frac{1}{\sqrt{1+k^{\alpha}}}\left[i k^{\alpha} e_{1}^{\alpha}-i\left(k^{\alpha}+1\right) e_{2}^{\alpha}+i e_{3}^{\alpha}\right] \tag{5.4}
\end{equation*}
$$

Differentiating equation (5.4) with respect to pseudo arc length s, we obtain

$$
\begin{aligned}
e_{2}^{\eta}= & \left\{\left(\frac{-\sqrt{3}}{1+k^{\alpha}}\right)\left[i\left(k^{\alpha}\right)^{\prime}+\left(k^{\alpha}+1\right) k\right]-\left(\frac{-\sqrt{3}}{1+k^{\alpha}}\right)^{\prime} i k^{\alpha}\right\} e_{1}^{\alpha} \\
& -\left\{\left(\frac{\sqrt{3}}{1+k^{\alpha}}\right)\left[-2 k^{\alpha}+\left(k^{\alpha}+1\right)^{\prime}\right]-\left(\frac{-\sqrt{3}}{1+k^{\alpha}}\right)^{\prime}\left(k^{\alpha}+1\right)\right\} e_{2}^{\alpha} \\
& -\left\{\left(\frac{-\sqrt{3}}{1+k^{\alpha}}\right)^{\prime}+\left(\frac{\sqrt{3}}{1+k^{\alpha}}\right)\right\} e_{3}^{\alpha}
\end{aligned}
$$

Using definition, binormal vector field and pseudo curvature of isotropic Smarandache curve η are respectively

$$
\begin{aligned}
e_{3}^{\eta}= & -i \int k^{\eta}\left\{\left\{\left(\frac{-\sqrt{3}}{1+k^{\alpha}}\right)\left[\left(k^{\alpha}\right)^{\prime}+\left(k^{\alpha}+1\right) k^{\alpha}\right]-\left(\frac{-\sqrt{3}}{1+k^{\alpha}}\right)^{\prime} i k^{\alpha}\right\} e_{1}^{\alpha}\right. \\
& -\left\{\left(\frac{\sqrt{3}}{1+k^{\alpha}}\right)\left[2 k^{\alpha}+\left(k^{\alpha}+1\right)^{\prime}\right]-\left(\frac{-\sqrt{3}}{1+k^{\alpha}}\right)^{\prime}\left(k^{\alpha}+1\right)\right\} e_{2}^{\alpha} \\
& \left.-\left\{\left(\frac{\sqrt{3}}{1+k^{\alpha}}\right)^{\prime}+\left(\frac{\sqrt{3}}{1+k^{\alpha}}\right)\right\} e_{3}^{\alpha}\right\} d s
\end{aligned}
$$

Let $e_{3}^{\eta}=H(s)$ and $e_{2}^{\eta}=G(s)$ in this case, we have

$$
\begin{equation*}
k^{\eta}=\frac{(H(s))^{\prime}}{G(s)} \tag{5.5}
\end{equation*}
$$

Proposition 5.1 If η a isotropic Smarandache curves in C^{3}, then $k^{\alpha} \neq-1$.
Proof Using equation (5.4) and definition isotropic curves, it is seen straightforwardly.

Proposition 5.2 Let $\alpha=\alpha(s)$ be a unit speed regular isotropic curve in C^{3}, If η a isotropic cubic in C^{3}, then pseudo curvature of α satisfies $e_{3}^{\eta}=$ constant and $e_{2}^{\eta} \neq 0$.

Proof It is seen straightforwardly from definition isotrobic cubic.

References

[1] F. Şemin, Differential Geometry I, Istanbul University, Science Faculty Press, 1983.
[2] U. Pekmen, On minimal space curves in the sense of Bertrand curves, Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. 10, 38, 1999.
[3] S. Yilmaz and M. Turgut, Some Characterizations of Isotropic Curves in the Euclidean Space, Int. J. Comput. Math. Sci., 2(2), 2008, 107-109.
[4] F. Akbulut, Vector Calculus, Ege University Press, İzmir, 1981.
[5] S. Yilmaz, Contributions to differential geometry of isotropic curves in the complex space, J. Math. Anal. Appl., 374, 673680, 2011.
[6] E. Altinisik, Complex curves in R^{4}, Dissertation, Dokuz Eylül University, Izmir, 1997
[7] M. Turgut, S. Yilmaz, Smarandache Curves in Minkowski SpaceTime, International J. Math. Combin. 2008; 3,: 51-55.
[8] M. Turgut, Smarandache Breadth Pseudo Null Curves in Minkowski Space-Time, International J. Math. Combin., 2009; 1: 46-49.
[9] A.T. Ali, Special Smarandache Curves in The Euclidean Space, Math. Cobin. Bookser, 2010;2: 30-36.
[10] M. Cetin, Y.Tuncer and M. K. Karacan, Smarandache Curves According to Bishop Frame in Euclidean 3-Space, Gen. Math. Notes, 2014; 20: 50-56.
[11] K. Taskopru, M.Tosun, Smarandache Curves on S², Bol. Soc. Paran. Mat., 2014; 32(1): 51-59
[12] N. Bayrak, O. Bektaş and S. Yüce, Special Smarandache Curves in E_{1}^{3}, Mathematical Phy. Sics. and http://arxiv.org/abs/1204.5656.
[13] A.T. Ali, R. Lopez, Slant helices in Minkowski space E ${ }_{1}^{3}$, J. Korean Math. Soc., 48, 159-167, 2011.
[14] S. Izumiya, N. Takeuchi, New special curves and developable surfaces, Turkish J. Math., 28(2), 531537, 2004.
[15] L. Kula, Y. Yaylı, On Slant Helix and Its Spherical Indicatrix, Appl. Math. Comput., 169 (1)(2005), 600-607.

[^0]: ${ }^{1}$ Received January 6, 2016, Accepted November 2, 2016.

