Smarandache Curves and Applications According to Type-2 Bishop Frame in Euclidean 3-Space

Süha Yılmaz

(Dokuz Eylül University, Buca Educational Faculty, 35150, Buca-Izmir, Turkey)

Ümit Ziya Savcı

(Celal Bayar University, Department of Mathematics Education, 45900, Manisa-Turkey)

E-mail: suha.yilmaz@deu.edu.tr, ziyasavci@hotmail.com

Abstract: In this paper, we investigate Smarandache curves according to type-2 Bishop frame in Euclidean 3- space and we give some differential geometric properties of Smarandache curves. Also, some characterizations of Smarandache breadth curves in Euclidean 3-space are presented. Besides, we illustrate examples of our results.

Key Words: Smarandache curves, Bishop frame, curves of constant breadth.

AMS(2010): 53A05, 53B25, 53B30.

§1. Introduction

A regular curve in Euclidean 3-space, whose position vector is composed by Frenet frame vectors on another regular curve, is called a Smarandache curve. M. Turgut and S. Yılmaz have defined a special case of such curves and call it Smarandache TB₂ curves in the space E_1^4 [10]. Moreover, special Smarandache curves have been investigated by some differential geometric [6]. A.T.Ali has introduced some special Smarandache curves in the Euclidean space [2]. Special Smarandache curves according to Sabban frame have been studied by [5]. Besides, It has been determined some special Smarandache curves E_1^3 by [12]. Curves of constant breadth were introduced by L.Euler [3].

We investigate position vector of curves and some characterizations case of constant breadth according to type-2 Bishop frame in E^3 .

§2. Preliminaries

The Euclidean 3-space E^3 proved with the standard flat metric given by

$$<,>= dx_1^2 + dx_2^2 + dx_3^2$$

¹Received November 26, 2015, Accepted May 6, 2016.

where (x_1, x_2, x_3) is rectangular coordinate system of E^3 . Recall that, the norm of an arbitrary vector $a \in E^3$ given by $||a|| = \sqrt{\langle a, a \rangle}$. φ is called a unit speed curve if velocity vector v of φ satisfied ||v|| = 1

The Bishop frame or parallel transport frame is alternative approach to defining a moving frame that is well defined even when the curve has vanishing second derivative. One can express parallel transport of orthonormal frame along a curve simply by parallel transporting each component of the frame [8]. The type-2 Bishop frame is expressed as

$$\begin{bmatrix} \xi_1^{\scriptscriptstyle I} \\ \xi_2^{\scriptscriptstyle I} \\ B^{\scriptscriptstyle I} \end{bmatrix} = \begin{bmatrix} 0 & 0 & -\varepsilon_1 \\ 0 & 0 & -\varepsilon_2 \\ \varepsilon_1 & \varepsilon_2 & 0 \end{bmatrix} \cdot \begin{bmatrix} \xi_1 \\ \xi_2 \\ B \end{bmatrix}$$
 (2.1)

In order to investigate type-2 Bishop frame relation with Serret-Frenet frame, first we

$$B' = -\tau N = \varepsilon_1 \xi_1 + \varepsilon_2 \xi_2 \tag{2.2}$$

Taking the norm of both sides, we have

$$\kappa(s) = \frac{d\theta(s)}{ds}, \quad \tau(s) = \sqrt{\varepsilon_1^2 + \varepsilon_2^2}$$
(2.3)

Moreover, we may express

$$\varepsilon_1(s) = -\tau \cos \theta(s), \qquad \varepsilon_2(s) = -\tau \sin \theta(s)$$
(2.4)

By this way, we conclude $\theta(s) = Arc \tan \frac{\varepsilon_2}{\varepsilon_1}$. The frame $\{\xi_1, \xi_2, B\}$ is properly oriented, and τ and $\theta(s) = \int\limits_0^s \kappa(s) ds$ are polar coordinates for the curve $\alpha(s)$.

We write the tangent vector according to frame $\{\xi_1, \xi_2, B\}$ as

$$T = \sin \theta(s)\xi_1 - \cos \theta(s)\xi_2$$

and differentiate with respect to s

$$T' = \kappa N = \theta'(s)(\cos\theta(s)\xi_1 + \sin\theta(s)\xi_2) + \sin\theta(s)\xi_1' - \cos\theta(s)\xi_2'$$
(2.5)

Substituting $\xi_1^{\scriptscriptstyle \parallel}=-\varepsilon_1 B$ and $\xi_2^{\scriptscriptstyle \parallel}=-\varepsilon_2 B$ in equation (2.5) we have

$$\kappa N = \theta'(s)(\cos\theta(s)\xi_1 + \sin\theta(s)\xi_2)$$

In the above equation let us take $\theta'(s) = \kappa(s)$. So we immediately arrive at

$$N = \cos \theta(s)\xi_1 + \sin \theta(s)\xi_2$$

Considering the obtained equations, the relation matrix between Serret-Frenet and the type-2 Bishop frame can be expressed

$$\begin{bmatrix} T \\ N \\ B \end{bmatrix} = \begin{bmatrix} \sin \theta(s) & -\cos \theta(s) & 0 \\ \cos \theta(s) & \sin \theta(s) & 0 \\ 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} \xi_1 \\ \xi_2 \\ B \end{bmatrix}$$
 (2.6)

§3. Smarandache Curves According to Type-2 Bishop Frame in E³

Let $\alpha = \alpha(s)$ be a unit speed regular curve in E^3 and denote by $\{\xi_1^{\alpha}, \xi_2^{\alpha}, B^{\alpha}\}$ the moving Bishop frame along the curve α . The following Bishop formulae is given by

$$\dot{\xi_1^{\alpha}} = -\varepsilon_1^{\alpha} B^{\alpha}, \quad \dot{\xi_2^{\alpha}} = -\varepsilon_2^{\alpha} B^{\alpha}, \quad \dot{B}^{\alpha} = \varepsilon_1^{\alpha} \xi_1^{\alpha} + \varepsilon_2^{\alpha} \xi_2^{\alpha}$$

3.1 $\xi_1\xi_2$ -Smarandache Curves

Definition 3.1 Let $\alpha = \alpha(s)$ be a unit speed regular curve in E^3 and $\{\xi_1^{\alpha}, \xi_2^{\alpha}, B^{\alpha}\}$ be its moving Bishop frame. $\xi_1\xi_2$ -Smarandache curves can be defined by

$$\beta(s^*) = \frac{1}{\sqrt{2}} (\xi_1^{\alpha} + \xi_2^{\alpha}) \tag{3.1}$$

Now, we can investigate Bishop invariants of $\xi_1\xi_2$ -Smarandache curves according to $\alpha = \alpha(s)$. Differentiating (3.1.1) with respect to s, we get

$$\dot{\beta} = \frac{d\beta}{ds^*} \cdot \frac{ds^*}{ds} = \frac{-1}{\sqrt{2}} (\varepsilon_1^{\alpha} + \varepsilon_2^{\alpha}) B^{\alpha}$$

$$T_{\beta} \cdot \frac{ds^*}{ds} = \frac{-1}{\sqrt{2}} (\varepsilon_1^{\alpha} + \varepsilon_2^{\alpha}) B^{\alpha}$$
(3.2)

where

$$\frac{ds^*}{ds} = \frac{1}{\sqrt{2}} (\varepsilon_1^{\alpha} + \varepsilon_2^{\alpha}) \tag{3.3}$$

The tangent vector of curve β can be written as follow;

$$T_{\beta} = -B^{\alpha} = -(\varepsilon_1^{\alpha} \xi_1^{\alpha} + \varepsilon_2^{\alpha} \xi_2^{\alpha}) \tag{3.4}$$

Differentiating (3.4) with respect to s, we obtain

$$\frac{dT_{\beta}}{ds^*} \cdot \frac{ds^*}{ds} = \varepsilon_1^{\alpha} \xi_1^{\alpha} + \varepsilon_2^{\alpha} \xi_2^{\alpha} \tag{3.5}$$

Substituting (3.3) in (3.5), we get

$$T_{\beta}^{\scriptscriptstyle |} = \frac{\sqrt{2}}{\varepsilon_1^{\alpha} + \varepsilon_2^{\alpha}} (\varepsilon_1^{\alpha} \xi_1^{\alpha} + \varepsilon_2^{\alpha} \xi_2^{\alpha})$$

Then, the curvature and principal normal vector field of curve β are respectively,

$$\left\|T_{\beta}^{\cdot}\right\|=\kappa_{\beta}=\frac{\sqrt{2}}{\varepsilon_{1}^{\alpha}+\varepsilon_{2}^{\alpha}}\sqrt{\left(\varepsilon_{1}^{\alpha}\right)^{2}+\left(\varepsilon_{2}^{\alpha}\right)^{2}}$$

$$N_{\beta} = \frac{1}{\sqrt{(\varepsilon_1^{\alpha})^2 + (\varepsilon_2^{\alpha})^2}} (\varepsilon_1^{\alpha} \xi_1^{\alpha} + \varepsilon_2^{\alpha} \xi_2^{\alpha})$$

On the other hand, we express

$$B_{\beta} = \frac{1}{\sqrt{(\varepsilon_1^{\alpha})^2 + (\varepsilon_2^{\alpha})^2}} \det \begin{bmatrix} \xi_1^{\alpha} & \xi_2^{\alpha} & B^{\alpha} \\ 0 & 0 & -1 \\ \varepsilon_1^{\alpha} & \varepsilon_2^{\alpha} & 0 \end{bmatrix}.$$

So, the binormal vector of curve β is

$$B_{\beta} = \frac{1}{\sqrt{(\varepsilon_1^{\alpha})^2 + (\varepsilon_2^{\alpha})^2}} (\varepsilon_2^{\alpha} \xi_1^{\alpha} - \varepsilon_1^{\alpha} \xi_2^{\alpha})$$

We differentiate $(3.2)_1$ with respect to s in order to calculate the torsion of curve β

$$\begin{split} \ddot{\beta} &= \quad \frac{-1}{\sqrt{2}} \{ \left[\left(\varepsilon_1^{\alpha} \right)^2 + \varepsilon_1^{\alpha} \varepsilon_2^{\alpha} \right] \xi_1^{\alpha} \\ &+ \left[\varepsilon_1^{\alpha} \varepsilon_2^{\alpha} + \left(\varepsilon_2^{\alpha} \right)^2 \right] \xi_2^{\alpha} + \left[\dot{\varepsilon_1^{\alpha}} + \dot{\varepsilon_2^{\alpha}} \right] \} B^{\alpha}] \end{split}$$

and similarly

$$\beta = \frac{-1}{\sqrt{2}} (\delta_1 \xi_1^{\alpha} + \delta_2 \xi_2^{\alpha} + \delta_3 B^{\alpha})$$

where

$$\begin{split} \delta_{1} &= 3\varepsilon_{1}^{\alpha}\varepsilon_{1}^{\alpha} + \varepsilon_{1}^{\alpha}\varepsilon_{2}^{\alpha} + 2\varepsilon_{1}^{\alpha}\varepsilon_{2}^{\alpha} - \left(\varepsilon_{1}^{\alpha}\right)^{3} - \left(\varepsilon_{1}^{\alpha}\right)^{2}\varepsilon_{2}^{\alpha} \\ \delta_{2} &= 2\varepsilon_{1}^{\alpha}\varepsilon_{2}^{\alpha} + \varepsilon_{1}^{\alpha}\varepsilon_{2}^{\alpha} + 3\varepsilon_{2}^{\alpha}\varepsilon_{2}^{\alpha} - \varepsilon_{1}^{\alpha}\left(\varepsilon_{2}^{\alpha}\right)^{2} - \left(\varepsilon_{2}^{\alpha}\right)^{3} \\ \vdots &\vdots &\vdots \\ \delta_{3} &= \varepsilon_{1}^{\alpha} + \varepsilon_{2}^{\alpha} \end{split}$$

The torsion of curve β is

$$\tau_{\beta} = \frac{\varepsilon_{1}^{\alpha} + \varepsilon_{2}^{\alpha}}{4\sqrt{2}[(\varepsilon_{1}^{\alpha})^{2} + (\varepsilon_{2}^{\alpha})^{2}]} \{ [(\varepsilon_{1}^{\alpha} + \varepsilon_{2}^{\alpha})(\varepsilon_{1}^{\alpha}\varepsilon_{2}^{\alpha} + (\varepsilon_{2}^{\alpha})^{2}]\delta_{1} - [(\varepsilon_{1}^{\alpha} + \varepsilon_{2}^{\alpha})((\varepsilon_{1}^{\alpha})^{2} + \varepsilon_{1}^{\alpha}\varepsilon_{2}^{\alpha})]\delta_{2} \}$$

3.2 $\xi_1 B$ -Smarandache Curves

Definition 3.2 Let $\alpha = \alpha(s)$ be a unit speed regular curve in E^3 and $\{\xi_1^{\alpha}, \xi_2^{\alpha}, B^{\alpha}\}$ be its moving

Bishop frame. $\xi_1 B$ -Smarandache curves can be defined by

$$\beta(s^*) = \frac{1}{\sqrt{2}}(\xi_1^{\alpha} + B^{\alpha}) \tag{3.6}$$

Now, we can investigate Bishop invariants of $\xi_1 B$ -Smarandache curves according to $\alpha = \alpha(s)$. Differentiating (3.6) with respect to s, we get

$$\dot{\beta} = \frac{d\beta}{ds^*} \cdot \frac{ds^*}{ds} = \frac{-1}{\sqrt{2}} (\varepsilon_1^{\alpha} B^{\alpha} + \varepsilon_1^{\alpha} \xi_1^{\alpha} + \varepsilon_2^{\alpha} \xi_2^{\alpha})$$

$$T_{\beta} \cdot \frac{ds^*}{ds} = \frac{-1}{\sqrt{2}} (-\varepsilon_1^{\alpha} B^{\alpha} + \varepsilon_1^{\alpha} \xi_1^{\alpha} + \varepsilon_2^{\alpha} \xi_2^{\alpha})$$
(3.7)

where

$$\frac{ds^*}{ds} = \sqrt{\frac{2\left(\varepsilon_1^{\alpha}\right)^2 + \left(\varepsilon_2^{\alpha}\right)^2}{2}} \tag{3.8}$$

The tangent vector of curve β can be written as follow;

$$T_{\beta} = \frac{1}{\sqrt{2(\varepsilon_1^{\alpha})^2 + (\varepsilon_2^{\alpha})^2}} (\varepsilon_1^{\alpha} \xi_1^{\alpha} + \varepsilon_2^{\alpha} \xi_2^{\alpha} - \varepsilon_1^{\alpha} B^{\alpha})$$
 (3.9)

Differentiating (3.9) with respect to s, we obtain

$$\frac{dT_{\beta}}{ds^{*}} \frac{ds^{*}}{ds} = \frac{1}{\left[2\left(\varepsilon_{1}^{\alpha}\right)^{2} + \left(\varepsilon_{2}^{\alpha}\right)^{2}\right]^{\frac{3}{2}}} \left(\mu_{1}\xi_{1}^{\alpha} + \mu_{2}\xi_{2}^{\alpha} + \mu_{3}B^{\alpha}\right) \tag{3.10}$$

where

$$\mu_{1} = \varepsilon_{1}^{\alpha} \varepsilon_{2}^{\alpha} \varepsilon_{2}^{\alpha} + \varepsilon_{1}^{\alpha} (\varepsilon_{2}^{\alpha})^{2}$$

$$\mu_{2} = 2 (\varepsilon_{2}^{\alpha})^{2} \varepsilon_{2}^{\alpha} - 2\varepsilon_{1}^{\alpha} \varepsilon_{1}^{\alpha} \varepsilon_{2}^{\alpha} + 2 (\varepsilon_{1}^{\alpha})^{2} \varepsilon_{2}^{\alpha} - 2 (\varepsilon_{1}^{\alpha})^{3} \varepsilon_{2}^{\alpha} - \varepsilon_{1}^{\alpha} (\varepsilon_{2}^{\alpha})^{3}$$

$$\mu_{3} = \varepsilon_{1}^{\alpha} \varepsilon_{2}^{\alpha} \varepsilon_{2}^{\alpha} - 2 (\varepsilon_{1}^{\alpha})^{4} + (\varepsilon_{1}^{\alpha})^{2} (\varepsilon_{2}^{\alpha})^{2} - \varepsilon_{1}^{\alpha} (\varepsilon_{2}^{\alpha})^{2}$$

Substituting (3.8) in (3.10), we have

$$T_{\beta}^{\shortmid} = \frac{\sqrt{2}}{\left[2\left(\varepsilon_{1}^{\alpha}\right)^{2} + \left(\varepsilon_{2}^{\alpha}\right)^{2}\right]^{2}} (\mu_{1}\xi_{1}^{\alpha} + \mu_{2}\xi_{2}^{\alpha} + \mu_{3}B^{\alpha})$$

Then, the first curvature and principal normal vector field of curve β are respectively

$$||T_{\beta}^{\scriptscriptstyle I}|| = \kappa_{\beta} = \frac{\sqrt{2}}{\left[2(\varepsilon_1^{\alpha})^2 + (\varepsilon_2^{\alpha})^2\right]^2} \sqrt{\mu_1^2 + \mu_2^2 + \mu_3^2}$$

$$N_{\beta} = \frac{1}{\sqrt{\mu_1^2 + \mu_2^2 + \mu_3^2}} (\mu_1 \xi_1^{\alpha} + \mu_2 \xi_2^{\alpha} + \mu_3 B^{\alpha})$$

On the other hand, we get

$$B_{\beta} = \frac{1}{\sqrt{\mu_1^2 + \mu_2^2 + \mu_3^2} \sqrt{2(\varepsilon_1^{\alpha})^2 + (\varepsilon_2^{\alpha})^2}} [(\mu_2 \varepsilon_1^{\alpha} + \mu_3 \varepsilon_2^{\alpha}) \xi_1^{\alpha} - (\mu_1 \xi_1^{\alpha} + \mu_3 \xi_1^{\alpha}) \xi_2^{\alpha} + (\mu_2 \varepsilon_1^{\alpha} - \mu_1 \varepsilon_2^{\alpha}) B^{\alpha}]$$

We differentiate (3.7) with respect to s in order to calculate the torsion of curve β

$$\begin{split} \overset{\cdot \cdot \cdot}{\beta} &= \quad \frac{-1}{\sqrt{2}} \{ [-2 \left(\varepsilon_1^{\alpha} \right)^2 + \varepsilon_1^{\dot{\alpha}}] \xi_1^{\alpha} \\ &+ [-\varepsilon_1^{\alpha} \varepsilon_2^{\alpha} + \varepsilon_1^{\dot{\alpha}} - \left(\varepsilon_2^{\alpha} \right)^2] \xi_2^{\alpha} - \varepsilon_1^{\dot{\alpha}} B^{\alpha} \} \end{split}$$

and similarly

$$\overset{\cdots}{\beta} = \frac{-1}{\sqrt{2}} (\Gamma_1 \xi_1^{\alpha} + \Gamma_2 \xi_2^{\alpha} + \Gamma_3 B^{\alpha})$$

where

$$\Gamma_{1} = -6\varepsilon_{1}^{\alpha}\varepsilon_{1}^{\alpha} + \varepsilon_{1}^{\alpha} + 2(\varepsilon_{1}^{\alpha})^{3}$$

$$\Gamma_{2} = -2\varepsilon_{1}^{\alpha}\varepsilon_{2}^{\alpha} - \varepsilon_{1}^{\alpha}\varepsilon_{2}^{\alpha} + \varepsilon_{2}^{\alpha} - 2\varepsilon_{2}^{\alpha}\varepsilon_{2}^{\alpha} + \varepsilon_{1}^{\alpha}(\varepsilon_{2}^{\alpha})^{2} - \varepsilon_{2}^{\alpha}\varepsilon_{2}^{\alpha} + (\varepsilon_{2}^{\alpha})^{3}$$

$$\Gamma_{3} = -\varepsilon_{1}^{\alpha}$$

The torsion of curve β is

$$\tau_{\beta} = -\frac{\left[2\left(\varepsilon_{1}^{\alpha}\right)^{2} + \left(\varepsilon_{2}^{\alpha}\right)^{2}\right]^{4}}{4\sqrt{2}(\mu_{1}^{2} + \mu_{2}^{2} + \mu_{3}^{2})} \{\left[\left(-\varepsilon_{1}^{\alpha}\varepsilon_{2}^{\alpha} - \varepsilon_{2}^{\alpha} + \left(\varepsilon_{2}^{\alpha}\right)^{2}\right)\Gamma_{1} - 2\left(\left(\varepsilon_{1}^{\alpha}\right)^{2} - \varepsilon_{1}^{\alpha}\right)\Gamma_{2} + \left(-\varepsilon_{1}^{\alpha}\varepsilon_{2}^{\alpha} - \varepsilon_{2}^{\alpha} + \left(\varepsilon_{2}^{\alpha}\right)^{2}\right)\Gamma_{3}\right]\varepsilon_{1}^{\alpha} - \left[\left(\varepsilon_{1}^{\alpha} - 2\left(\varepsilon_{1}^{\alpha}\right)^{2}\right)\Gamma_{3} + \varepsilon_{1}^{\alpha}\Gamma_{1}\right]\varepsilon_{2}^{\alpha}\}$$

3.3 $\xi_2 B$ -Smarandache Curves

Definition 3.3 Let $\alpha = \alpha(s)$ be a unit speed regular curve in E^3 and $\{\xi_1^{\alpha}, \xi_2^{\alpha}, B^{\alpha}\}$ be its moving Bishop frame. $\xi_2 B$ -Smarandache curves can be defined by

$$\beta(s^*) = \frac{1}{\sqrt{2}}(\xi_2^\alpha + B^\alpha) \tag{3.11}$$

Now, we can investigate Bishop invariants of $\xi_2 B$ -Smarandache curves according to $\alpha = \alpha(s)$. Differentiating (3.11) with respect to s, we get

$$\beta = \frac{d\beta}{ds^*} \cdot \frac{ds^*}{ds} = \left(-\varepsilon_2^{\alpha} B^{\alpha} + \varepsilon_1^{\alpha} \xi_1^{\alpha} + \varepsilon_2^{\alpha} \xi_2^{\alpha}\right)
T_{\beta} \cdot \frac{ds^*}{ds} = \left(\varepsilon_1^{\alpha} \xi_1^{\alpha} + \varepsilon_2^{\alpha} \xi_2^{\alpha} - \varepsilon_2^{\alpha} B^{\alpha}\right)$$
(3.12)

where

$$\frac{ds^*}{ds} = \sqrt{\frac{\left(\varepsilon_1^{\alpha}\right)^2 + 2\left(\varepsilon_2^{\alpha}\right)^2}{2}} \tag{3.13}$$

The tangent vector of curve β can be written as follow;

$$T_{\beta} = \frac{\varepsilon_1^{\alpha} \xi_1^{\alpha} + \varepsilon_2^{\alpha} \xi_2^{\alpha} - \varepsilon_2^{\alpha} B^{\alpha}}{\sqrt{2 (\varepsilon_1^{\alpha})^2 + (\varepsilon_2^{\alpha})^2}}$$
(3.14)

Differentiating (3.14) with respect to s, we obtain

$$\frac{dT_{\beta}}{ds^{*}} \frac{ds^{*}}{ds} = \frac{1}{\left[\left(\varepsilon_{1}^{\alpha} \right)^{2} + 2 \left(\varepsilon_{2}^{\alpha} \right)^{2} \right]^{\frac{3}{2}}} (\eta_{1} \xi_{1}^{\alpha} + \eta_{2} \xi_{2}^{\alpha} + \eta_{3} B^{\alpha}) \tag{3.15}$$

where

$$\begin{split} &\eta_{1} = 2\left(\varepsilon_{1}^{\alpha}\left(\varepsilon_{2}^{\alpha}\right)^{2} - \varepsilon_{1}^{\alpha}\varepsilon_{2}^{\alpha}\right) \\ &\eta_{2} = \left(\varepsilon_{2}^{\alpha}\right)^{2}\varepsilon_{2}^{\alpha} + \left(\varepsilon_{1}^{\alpha}\right)^{2}\varepsilon_{1}^{\alpha} - \varepsilon_{1}^{\alpha}\varepsilon_{1}^{\alpha}\varepsilon_{2}^{\alpha} \\ &\eta_{3} = \left(\varepsilon_{1}^{\alpha}\right)^{2}\varepsilon_{2}^{\alpha} + 2\left(\varepsilon_{2}^{\alpha}\right)^{3} - \left(\varepsilon_{1}^{\alpha}\right)^{4} - 2\left(\varepsilon_{1}^{\alpha}\right)^{4} - 3\left(\varepsilon_{1}^{\alpha}\right)^{2}\left(\varepsilon_{2}^{\alpha}\right)^{2} \end{split}$$

Substituting (3.13) in (3.15), we have

$$T_{\beta}^{\shortmid} = \frac{\sqrt{2}}{\left[2\left(\varepsilon_{1}^{\alpha}\right)^{2} + \left(\varepsilon_{2}^{\alpha}\right)^{2}\right]^{2}} (\eta_{1}\xi_{1}^{\alpha} + \eta_{2}\xi_{2}^{\alpha} + \eta_{3}B^{\alpha})$$

Then, the first curvature and principal normal vector field of curve β are respectively

$$\begin{split} \left\| T_{\beta}^{\scriptscriptstyle \text{I}} \right\| = & \kappa_{\beta} = \frac{\sqrt{2}\sqrt{\eta_1^2 + \eta_2^2 + \eta_3^2}}{\left[\left(\varepsilon_1^{\alpha} \right)^2 + 2 \left(\varepsilon_2^{\alpha} \right)^2 \right]^2} \\ N_{\beta} = \frac{1}{\sqrt{\eta_1^2 + \eta_2^2 + \eta_3^2}} (\eta_1 \xi_1^{\alpha} + \eta_2 \xi_2^{\alpha} + \eta_3 B^{\alpha}) \end{split}$$

On the other hand, we express

$$B_{\beta} = \frac{1}{\sqrt{\eta_1^2 + \eta_2^2 + \eta_3^2} \sqrt{(\varepsilon_1^{\alpha})^2 + 2(\varepsilon_2^{\alpha})^2}} [(\eta_2 \varepsilon_2^{\alpha} + \eta_3 \varepsilon_2^{\alpha}) \xi_1^{\alpha} - (\eta_1 \xi_2^{\alpha} + \eta_3 \xi_1^{\alpha}) \xi_2^{\alpha} + (\eta_2 \varepsilon_1^{\alpha} - \eta_1 \varepsilon_2^{\alpha}) B^{\alpha}]$$

We differentiate $(3.12)_1$ with respect to s in order to calculate the torsion of curve β

$$\begin{split} \ddot{\beta} &= \frac{1}{\sqrt{2}} \{ [\varepsilon_1^{\alpha} \xi_1^{\alpha} + \dot{\varepsilon_1^{\alpha}} - (\varepsilon_1^{\alpha})^2] \xi_1^{\alpha} \\ &+ [\varepsilon_2^{\alpha} - 2 (\varepsilon_2^{\alpha})^2] \xi_2^{\alpha} - \dot{\varepsilon_2^{\alpha}} B^{\alpha} \} \end{split}$$

and similarly

$$\beta = \frac{1}{\sqrt{2}} (\eta_1 \xi_1^{\alpha} + \eta_2 \xi_2^{\alpha} + \eta_3 B^{\alpha})$$

where

$$\eta_{1} = -\varepsilon_{1}^{\alpha} \varepsilon_{2}^{\alpha} - 5\varepsilon_{1}^{\alpha} \varepsilon_{1}^{\alpha} + \varepsilon_{1}^{\alpha} + (\varepsilon_{1}^{\alpha})^{2} \varepsilon_{2}^{\alpha} + (\varepsilon_{1}^{\alpha})^{3}$$

$$\vdots \qquad \vdots$$

$$\eta_{2} = -4\varepsilon_{2}^{\alpha} \varepsilon_{2}^{\alpha} + \varepsilon_{2}^{\alpha} + 2\varepsilon_{2}^{\alpha}$$

$$\vdots$$

$$\eta_{3} = -\varepsilon_{2}^{\alpha}$$

The torsion of curve β is

$$\tau_{\beta} = -\frac{[(\varepsilon_{1}^{\alpha})^{2} + 2(\varepsilon_{2}^{\alpha})^{2}]^{4}}{4\sqrt{2}(\eta_{1}^{2} + \eta_{2}^{2} + \eta_{3}^{2})} \{ [\varepsilon_{2}^{\alpha}\eta_{2} + (\varepsilon_{2}^{\alpha} - 2(\varepsilon_{2}^{\alpha})^{2})\eta_{3}]\varepsilon_{1}^{\alpha} + [2(\varepsilon_{2}^{\alpha})^{2}\eta_{1} + (\varepsilon_{1}^{\alpha}\varepsilon_{2}^{\alpha} - \varepsilon_{1}^{\alpha} + (\varepsilon_{1}^{\alpha})^{2})\eta_{2} + (-\varepsilon_{1}^{\alpha}\varepsilon_{2}^{\alpha} + \varepsilon_{1}^{\alpha})\eta_{3}]\varepsilon_{2}^{\alpha} \}$$

3.4 $\xi_1\xi_2B$ -Smarandache Curves

Definition 3.4 Let $\alpha = \alpha(s)$ be a unit speed regular curve in E^3 and $\{\xi_1^{\alpha}, \xi_2^{\alpha}, B^{\alpha}\}$ be its moving Bishop frame. $\xi_1^{\alpha} \xi_2 B$ -Smarandache curves can be defined by

$$\beta(s^*) = \frac{1}{\sqrt{3}} (\xi_1^{\alpha} + \xi_2^{\alpha} + B^{\alpha})$$
 (3.16)

Now, we can investigate Bishop invariants of $\xi_1^{\alpha}\xi_2 B$ -Smarandache curves according to $\alpha = \alpha(s)$. Differentiating (3.16) with respect to s, we get

$$\dot{\beta} = \frac{d\beta}{ds^*} \cdot \frac{ds^*}{ds} = \frac{1}{\sqrt{3}} [(\varepsilon_1^{\alpha} + \varepsilon_2^{\alpha}) B^{\alpha} - \varepsilon_1^{\alpha} \xi_1^{\alpha} - \varepsilon_2^{\alpha} \xi_2^{\alpha}]$$

$$T_{\beta} \cdot \frac{ds^*}{ds} = \frac{1}{\sqrt{3}} [(\varepsilon_1^{\alpha} + \varepsilon_2^{\alpha}) B^{\alpha} - \varepsilon_1^{\alpha} \xi_1^{\alpha} - \varepsilon_2^{\alpha} \xi_2^{\alpha})]$$
(3.17)

where

$$\frac{ds^*}{ds} = \sqrt{\frac{2[(\varepsilon_1^{\alpha})^2 + \varepsilon_1^{\alpha}\varepsilon_2^{\alpha} + (\varepsilon_2^{\alpha})^2]}{3}}$$
(3.18)

The tangent vector of curve β can be written as follow;

$$T_{\beta} = \frac{\varepsilon_1^{\alpha} \xi_1^{\alpha} + \varepsilon_2^{\alpha} \xi_2^{\alpha} - (\varepsilon_1^{\alpha} + \varepsilon_2^{\alpha}) B^{\alpha}}{\sqrt{2[(\varepsilon_1^{\alpha})^2 + \varepsilon_1^{\alpha} \varepsilon_2^{\alpha} + (\varepsilon_2^{\alpha})^2]}}$$
(3.19)

Differentiating (3.19) with respect to s, we get

$$\frac{dT_{\beta}}{ds^*} \frac{ds^*}{ds} = \frac{\left(\lambda_1 \xi_1^{\alpha} + \lambda_2 \xi_2^{\alpha} + \lambda_3 B^{\alpha}\right)}{2\sqrt{2} \left[\left(\varepsilon_1^{\alpha}\right)^2 + \varepsilon_1^{\alpha} \varepsilon_2^{\alpha} + \left(\varepsilon_2^{\alpha}\right)^2\right]^{\frac{3}{2}}}$$
(3.20)

where

$$\begin{split} \lambda_{1} &= \quad [\varepsilon_{1}^{\alpha}-2\left(\varepsilon_{1}^{\alpha}\right)^{2}-\varepsilon_{1}^{\alpha}\varepsilon_{2}^{\alpha}]u(s)-\varepsilon_{1}^{\alpha}[2\varepsilon_{1}^{\alpha}\varepsilon_{1}^{\alpha}+\varepsilon_{1}^{\alpha}\varepsilon_{2}^{\alpha}+\varepsilon_{1}^{\alpha}\varepsilon_{2}^{\alpha}+2\varepsilon_{2}^{\alpha}\varepsilon_{2}^{\alpha}] \\ \lambda_{2} &= \quad [\varepsilon_{2}^{\alpha}-2\left(\varepsilon_{2}^{\alpha}\right)^{2}-\varepsilon_{1}^{\alpha}\varepsilon_{2}^{\alpha}]u(s)-\varepsilon_{2}^{\alpha}[\varepsilon_{1}^{\alpha}+\varepsilon_{1}^{\alpha}\varepsilon_{2}^{\alpha}+2\varepsilon_{2}^{\alpha}\varepsilon_{2}^{\alpha}] \\ \lambda_{3} &= \quad [-\varepsilon_{1}^{\alpha}-\varepsilon_{2}^{\alpha}]u(s)+\varepsilon_{1}^{\alpha}[2\varepsilon_{1}^{\alpha}\varepsilon_{1}^{\alpha}+3\varepsilon_{1}^{\alpha}\varepsilon_{2}^{\alpha}+\varepsilon_{1}^{\alpha}\varepsilon_{2}^{\alpha}+2\varepsilon_{2}^{\alpha}\varepsilon_{2}^{\alpha}] \\ &\quad +\varepsilon_{2}^{\alpha}[\varepsilon_{1}^{\alpha}\left(\varepsilon_{2}^{\alpha}\right)^{2}+2\left(\varepsilon_{2}^{\alpha}\right)^{2}] \end{split}$$

Substituting (3.18) in (3.20), we have

$$T_{\beta}^{\scriptscriptstyle |} = \frac{\sqrt{3} \left(\lambda_1 \xi_1^{\alpha} + \lambda_2 \xi_2^{\alpha} + \lambda_3 B^{\alpha}\right)}{4 \left[\left(\varepsilon_1^{\alpha}\right)^2 + \varepsilon_1^{\alpha} \varepsilon_2^{\alpha} + \left(\varepsilon_2^{\alpha}\right)^2 \right]^2}$$

Then, the first curvature and principal normal vector field of curve β are respectively

$$\begin{aligned} \left\| T_{\beta}^{\scriptscriptstyle \dagger} \right\| &= \kappa_{\beta} = \frac{\sqrt{3}\sqrt{\lambda_1^2 + \lambda_2^2 + \lambda_3^2}}{4\left[\left(\varepsilon_1^{\alpha}\right)^2 + \varepsilon_1^{\alpha} \varepsilon_2^{\alpha} + \left(\varepsilon_2^{\alpha}\right)^2 \right]^2} \\ N_{\beta} &= \frac{1}{\sqrt{\lambda_1^2 + \lambda_2^2 + \lambda_3^2}} (\lambda_1 \xi_1^{\alpha} + \lambda_2 \xi_2^{\alpha} + \lambda_3 B^{\alpha}) \end{aligned}$$
(3.21)

On the other hand, we express

$$B_{\beta} = \frac{1}{\sqrt{2[(\varepsilon_1^{\alpha})^2 + \varepsilon_1^{\alpha} \varepsilon_2^{\alpha} + (\varepsilon_2^{\alpha})^2]} \cdot \sqrt{\lambda_1^2 + \lambda_2^2 + \lambda_3^2}} \det \begin{bmatrix} \xi_1^{\alpha} & \xi_2^{\alpha} & B^{\alpha} \\ \varepsilon_1^{\alpha} & \varepsilon_2^{\alpha} & -(\varepsilon_1^{\alpha} + \varepsilon_2^{\alpha}) \\ \lambda_1 & \lambda_2 & \lambda_3 \end{bmatrix}$$

So, the binormal vector field of curve β is

$$B_{\beta} = \frac{1}{\sqrt{2[(\varepsilon_{1}^{\alpha})^{2} + \varepsilon_{1}^{\alpha}\varepsilon_{2}^{\alpha} + (\varepsilon_{2}^{\alpha})^{2}] \cdot \sqrt{\lambda_{1}^{2} + \lambda_{2}^{2} + \lambda_{3}^{2}}}} \{[(\varepsilon_{1}^{\alpha} + \varepsilon_{2}^{\alpha})\lambda_{1} - \varepsilon_{2}^{\alpha}\lambda_{3}]\xi_{1}^{\alpha} + [-\varepsilon_{1}^{\alpha}\lambda_{3} - (\varepsilon_{1}^{\alpha} + \varepsilon_{2}^{\alpha})]\xi_{2}^{\alpha} + [\varepsilon_{1}^{\alpha}\lambda_{2} - \varepsilon_{2}^{\alpha}\lambda_{1}]B^{\alpha}}\}$$

We differentiate (3.20) with respect to s in order to calculate the torsion of curve β

$$\begin{split} \ddot{\beta} &= & -\frac{1}{\sqrt{3}} \{ [2 \left(\varepsilon_1^{\alpha} \right)^2 + \varepsilon_1^{\alpha} \xi_1^{\alpha} - \varepsilon_1^{\alpha}] \xi_1^{\alpha} \\ &+ [2 \left(\varepsilon_2^{\alpha} \right)^2 + \varepsilon_1^{\alpha} \varepsilon_2^{\alpha} - \varepsilon_2^{\alpha}] \xi_2^{\alpha} + [\varepsilon_1^{\alpha} + \varepsilon_2^{\alpha}] B^{\alpha} \} \end{split}$$

and similarly

$$\overset{\cdots}{\beta} = -\frac{1}{\sqrt{3}} (\sigma_1 \xi_1^{\alpha} + \sigma_2 \xi_2^{\alpha} + \sigma_3 B^{\alpha})$$

where

$$\eta_{1} = 4\varepsilon_{1}^{\alpha}\varepsilon_{1}^{\alpha} + 3\varepsilon_{1}^{\alpha}\varepsilon_{2}^{\alpha} - \varepsilon_{1}^{\alpha} - 2(\varepsilon_{1}^{\alpha})^{3} - (\varepsilon_{1}^{\alpha})^{2}\varepsilon_{2}^{\alpha}$$

$$\eta_{2} = 5\varepsilon_{2}^{\alpha}\varepsilon_{2}^{\alpha} + \varepsilon_{1}^{\alpha}\varepsilon_{2}^{\alpha} + \varepsilon_{1}^{\alpha}\varepsilon_{2}^{\alpha} - \varepsilon_{2}^{\alpha} - 2(\varepsilon_{2}^{\alpha})^{3} - \varepsilon_{1}^{\alpha}(\varepsilon_{2}^{\alpha})^{2}$$

$$\vdots$$

$$\eta_{3} = \varepsilon_{2}^{\alpha} + \varepsilon_{2}^{\alpha}$$

$$\eta_{3} = \varepsilon_{2}^{\alpha} + \varepsilon_{2}^{\alpha}$$

The torsion of curve β is

$$\begin{split} \tau_{\beta} &= & \quad -\frac{16[(\varepsilon_{1}^{\alpha})^{2} + \varepsilon_{1}^{\alpha}\varepsilon_{2}^{\alpha} + (\varepsilon_{2}^{\alpha})^{2}]^{2}}{9\sqrt{3}\sqrt{\lambda_{1}^{2} + \lambda_{2}^{2} + \lambda_{3}^{2}}} \{ [(2\left(\varepsilon_{2}^{\alpha}\right)^{2} + \varepsilon_{1}^{\alpha}\varepsilon_{2}^{\alpha} - \varepsilon_{2}^{\alpha})\sigma_{1} + (-\varepsilon_{2}^{\alpha} - 2\left(\varepsilon_{1}^{\alpha}\right)^{2} - \varepsilon_{1}^{\alpha}\varepsilon_{2}^{\alpha})\sigma_{2} \\ & \quad + (2\left(\varepsilon_{2}^{\alpha}\right)^{2} + \varepsilon_{1}^{\alpha}\varepsilon_{2}^{\alpha} - \varepsilon_{2}^{\alpha})\sigma_{3}]\varepsilon_{1}^{\alpha} + [-\varepsilon_{1}^{\alpha} - 2\varepsilon_{2}^{\alpha} + 2\left(\varepsilon_{2}^{\alpha}\right)^{2} + \varepsilon_{1}^{\alpha}\varepsilon_{2}^{\alpha})\sigma_{1} \\ & \quad + (-2\left(\varepsilon_{1}^{\alpha}\right)^{2} - \varepsilon_{1}^{\alpha}\varepsilon_{2}^{\alpha} + \varepsilon_{1}^{\alpha})\sigma_{2} + (2\left(\varepsilon_{1}^{\alpha}\right)^{2} + \varepsilon_{1}^{\alpha}\varepsilon_{2}^{\alpha} - \varepsilon_{1}^{\alpha})\sigma_{3}]\varepsilon_{2}^{\alpha} \}. \end{split}$$

$\S4$. Smarandache Breadth Curves According to Type-2 Bishop Frame in E^3

A regular curve with more than 2 breadths in Euclidean 3-space is called Smarandache breadth curve.

Let $\alpha = \alpha(s)$ be a Smarandache breadth curve. Moreover, let us suppose $\alpha = \alpha(s)$ simple closed space-like curve in the space E^3 . These curves will be denoted by (C). The normal plane at every point P on the curve meets the curve at a single point Q other than P.

We call the point Q the opposite point P. We consider a curve in the class Γ as in having parallel tangents ξ_1 and ξ_1^* opposite directions at opposite points α and α^* of the curves.

A simple closed curve having parallel tangents in opposite directions at opposite points can be represented with respect to type-2 Bishop frame by the equation

$$\alpha^*(s) = \alpha(s) + \lambda \xi_1 + \varphi \xi_2 + \eta B \tag{4.1}$$

where $\lambda(s), \varphi(s)$ and $\eta(s)$ are arbitrary functions also α and α^* are opposite points.

Differentiating both sides of (4.1) and considering type-2 Bishop equations, we have

$$\frac{d\alpha^*}{ds} = \xi_1^* \frac{ds^*}{ds} = \left(\frac{d\lambda}{ds} + \eta \varepsilon_1 + 1\right) \xi_1 + \left(\frac{d\varphi}{ds} + \eta \varepsilon_2\right) \xi_2 + \left(-\lambda \varepsilon_1 - \varphi \varepsilon_2 + \frac{d\eta}{ds}\right) B$$
(4.2)

Since $\xi_1^* = -\xi_1$ rewriting (4.2) we have

$$\frac{d\lambda}{ds} = -\eta \varepsilon_1 - 1 - \frac{ds^*}{ds}$$

$$\frac{d\varphi}{ds} = -\varphi \varepsilon_2$$

$$\frac{d\eta}{ds} = \lambda \varepsilon_1 + \varphi \varepsilon_2$$
(4.3)

If we call θ as the angle between the tangent of the curve (C) at point $\alpha(s)$ with a given direction and consider $\frac{d\theta}{ds} = \kappa$, we have (4.3) as follow:

$$\frac{d\lambda}{d\theta} = -\eta \frac{\varepsilon_1}{\kappa} - f(\theta)$$

$$\frac{d\varphi}{d\theta} = -\varphi \frac{\varepsilon_2}{\kappa}$$

$$\frac{d\eta}{d\theta} = \lambda \frac{\varepsilon_1}{\kappa} + \varphi \frac{\varepsilon_2}{\kappa}$$
(4.4)

where $f(\theta) = \delta + \delta^*$, $\delta = \frac{1}{\kappa}$, $\delta^* = \frac{1}{\kappa^*}$ denote the radius of curvature at α and α^* respectively. And using system (4.4), we have the following differential equation with respect to λ as

$$\frac{d^{3}\lambda}{d\theta^{3}} - \left[\frac{\kappa}{\varepsilon_{1}} \frac{d}{d\theta} \left(\frac{\varepsilon_{1}}{\kappa}\right)\right] \frac{d^{2}\lambda}{d\theta^{2}} + \left[\frac{\varepsilon_{1}^{2}}{\kappa^{2}} - \frac{\varepsilon_{1}}{\kappa} - \frac{d}{d\theta} \left(\frac{\kappa}{\varepsilon_{1}}\right) \frac{d}{d\theta} \left(\frac{\varepsilon_{1}}{\kappa}\right)\right] - \frac{\kappa}{\varepsilon_{1}} \frac{d^{2}}{d\theta^{2}} \left(\frac{\varepsilon_{1}}{\kappa}\right)\right] \frac{d\lambda}{d\theta} + \left[\frac{\varepsilon_{1}}{\kappa} \frac{d}{d\theta} \left(\frac{\varepsilon_{1}}{\kappa}\right) - \frac{\varepsilon_{1}^{2}}{\varepsilon_{2}\kappa}\right] \lambda + \\
+ \left[-\frac{\kappa}{\varepsilon_{2}} - \frac{\kappa}{\varepsilon_{1}} \frac{d}{d\theta} \left(\frac{\varepsilon_{1}}{\kappa}\right)\right] \frac{d^{2}f}{d\theta^{2}} - \left[\frac{\kappa}{\varepsilon_{2}} + 2\frac{\kappa}{\varepsilon_{1}} \frac{d}{d\theta} \left(\frac{\varepsilon_{1}}{\kappa}\right)\right] \frac{df}{d\theta} \\
- \left[\frac{\varepsilon_{2}^{2}}{\varepsilon_{1}\kappa} + \frac{\varepsilon_{1}}{\varepsilon_{2}} + 2\frac{d}{d\theta} \left(\frac{\kappa}{\varepsilon_{1}}\right) \frac{d}{d\theta} \left(\frac{\varepsilon_{1}}{\kappa}\right) + \frac{\kappa}{\varepsilon_{1}} \frac{d^{2}}{d\theta^{2}} \left(\frac{\varepsilon_{1}}{\kappa}\right)\right] f(\theta) = 0$$

Equation (4.5) is characterization for α^* . If the distance between opposite points of (C) and (C^*) is constant, then we can write that

$$\|\alpha^* - \alpha\| = \lambda^2 + \varphi^2 + \eta^2 = l^2 = \text{constant}$$

$$(4.6)$$

Hence, we write

$$\lambda \frac{d\lambda}{d\theta} + \varphi \frac{d\varphi}{d\theta} + \eta \frac{d\eta}{d\theta} = 0 \tag{4.7}$$

Considering system (4.4) we obtain

$$\lambda \cdot f(\theta) = 0 \tag{4.8}$$

We write $\lambda = 0$ or $f(\theta) = 0$. Thus, we shall study in the following subcases.

Case 1. $\lambda = 0$. Then we obtain

$$\eta = -\int_{0}^{\theta} \frac{\kappa}{\varepsilon_{1}} f(\theta) d\theta, \qquad \varphi = \int_{0}^{\theta} \left(\int_{0}^{\theta} \eta \frac{\varepsilon_{2}}{\kappa} d\theta \right) \frac{\varepsilon_{2}}{\kappa} d\theta \tag{4.9}$$

and

$$\frac{d^2f}{d\theta^2} - \frac{df}{d\theta} - \left[\left(\frac{\tau}{\kappa} \right)^2 \frac{\sin^3 \theta}{\cos \theta} - \frac{\tau}{\kappa} \cos \theta \right] f = 0 \tag{4.10}$$

General solution of (4.10) depends on character of $\frac{\tau}{\kappa}$. Due to this, we distinguish following subcases.

Subcase 1.1 $f(\theta) = 0$. then we obtain

$$\lambda = \int_{0}^{\theta} \eta \frac{\varepsilon_{1}}{\kappa} d\theta$$

$$\varphi = -\int_{0}^{\theta} \eta \frac{\varepsilon_{2}}{\kappa} d\theta$$

$$\eta = \int_{0}^{\theta} \lambda \frac{\varepsilon_{1}}{\kappa} d\theta + \int_{0}^{\theta} \varphi \frac{\varepsilon_{2}}{\kappa} d\theta$$
(4.11)

Case 2. Let us suppose that $\lambda \neq 0$, $\varphi \neq 0$, $\eta \neq 0$ and λ , φ , η constant. Thus the equation (4.4) we obtain $\frac{\varepsilon_1}{\kappa} = 0$ and $\frac{\varepsilon_2}{\kappa} = 0$.

Moreover, the equation (4.5) has the form $\frac{d^3\lambda}{d\theta^3}=0$ The solution (4.12) is $\lambda=L_1\frac{\theta^2}{2}+L_2\theta+L_3$ where $L_1,\,L_2$ and L_3 real numbers. And therefore we write the position vector ant the curvature

$$\alpha^* = \alpha + A_1 \xi_1 + A_2 \xi_2 + A_3 B$$

where $A_1 = \lambda$, $A_2 = \varphi$ and $A_3 = \eta$ real numbers. And the distance between the opposite points of (C) and (C^*) is

$$\|\alpha^* - \alpha\| = A_1^2 + A_2^2 + A_3^2 = \text{constant}$$

§5. Examples

In this section, we show two examples of Smarandache curves according to Bishop frame in E^3 .

Example 5.1 First, let us consider a unit speed curve of E^3 by

$$\beta(s) = \left(\frac{25}{306}\sin(9s) - \frac{9}{850}\sin(25s), -\frac{25}{306}\cos(9s) + \frac{9}{850}\cos(25s), \frac{15}{136}\sin(8s)\right)$$

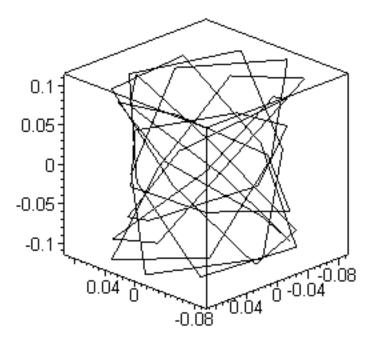


Fig.1 The curve $\beta = \beta(s)$

See the curve $\beta(s)$ in Fig.1. One can calculate its Serret-Frenet apparatus as the following

$$\begin{split} T &= \left(\frac{25}{34}\cos 9s + \frac{9}{34}\cos 25s, \frac{25}{34}\sin 9s - \frac{9}{34}\sin 25s, \frac{15}{17}\cos 8s\right) \\ N &= \left(\frac{15}{34}\csc 8s(\sin 9s - \sin 25s), -\frac{15}{34}\csc 8s(\cos 9s - \cos 25s), \frac{8}{17}\right) \\ B &= \left(\frac{1}{34}(25\sin 9s - 9\sin 25s), -\frac{1}{34}(25\cos 9s + 9\cos 25s), -\frac{15}{17}\sin 8s\right) \\ \kappa &= -15\sin 8s \text{ and } \tau = 15\cos 8s \end{split}$$

In order to compare our main results with Smarandache curves according to Serret-Frenet frame, we first plot classical Smarandache curve of β Fig.1.

Now we focus on the type-2 Bishop trihedral. In order to form the transformation matrix (2.6), let us express

$$\theta(s) = -\int_{0}^{s} 15\sin(8s)ds = \frac{15}{8}\cos(8s)$$

Since, we can write the transformation matrix

$$\begin{bmatrix} T \\ N \\ B \end{bmatrix} = \begin{bmatrix} \sin(\frac{15}{8}\cos 8s) & -\cos(\frac{15}{8}\cos 8s) & 0 \\ \cos(\frac{15}{8}\cos 8s) & \sin(\frac{15}{8}\cos 8s) & 0 \\ 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} \xi_1 \\ \xi_2 \\ B \end{bmatrix}$$

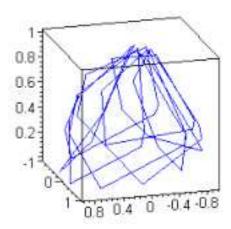


Fig.2 $\xi_1\xi_1$ Smarandache curve

By the method of Cramer, one can obtain type-2 Bishop frame of β as follows

$$\begin{split} \xi_1 &= & \left(\sin \theta \big(\frac{25}{34} \cos 9s - \frac{9}{34} \cos 25s \big) + \frac{15}{34} \cos \theta \csc 8s \big(\sin 9s - \sin 25s \big), \\ & \sin \theta \big(\frac{25}{34} \sin 9s - \frac{9}{34} \sin 25s \big) - \frac{15}{34} \cos \theta \csc 8s \big(\cos 9s - \cos 25s \big), \\ & \frac{15}{17} \sin \theta \cos 8s + \frac{8}{17} \cos \theta \big) \\ \xi_2 &= & \left(-\cos \theta \big(\frac{25}{34} \cos 9s - \frac{9}{34} \cos 25s \big) + \frac{15}{34} \sin \theta \csc 8s \big(\sin 9s - \sin 25s \big), \\ & -\cos \theta \big(\frac{25}{34} \sin 9s - \frac{9}{34} \sin 25s \big) - \frac{15}{34} \sin \theta \csc 8s \big(\cos 9s - \cos 25s \big), \\ & -\frac{15}{17} \cos \theta \cos 8s + \frac{8}{17} \sin \theta \big) \\ B &= & \left(\frac{1}{34} \big(25 \sin 9s - 9 \sin 25s \big), -\frac{1}{34} \big(25 \cos 9s + 9 \cos 25s \big), -\frac{15}{17} \sin 8s \big) \end{split}$$

where $\theta = \frac{15}{8}\cos(8s)$. So, we have Smarandache curves according to type-2 Bishop frame of the unit speed curve $\beta = \alpha(s)$, see Fig.2-4 and Fig.5.

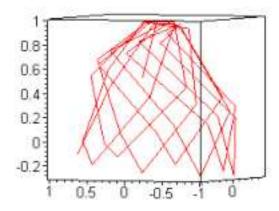
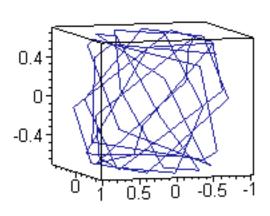


Fig.3 $\xi_1 B$ Smarandache curve



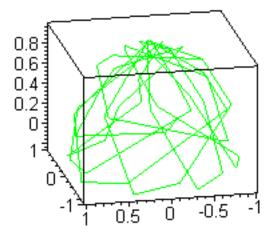


Fig.4 $\xi_2 B$ Smarandache curve

Fig.5 $\xi_1 \xi_2 B$ Smarandache curve

References

- [1] A. Mağden and Ö. Köse, On the curves of constant breadth in E4 space, Tr. J. of Mathematics, 21 (1997), 227-284.
- [2] A.T. Ali, Special Smarandache curves in The Euclidean space, *Math. Cobin. Bookser*, 2 (2010), 30-36.
- [3] L. Euler, De curvis trangularibus, Acta Acad Petropol, (1778), 3-30.
- [4] L.R. Bishop, There is more than one way to frame a curve, Amer. Math. Monthly, 82 (1975), 246-251.
- [5] K. Taşköprü, M.Tosun, Smarandache curves on S^2 , Bol. Soc. Paran. Mat., 32(1) (2014), 51-59.
- [6] M. Çetin, Y.Tuncer and M. K. Karacan, Smarandache curves according to Bishop frame in Euclidean 3-space, Gen. Math. Notes, 20 (2014), 50-56.
- [7] M.K. Karacan, B.Bükcü, An alternative moving frame for tubular surface around the spacelike curve with a spacelike binormal in Minkowski 3-space, *Math. Morav.*, 1 (2007), 73-80.
- [8] M. Özdemir, A.A Ergin, Parallel frames of non-lightlike curves, *Missouri J. Math. Sci.*, 20(2) (2008), 1-10.
- [9] M.Petroviç-Torgasev and E. Nesoviç, Some characterizations of the space-like, the time-like and the null curves on the pseudohyperbolic space H_0^2 in E_1^3 , $Kragujevac\ J.\ Math.$, 22(2000), 71-82.
- [10] M.Turgut, S. Yılmaz, Smarandache curves in Minkowski space-time, International J. Math. Combin., 3 (2008), 51-55.
- [11] M.Turgut, Smarandache breadth pseudo null curves in Minkowski space-time, *International J. Math. Combin.*, 1 (2009), 46-49.
- [12] N.Bayrak, Ö.Bektąs and S. Yüce, Special Smarandache curves in E_1^3 , Mathematical Phy. Sics. and http://arxiv.org/abs/1204.5656.
- [13] S. Yılmaz, M. Turgut, A new version of Bishop frame and an application to spherical images, Journal of Mathematical Analysis and Applications, 371(2) (2010), 764-776.