# Minimum Equitable Dominating Randic Energy of a Graph

#### P.Siva Kota Reddy

(Department of Mathematics, Siddaganga Institute of Technology, B.H.Road, Tumkur-572103, India)

#### K. N. Prakasha

(Department of Mathematics, Vidyavardhaka College of Engineering, Mysuru- 570 002, India)

#### Gavirangaiah K

(Department of Mathematics, Government First Grade Collge, Tumkur-562 102, India)

E-mail: reddy\_math@yahoo.com, prakashamaths@gmail.com, gavirangayya@gmail.com

**Abstract**: In this paper, we introduce the minimum equitable dominating Randic energy of a graph and computed the minimum dominating Randic energy of graph. Also, established the upper and lower bounds for the minimum equitable dominating Randic energy of a graph.

**Key Words:** Minimum equitable dominating set, Smarandachely equitable dominating set, minimum equitable dominating Randic eigenvalues, minimum equitable dominating Randic energy.

AMS(2010): 05C50.

#### §1. Introduction

Let G be a simple, finite, undirected graph, The energy E(G) is defined as the sum of the absolute values of the eigenvalues of its adjacency matrix. For more details on energy of graph see [5, 6].

The Randic matrix  $R(G) = (R_{ij})_{n \times n}$  is given by [1-3].

$$R_{ij} = \begin{cases} \frac{1}{\sqrt{d_i d_i}} & \text{if } v_i \sim v_j, \\ 0 & \text{otherwise} \end{cases}$$

We can see lower and upper bounds on Randic energy in [1,2]. Some sharp upper bounds for Randic energy of graphs were obtain in [3].

# §2. The Minimum Equitable Dominating Randic Energy of Graph

Let G be a simple graph of order n with vertex set  $V(G) = \{v_1, v_2, v_3, \dots, v_n\}$  and edge set E. A subset U of V(G) is an equitable dominating set, if for every  $v \in V(G) - U$  there exists a

<sup>&</sup>lt;sup>1</sup>Received December 19, 2016, Accepted August 22, 2017.

vertex  $u \in U$  such that  $uv \in E(G)$  and  $|deg(u) - deg(v)| \le 1$ , and a Smarandachely equitable dominating set is its contrary, i.e.,  $|deg(u) - deg(v)| \ge 1$  for such an edge uv, where deg(x) denotes the degree of vertex x in V(G). Any equitable dominating set with minimum cardinality is called a minimum equitable dominating set. Let E be a minimum equitable dominating set of a graph G. The minimum equitable dominating Randic matrix  $R^E(G) = (R^E_{ij})_{n \times n}$  is given by

$$R_{ij}^{E} = \begin{cases} \frac{1}{\sqrt{d_i d_i}} & \text{if } v_i \sim v_j, \\ 1 & \text{if } i = j \text{ and } v_i \in E, \\ 0 & \text{otherwise} \end{cases}$$

The characteristic polynomial of  $R^E(G)$  is denoted by  $\phi_R^E(G,\lambda) = \det(\lambda I - R^E(G))$ . Since the minimum equitable dominating Randic Matrix is real and symmetric, its eigenvalues are real numbers and we label them in non-increasing order  $\lambda_1 > \lambda_2 > \cdots > \lambda_n$ . The minimum equitable dominating Randic Energy is given by

$$RE_E(G) = \sum_{i=1}^n |\lambda_i|. \tag{1}$$

**Definition** 2.1 The spectrum of a graph G is the list of distinct eigenvalues  $\lambda_1 > \lambda_2 > \cdots > \lambda_r$ , with their multiplicities  $m_1, m_2, \ldots, m_r$ , and we write it as

$$Spec(G) = \begin{pmatrix} \lambda_1 & \lambda_2 & \cdots & \lambda_r \\ m_1 & m_2 & \cdots & m_r \end{pmatrix}.$$

This paper is organized as follows. In the Section 3, we get some basic properties of minimum equitable dominating Randic energy of a graph. In the Section 4, minimum equitable dominating Randic energy of some standard graphs are obtained.

# §3. Some Basic Properties of Minimum Equitable Dominating Randic Energy of a Graph

Let us consider

$$P = \sum_{i < j} \frac{1}{d_i d_j},$$

where  $d_i d_j$  is the product of degrees of two vertices which are adjacent.

**Proposition** 3.1 The first three coefficients of  $\phi_R^E(G,\lambda)$  are given as follows:

- (i)  $a_0 = 1$ ;
- (*ii*)  $a_1 = -|E|$ ;
- (iii)  $a_2 = |E|C_2 P$ .

*Proof* (i) From the definition  $\Phi_R^E(G,\lambda) = det[\lambda I - R^E(G)]$ , we get  $a_0 = 1$ .

(ii) The sum of determinants of all  $1 \times 1$  principal submatrices of  $R^E(G)$  is equal to the trace of  $R^E(G) \Rightarrow a_1 = (-1)^1$  trace of  $[R^E(G)] = -|E|$ .

(iii)

$$(-1)^{2}a_{2} = \sum_{1 \leq i < j \leq n} \begin{vmatrix} a_{ii} & a_{ij} \\ a_{ji} & a_{jj} \end{vmatrix}$$

$$= \sum_{1 \leq i < j \leq n} a_{ii}a_{jj} - a_{ji}a_{ij}$$

$$= \sum_{1 \leq i < j \leq n} a_{ii}a_{jj} - \sum_{1 \leq i < j \leq n} a_{ji}a_{ij}$$

$$= |E|C_{2} - P.$$

**Proposition** 3.2 If  $\lambda_1, \lambda_2, \dots, \lambda_n$  are the minimum equitable dominating Randic eigenvalues of  $R^E(G)$ , then

$$\sum_{i=1}^{n} \lambda_i^2 = |E| + 2P.$$

Proof We know that

$$\sum_{i=1}^{n} \lambda_i^2 = \sum_{i=1}^{n} \sum_{j=1}^{n} a_{ij} a_{ji}$$

$$= 2 \sum_{i < j} (a_{ij})^2 + \sum_{i=1}^{n} (a_{ii})^2$$

$$= 2 \sum_{i < j} (a_{ij})^2 + |E|$$

$$= |E| + 2P.$$

**Theorem** 3.3 Let G be a graph with n vertices and Then

$$RE^E(G) \le \sqrt{n(|E| + 2[P])}$$

where

$$P = \sum_{i < j} \frac{1}{d_i d_j}$$

for which  $d_id_j$  is the product of degrees of two vertices which are adjacent.

*Proof* Let  $\lambda_1, \lambda_2, \dots, \lambda_n$  be the eigenvalues of  $R^E(G)$ . Now by Cauchy - Schwartz inequality we have

$$\left(\sum_{i=1}^{n} a_i b_i\right)^2 \le \left(\sum_{i=1}^{n} a_i^2\right) \left(\sum_{i=1}^{n} b_i^2\right).$$

Let  $a_i = 1$ ,  $b_i = |\lambda_i|$ . Then

$$\left(\sum_{i=1}^{n} |\lambda_i|\right)^2 \le \left(\sum_{i=1}^{n} 1\right) \left(\sum_{i=1}^{n} |\lambda_i|^2\right)$$

Thus,

$$[RE^E]^2 \le n(|E| + 2P),$$

which implies that

$$[RE^E] \le \sqrt{n(|E| + 2P)},$$

i.e., the upper bound.

**Theorem** 3.4 Let G be a graph with n vertices. If  $R = \det R^{E}(G)$ , then

$$RE^{E}(G) \ge \sqrt{(|E| + 2P) + n(n-1)R^{\frac{2}{n}}}.$$

*Proof* By definition,

$$(RE^{E}(G))^{2} = \left(\sum_{i=1}^{n} |\lambda_{i}|\right)^{2}$$

$$= \sum_{i=1}^{n} |\lambda_{i}| \sum_{j=1}^{n} |\lambda_{j}|$$

$$= \left(\sum_{i=1}^{n} |\lambda_{i}|^{2}\right) + \sum_{i \neq j} |\lambda_{i}| |\lambda_{j}|.$$

Using arithmetic mean and geometric mean inequality, we have

$$\frac{1}{n(n-1)} \sum_{i \neq j} |\lambda_i| |\lambda_j| \geq \left( \prod_{i \neq j} |\lambda_i| |\lambda_j| \right)^{\frac{1}{n(n-1)}}.$$

Therefore,

$$[RE^{E}(G)]^{2} \geq \sum_{i=1}^{n} |\lambda_{i}|^{2} + n(n-1) \left( \prod_{i \neq j} |\lambda_{i}| |\lambda_{j}| \right)^{\frac{1}{n(n-1)}}$$

$$\geq \sum_{i=1}^{n} |\lambda_{i}|^{2} + n(n-1) \left( \prod_{i=1}^{n} |\lambda_{i}|^{2(n-1)} \right)^{\frac{1}{n(n-1)}}$$

$$= \sum_{i=1}^{n} |\lambda_{i}|^{2} + n(n-1)R^{\frac{2}{n}}$$

$$= (|E| + 2P) + n(n-1)R^{\frac{2}{n}}.$$

Thus,

$$RE^{E}(G) \ge \sqrt{(|E| + 2P) + n(n-1)R^{\frac{2}{n}}}.$$

# §4. Minimum Equitable Dominating Randic Energy of Some Standard Graphs

**Theorem** 4.1 The minimum equitable dominating Randic energy of a complete graph  $K_n$  is  $RE^E(K_n) = \frac{3n-5}{n-1}$ .

*Proof* Let  $K_n$  be the complete graph with vertex set  $V = \{v_1, v_2, \dots, v_n\}$ . The minimum equitable dominating set  $E = \{v_1\}$ . The minimum equitable dominating Randic matrix is

$$R^{E}(K_{n}) = \begin{bmatrix} 1 & \frac{1}{n-1} & \frac{1}{n-1} & \dots & \frac{1}{n-1} & \frac{1}{n-1} \\ \frac{1}{n-1} & 0 & \frac{1}{n-1} & \dots & \frac{1}{n-1} & \frac{1}{n-1} \\ \frac{1}{n-1} & \frac{1}{n-1} & 0 & \dots & \frac{1}{n-1} & \frac{1}{n-1} \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ \frac{1}{n-1} & \frac{1}{n-1} & \dots & \frac{1}{n-1} & 0 & \frac{1}{n-1} \\ \frac{1}{n-1} & \frac{1}{n-1} & \dots & \frac{1}{n-1} & \frac{1}{n-1} & 0 \end{bmatrix}.$$

The characteristic equation is

$$\left(\lambda + \frac{1}{n-1}\right)^{n-2} \left(\lambda^2 - \frac{2n-3}{n-1}\lambda + \frac{n-3}{n-1}\right) = 0$$

and the spectrum is  $Spec_R^E(K_n) = \begin{pmatrix} \frac{(2n-3)+\sqrt{4n-3}}{2(n-1)} & \frac{(2n-3)-\sqrt{4n-3}}{2(n-1)} & \frac{-1}{n-1} \\ 1 & 1 & n-2 \end{pmatrix}$ .

Therefore, 
$$RE^E(K_n) = \frac{3n-5}{n-1}$$
.

**Theorem** 4.2 The minimum equitable dominating Randic energy of star graph  $K_{1,n-1}$  is

$$RE^{E}(K_{1,n-1}) = \sqrt{5}.$$

*Proof* Let  $K_{1,n-1}$  be the star graph with vertex set  $V = \{v_0, v_1, \dots, v_{n-1}\}$ . Here  $v_0$  be the center. The minimum equitable dominating set E = V(G). The minimum equitable

dominating Randic matrix is

$$R^{E}(K_{1,n-1}) = \begin{bmatrix} 1 & \frac{1}{\sqrt{n-1}} & \frac{1}{\sqrt{n-1}} & \dots & \frac{1}{\sqrt{n-1}} & \frac{1}{\sqrt{n-1}} \\ \frac{1}{\sqrt{n-1}} & 1 & 0 & \dots & 0 & 0 \\ \frac{1}{\sqrt{n-1}} & 0 & 1 & \dots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ \frac{1}{\sqrt{n-1}} & 0 & 0 & \dots & 1 & 0 \\ \frac{1}{\sqrt{n-1}} & 0 & 0 & \dots & 0 & 1 \end{bmatrix}.$$

The characteristic equation is

$$\lambda(\lambda - 1)^{n-2}[\lambda - 2] = 0$$

spectrum is 
$$Spec_R^E(K_{1,n-1}) = \begin{pmatrix} 2 & 1 & 0 \\ 1 & n-2 & 1 \end{pmatrix}$$
.

Therefore, 
$$RE^E(K_{1,n-1}) = n$$
.

**Theorem** 4.3 The minimum equitable dominating Randic energy of Crown graph  $S_n^0$  is

$$RE^{E}(S_{n}^{0}) = \frac{(4n-7) + \sqrt{4n^{2} - 8n + 5}}{n-1}.$$

Proof Let  $S_n^0$  be a crown graph of order 2n with vertex set  $\{u_1, u_2, \dots, u_n, v_1, v_2, \dots, v_n\}$  and minimum dominating set  $E = \{u_1, v_1\}$ . The minimum equitable dominating Randic matrix is

$$R^E(S_n^0) = \begin{bmatrix} 1 & 0 & 0 & \dots & 0 & 0 & \frac{1}{n-1} & \dots & \frac{1}{n-1} & \frac{1}{n-1} \\ 0 & 0 & 0 & \dots & 0 & \frac{1}{n-1} & 0 & \dots & \frac{1}{n-1} & \frac{1}{n-1} \\ 0 & 0 & 0 & \dots & 0 & \frac{1}{n-1} & \dots & \frac{1}{n-1} & 0 & \frac{1}{n-1} \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \dots & 0 & \frac{1}{n-1} & \dots & \frac{1}{n-1} & \frac{1}{n-1} & 0 \\ 0 & \frac{1}{n-1} & \frac{1}{n-1} & \dots & \frac{1}{n-1} & 1 & 0 & \dots & 0 & 0 \\ \frac{1}{n-1} & 0 & \frac{1}{n-1} & \dots & \frac{1}{n-1} & 0 & 0 & \dots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ \frac{1}{n-1} & \frac{1}{n-1} & 0 & \dots & \frac{1}{n-1} & 0 & 0 & \dots & 0 & 0 \\ \frac{1}{n-1} & \frac{1}{n-1} & \frac{1}{n-1} & \dots & 0 & 0 & 0 & \dots & 0 & 0 \end{bmatrix}$$

The characteristic equation is

$$\left(\lambda+\frac{1}{n-1}\right)^{n-2}\left(\lambda-\frac{1}{n-1}\right)^{n-2}\left(\lambda^2-\frac{1}{n-1}\lambda-1\right)\left(\lambda^2-\frac{2n-3}{n-1}\lambda+\frac{n-3}{n-1}\right)=0$$

spectrum is  $Spec_R^E(S_n^0)$ 

$$= \begin{pmatrix} \frac{(2n-3)+\sqrt{4n-3}}{2(n-1)} & \frac{1+\sqrt{4n^2-8n+5}}{2(n-1)} & \frac{(2n-3)-\sqrt{4n-3}}{2(n-1)} & \frac{1}{n-1} & \frac{-1}{n-1} & \frac{1-\sqrt{4n^2-8n+5}}{2(n-1)} \\ 1 & 1 & 1 & n-2 & n-2 & 1 \end{pmatrix}.$$
 Therefore,  $RE^E(S_n^0) = \frac{(4n-7)+\sqrt{4n^2-8n+5}}{n-1}.$ 

**Theorem** 4.4 The minimum equitable dominating Randic energy of complete bipartite graph  $K_{n,n}$  of order 2n with vertex set  $\{u_1, u_2, \dots, u_n, v_1, v_2, \dots, v_n\}$  is

$$RE^{E}(K_{n,n}) = \frac{2\sqrt{n-1}}{\sqrt{n}} + 2.$$

Proof Let  $K_{n,n}$  be the complete bipartite graph of order 2n with vertex set  $\{u_1, u_2, \dots, u_n, v_1, v_2, \dots, v_n\}$ . The minimum equitable dominating set  $E = \{u_1, v_1\}$  with a minimum equitable dominating Randic matrix

$$R^{E}(K_{n,n}) = \begin{bmatrix} 1 & 0 & 0 & 0 & \dots & \frac{1}{n} & \frac{1}{n} & \frac{1}{n} & \frac{1}{n} & \frac{1}{n} \\ 0 & 0 & 0 & 0 & \dots & \frac{1}{n} & \frac{1}{n} & \frac{1}{n} & \frac{1}{n} \\ 0 & 0 & 0 & 0 & \dots & \frac{1}{n} & \frac{1}{n} & \frac{1}{n} & \frac{1}{n} \\ 0 & 0 & 0 & 0 & \dots & \frac{1}{n} & \frac{1}{n} & \frac{1}{n} & \frac{1}{n} \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \vdots \\ \frac{1}{n} & \frac{1}{n} & \frac{1}{n} & \frac{1}{n} & \dots & 1 & 0 & 0 & 0 \\ \frac{1}{n} & \frac{1}{n} & \frac{1}{n} & \frac{1}{n} & \dots & 0 & 0 & 0 & 0 \\ \frac{1}{n} & \frac{1}{n} & \frac{1}{n} & \frac{1}{n} & \dots & 0 & 0 & 0 & 0 \\ \frac{1}{n} & \frac{1}{n} & \frac{1}{n} & \frac{1}{n} & \dots & 0 & 0 & 0 & 0 \end{bmatrix}$$

The characteristic equation is

$$\lambda^{2n-4}(\lambda^2 - \frac{n-1}{n})[\lambda^2 - 2\lambda + \frac{n-1}{n}] = 0$$

Hence, spectrum is

$$Spec_R^E(K_{n,n}) = \begin{pmatrix} 1 + \sqrt{\frac{1}{n}} & \frac{\sqrt{n-1}}{\sqrt{n}} & 1 - \sqrt{\frac{1}{n}} & 0 & -\frac{\sqrt{n-1}}{\sqrt{n}} \\ 1 & 1 & 1 & 2n-4 & 1 \end{pmatrix}.$$

Therefore, 
$$RE^E(K_{n,n}) = \frac{2\sqrt{n-1}}{\sqrt{n}} + 2.$$

**Theorem** 4.5 The minimum equitable dominating Randic energy of cocktail party graph  $K_{n\times 2}$  is

$$RE^{E}(K_{n\times 2}) = \frac{4n-6}{n-1}.$$

Proof Let  $K_{n\times 2}$  be a Cocktail party graph of order 2n with vertex set  $\{u_1, u_2, \dots, u_n, v_1, v_2, \dots, v_n\}$ . The minimum equitable dominating set  $E = \{u_1, v_1\}$  with a minimum equitable dominating Randic matrix

$$R^{E}(K_{n\times2}) = \begin{bmatrix} 1 & \frac{1}{2n-2} \\ \frac{1}{2n-2} & 0 & \frac{1}{2n-2} & \frac{1}{2n-2} & \cdots & \frac{1}{2n-2} & 0 & \frac{1}{2n-2} & \frac{1}{2n-2} \\ \frac{1}{2n-2} & \frac{1}{2n-2} & 0 & \frac{1}{2n-2} & \cdots & \frac{1}{2n-2} & \frac{1}{2n-2} & 0 & \frac{1}{2n-2} \\ \frac{1}{2n-2} & \frac{1}{2n-2} & \frac{1}{2n-2} & 0 & \cdots & \frac{1}{2n-2} & \frac{1}{2n-2} & \frac{1}{2n-2} & 0 \\ \vdots & \vdots & \vdots & \ddots & \ddots & \vdots & \vdots & \vdots & \vdots \\ 0 & \frac{1}{2n-2} & \frac{1}{2n-2} & \frac{1}{2n-2} & \cdots & 1 & \frac{1}{2n-2} & \frac{1}{2n-2} & \frac{1}{2n-2} \\ \frac{1}{2n-2} & 0 & \frac{1}{2n-2} & \frac{1}{2n-2} & \cdots & \frac{1}{2n-2} & 0 & \frac{1}{2n-2} & \frac{1}{2n-2} \\ \frac{1}{2n-2} & \frac{1}{2n-2} & 0 & \frac{1}{2n-2} & \cdots & \frac{1}{2n-2} & \frac{1}{2n-2} & 0 & \frac{1}{2n-2} \\ \frac{1}{2n-2} & \frac{1}{2n-2} & \frac{1}{2n-2} & 0 & \cdots & \frac{1}{2n-2} & \frac{1}{2n-2} & 0 & \frac{1}{2n-2} & 0 \end{bmatrix}$$

The characteristic equation is

$$\lambda^{n-1} \left( \lambda + \frac{1}{n-1} \right)^{n-2} (\lambda - 1) \left[ \lambda^2 - \frac{2n-3}{n-1} \lambda + \frac{n-3}{n-1} \right] = 0$$

Hence, spectrum is

$$Spec_{R}^{E}(K_{n\times 2}) = \begin{pmatrix} \frac{2n-3+\sqrt{4n-3}}{2(n-1)} & 1 & \frac{2n-3-\sqrt{4n-3}}{2(n-1)} & 0 & \frac{-1}{n-1} \\ 1 & 1 & 1 & n-1 & n-2 \end{pmatrix}.$$
Therefore,  $RE^{E}(K_{n\times 2}) = \frac{4n-6}{n-1}.$ 

### References

- S.B. Bozkurt, A. D. Gungor, I. Gutman, A. S. Cevik, Randic matrix and Randic energy, MATCH Commum. Math. Comput. Chem. 64 (2010) 239-250.
- [2] S. B. Bozkurt, A. D. Gungor, I. Gutman, Randic spectral radius and Randic energy, MATCH Commum. Math. Comput. Chem. 64 (2010) 321-334.
- [3] Serife Burcu Bozkurt, Durmus Bozkurt, Sharp Upper Bounds for Energy and Randic Energy, MATCH Commum. Math. Comput. Chem. 70 (2013) 669-680.
- [4] I. Gutman, B. Furtula, S. B. Bozkurt, On Randic energy, *Linear Algebra Appl.*, 442 (2014) 50-57.
- [5] I. Gutman, The energy of a graph, Ber. Math. Stat. Sekt. Forschungsz. Graz, 103(1978),

1-22.

- [6] I. Gutman, The energy of a graph: old and new results, Combinatorics and applications, A. Betten, A. Khoner, R. Laue and A. Wassermann, eds., Springer, Berlin, (2001), 196-211.
- [7] G. Indulal, I. Gutman, A. Vijayakumar, On distance energy of graphs, *Match Commun. Math. Comput. Chem.*, 60(2008), 461-472.