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1 Introduction

Discovering Galilean space-time is probably one of the major achievements of non relativistic physics.

Nowadays Galilean space is becoming increasingly popular as evidenced from the connection of the

fundamental concepts such as velocity, momentum, kinetic energy, etc. and principles as indicated

in [7]. In recent years, researchers have begun to investigate curves and surfaces in the Galilean space

and thereafter pseudo-Galilean space. A regular curve in Euclidean space whose position vector is

composed by Frenet frame vectors on another regular curve is called a Smarandache curve. Smaran-

dache curves have been investigated by some differential geometers [1, 9]. M. Turgut and S. Yilmaz

have defined a special case of such curves and call it Smarandache TB2 curves in the space E4
1 [9].

They have dealed with a special Smarandache curves which is defined by the tangent and second bi-

normal vector fields. Additionally, they have computed formulas of this kind curves. In [1], the author

has introduced some special Smarandache curves in the Euclidean space. He has studied Frenet-Serret

invariants of a special case. In this paper, we investigate Smarandache curves for the position vector of

an arbitrary curve in terms of the curvature and the torsion with respect to standard frame. Besides,

special Smarandache curves such as TN , TB and TNB according to Frenet frame in Galilean 3-space

are studied. Furthermore, we find differential geometric properties of these special curves and we

calculate curvatures (natural curvatures) of these curves. Our main result in this work is to study

Smarandache curves for some special curves in the Galilean 3-space G3.

∗ E-mail address: mohamed khalifa77@science.sohag.edu.eg
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2 Preliminaries

Let us recall the basic facts about the three-dimensional Galilean geometry G3. The geometry of

the Galilean space has been firstly explained in [11]. The curves and some special surfaces in G3 are

considered in [3]. The Galilean geometry is a real Cayley-Klein geometry with projective signature

(0, 0,+,+) according to [5]. The absolute of the Galilean geometry is an ordered triple (w, f, I )

where w is the ideal (absolute) plane (x0 = 0), f is a line in w (x0 = x1 = 0) and I is elliptic

((0 : 0 : x2 : x3) −→ (0 : 0 : x3 : −x2)) involution of the points of f . In the Galilean space there

are just two types of vectors, non-isotropic x(x, y, z) (for which holds x 6= 0). Otherwise, it is called

isotropic. We do not distinguish classes of vectors among isotropic vectors in G3. A plane of the

form x = const. in the Galilean space is called Euclidean, since its induced geometry is Euclidean.

Otherwise it is called isotropic plane. In affine coordinates, the Galilean inner product between two

vectors P = (p1, p2, p3) and Q = (q1, q2, q3) is defined by [4]:

〈P,Q〉G3 =

{
p1q1 if p1 6= 0 ∨ q1 6= 0,

p2q2 + p3q3 if p1 = 0 ∧ q1 = 0.
(2.1)

And the cross product in the sense of Galilean space is given by:

(P ×Q)G3 =



∣∣∣∣∣∣∣∣
0 e2 e3

p1 p2 p3

q1 q2 q3

∣∣∣∣∣∣∣∣ ; if p1 6= 0 ∨ q1 6= 0,

∣∣∣∣∣∣∣∣
e1 e2 e3

p1 p2 p3

q1 q2 q3

∣∣∣∣∣∣∣∣ ; if p1 = 0 ∧ q1 = 0.

(2.2)

The Galilean sphere of radius d and center c of the space G3 is defined by

S2
G(c, d) = {X − c ∈ G3 : 〈X − c,X − c〉G3 = ±d2}.

A curve α(t) = (x(t), y(t), z(t)) is admissible in G3 if it has no inflection points (α̇(t)× α̈(t) 6= 0) . An

admissible curve in G3 is an analogue of a regular curve in Euclidean space.

For an admissible curve α : I → G3, I ⊂ R parameterized by the arc length s with differential

form dt = ds, given by

α(s) = (s, y(s), z(s)). (2.3)

The curvature κ(s) and torsion τ(s) of α are defined by

κ(s) =
∥∥∥α′′(s)∥∥∥ =

√
y′′(s)2 + z′′(s)2,

τ(s) =
y
′′
(s)z

′′′
(s) + y

′′′
(s)z

′′
(s)

κ2(s)
. (2.4)

Note that an admissible curve has non-zero curvature.
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The associated trihedron is given by

T(s) = α
′
(s) = (1, y

′
(s), z

′
(s)),

N(s) =
α
′′
(s)

κ(s)
=

(0, y
′′
(s), z

′′
(s))

κ(s)
,

B(s) =
(0,−z′′(s), y′′(s))

κ(s)
. (2.5)

For derivatives of the tangent T, normal N and binormal B vector field, the following Frenet formulas

in the Galilean space hold [11] 
T

N

B


′

=


0 κ 0

0 0 τ

0 −τ 0




T

N

B

 . (2.6)

From (2.5) and (2.6), we derive an important relation

α′′′(s) = κ′(s)N(s) + κ(s)τ(s)B(s).

Let us consider the following definitions:

Definition 2.1 As in the three-dimensional Euclidean space, an admissible curve in G3, whose posi-

tion vector is composed by Frenet frame vectors on another admissible curve is called a Smarandache

curve [9].

In the light of the above definition, we adapt it to admissible curves in the Galilean space as

follows:

Definition 2.2 let Γ = Γ(s) be an admissible curve in G3 and {T,N,B} be its moving Frenet frame.

Smarandache TN,TB and TNB curves are respectively, defined by

ΓTN =
T + N

‖T + N‖
,

ΓTB =
T + B

‖T + B‖
,

ΓTNB =
T + N + B

‖T + N + B‖
. (2.7)

Definition 2.3 A helix is a geometric curve with non-vanishing constant curvature κ and non-

vanishing constant torsion τ [10]

Definition 2.4 A family of curves with constant curvature but non-constant torsion is called Salkowski

curves and a family of curves with constant torsion but non-constant curvature is called Anti-Salkowski

curves [6].

Definition 2.5 As in Euclidean 3-space , let α be an admissible curve in Galilean 3-space with Frenet

vectors T,N and B. The unit tangent vectors along the curve α generate a curve αT on a Galilean
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sphere of radius 1 about the origin. The curve αT is called the spherical indicatrix of T or more

commonly, αT is called tangent indicatrix of the curve α. If α = α(s) is a natural representation of

α, then αT(sT) = T(s) will be a representation of αT. Similarly one considers the principal normal

indicatrix αN(sN) = N(s) and binormal indicatrix αB(sB) = B(s) [8].

3 Smarandache curves of special curves

In this section, we consider the position vector of an arbitrary curve with curvature κ(s) and torsion

τ(s) in the Galilean space G3 which computed from the natural representation form as follows [2]

r (s) =

[
s,

∫ [∫
κ(s) cos

[∫
τ(s)ds

]
ds

]
ds,

∫ [∫
κ(s) sin

[∫
τ(s)ds

]
ds

]
ds

]
. (3.1)

Its moving frame is

T (s) =

[
1,

[∫
κ(s) cos

[∫
τ(s)ds

]
ds

]
,

[∫
κ(s) sin

[∫
τ(s)ds

]
ds

]]
,

N (s) =

[
0, cos

[∫
τ(s)ds

]
, sin

[∫
τ(s)ds

]]
,

B(s) =

(
0,− sin

[∫
τ(s)ds

]
, cos

[∫
τ(s)ds

])
. (3.2)

Let us investigate Frenet invariants of Smarandache curves according to definition 2.2.

3.1 TN-Smarandache curve

Let r1(s1) be a TN-Smarandache curve of r(s)written as

r1(s1) =

(
1,
∫
κ(s) cos

[∫
τ(s)ds

]
ds+ cos

[∫
τ(s)ds

]
,∫

κ(s) sin
[∫
τ(s)ds

]
ds+ sin

[∫
τ(s)ds

] )
. (3.3)

By differentiating (3.3) with respect to s, we get

T1 =
1√

κ2 + τ2

[
0, κ(s) cos

[∫
τ(s)ds

]
− τ(s) sin

[∫
τ(s)ds

]
,

κ(s) sin
[∫
τ(s)ds

]
+ τ(s) cos

[∫
τ(s)ds

] ]
, (3.4)

where
ds1
ds

=
√
κ2 + τ2. (3.5)

Also, differentiating (3.4), we obtain

κ1N1 =
1

(κ2 + τ2)2
(0, λ1, λ2) , (3.6)

then, the curvature and principal normal vector field of r1(s1) are respectively,

κ1 =
1

(κ2 + τ2)2

√
λ21 + λ22, N1 =

1√
λ21 + λ22

(0, λ1, λ2) , (3.7)

where
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λ1 =
(
−κ3τ − κ2τ̇ − τ3κ+ κκ̇τ

)
sin

[∫
τ(s)ds

]
+
(
−κ2τ2 + τ2κ̇− τ4 − τ̇κτ

)
cos

[∫
τ(s)ds

]
, (3.8)

λ2 =
(
κ3τ + κ2τ̇ + τ3κ− κκ̇τ

)
cos

[∫
τ(s)ds

]
+
(
κ2τ2 − τ2κ̇+ τ4 + τ̇κτ

)
sin

[∫
τ(s)ds

]
. (3.9)

On the other hand, the binormal vector of this curve is expressed as

B1 =
1√

(κ2 + τ2)
(
λ21 + λ22

)
[

λ2
(
κ(s) cos

[∫
τ(s)ds

]
− τ(s) sin

[∫
τ(s)ds

])
−

λ1
(
κ(s) sin

[∫
τ(s)ds

]
+ τ(s) cos

[∫
τ(s)ds

])
, 0, 0

]
, (3.10)

it follows that

τ1 = 0. (3.11)

3.2 TB-Smarandache curve

Let r2(s2) be a TB-Smarandache curve given by

r2(s2) =

[
1,
∫
κ(s) cos

[∫
τ(s)ds

]
− sin

[∫
τ(s)ds

]
,∫

κ(s) sin
[∫
τ(s)ds

]
+ cos

[∫
τ(s)ds

] ]
. (3.12)

Differentiating this equation with respect to s yields

T2 =

(
0, cos

[∫
τ(s)ds

]
, sin

[∫
τ(s)ds

])
, (3.13)

where
ds2
ds

= (κ− τ) . (3.14)

Again, differentiating (3.13) gives

κ2 =
τ

(κ− τ)
, (3.15)

N2 =

(
0,− sin

[∫
τ(s)ds

]
, cos

[∫
τ(s)ds

])
. (3.16)

From the above mentioned, one can obtain

B2 = (1, 0, 0) . (3.17)

From which

τ2 = 0. (3.18)
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3.3 TNB-Smarandache curve

By definition 2.2, the TNB-Smarandache curve is given by

r3(s3) =

[
1,
∫
κ(s) cos

[∫
τ(s)ds

]
+ cos

[∫
τ(s)ds

]
− sin

[∫
τ(s)ds

]
,∫

κ(s) sin
[∫
τ(s)ds

]
+ sin

[∫
τ(s)ds

]
+ cos

[∫
τ(s)ds

] ]
. (3.19)

Similarly, its tangent, the principal normal and the binormal vectors are respectively,

T3 =
1√

(κ− τ)2 + τ2

[
0, (κ− τ) cos

[∫
τ(s)ds

]
− τ(s) sin

[∫
τ(s)ds

]
,

(κ− τ) sin
[∫
τ(s)ds

]
+ τ(s) cos

[∫
τ(s)ds

] ]
, (3.20)

in which

ds3
ds

=

√
(κ− τ)2 + τ2, (3.21)

N3 =

(
0, µ1 cos

[∫
τ(s)ds

]
− µ2 sin

[∫
τ(s)ds

]
,

µ2 cos
[∫
τ(s)ds

]
+ µ1 sin

[∫
τ(s)ds

] )
√
µ21 + µ22

, (3.22)

B3 =
(µ2 (κ− τ)− τµ1)√

(κ− τ)2 + τ2
√
µ21 + µ22

(1, 0, 0) , (3.23)

where

µ1(s) =
((

(κ− τ)2 + τ2
) (
κ̇− τ̇ − τ2

)
− (κ− τ) ((κ− τ) (κ̇− τ̇) + τ τ̇)

)
,

µ2(s) =
((

(κ− τ)2 + τ2
) (
τκ− τ2 + τ̇

)
− τ ((κ− τ) (κ̇− τ̇) + τ τ̇)

)
. (3.24)

The curvature and the torsion of this curve are respectively, given by

κ3 =

√
µ21 + µ22(

(κ− τ)2 + τ2
)2 , τ3 = 0. (3.25)

Theorem 3.1 Let r(s) given by (3.1) be a helix β(s) in G3 (τ/κ = m = const.)which can be written

as

β(s) =

(
s,

1

m

∫
sin

[
m

∫
κ(s)ds

]
ds,− 1

m

∫
cos

[
m

∫
κ(s)ds

]
ds

)
, (3.26)

then TN,TB and TNB-Smarandache curves of β are plane curves with constant curvatures.

Proof. We prove this theorem for TN-Smarandache curve only. The straightforward computations

on β give respectively, the tangent, the principal normal and the binormal vectors of β as follows

Tβ(s) =

(
1,

1

m
sin

[
m

∫
κ(s)ds

]
,− 1

m
cos

[
m

∫
κ(s)ds

])
,

Nβ(s) =

(
0, cos

[
m

∫
κ(s)ds

]
, sin

[
m

∫
κ(s)ds

])
,
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Bβ(s) =

(
0,− sin

[
m

∫
κ(s)ds

]
, cos

[
m

∫
κ(s)ds

])
. (3.27)

The TN-Smarandache curve of β can be expressed as

β1(s1) =

(
1, 1

m sin
[
m
∫
κ(s)ds

]
+ cos

[
m
∫
κ(s)ds

]
,

− 1
m cos

[
m
∫
κ(s)ds

]
+ sin

[
m
∫
κ(s)ds

] ) . (3.28)

It has the moving Frenet frame

Tβ1 =
1√

1 +m2

(
0, cos

[
m
∫
κ(s)ds

]
−m sin

[
m
∫
κ(s)ds

]
,

sin
[
m
∫
κ(s)ds

]
+m cos

[
m
∫
κ(s)ds

] )
,

Nβ1 =
1

(1 +m2)

(
0,− sin

[
m
∫
κ(s)ds

]
−m cos

[
m
∫
κ(s)ds

]
,

cos
[
m
∫
κ(s)ds

]
−m sin

[
m
∫
κ(s)ds

] )
,

Bβ1 =

(
1√

1 +m2
, 0, 0

)
. (3.29)

From the above data, the curvature and torsion of β1 are

κβ1 = m, τβ1 = 0. (3.30)

The curvature is constant and torion is vanished. The same results for TB and TNB-Smarandache

curves of β are valid. Hence the proof is completed.

Remark 3.1 If r(s) is a circular helix (κ = const. , τ = const.), then TN,TB and TNB-Smarandache

curves are also plane curves with constant curvatures.

Theorem 3.2 If r(s) is a family of Salkowski curves γ(s) in G3(τ = τ(s), κ = a = const.)which can

be written as

γ(s) =

(
s, a

∫ [∫
cos

(∫
τ(s)ds

)
ds

]
ds, a

∫ [∫
sin

(∫
τ(s)ds

)
ds

]
ds

)
, (3.31)

then TN,TB and TNB-Smarandache curves of γ are plane curves with non-constant curvatures.

Proof. After some calculations on γ, the tangent, the principal normal and the binormal vectors of

γ are, respectively

Tγ (s) =

(
1, a

∫ [
cos

(∫
τ(s)ds

)]
ds, a

∫ [
sin

(∫
τ(s)ds

)]
ds

)
,

Nγ (s) =

(
0, cos

[∫
τ(s)ds

]
, sin

[∫
τ(s)ds

])
,

Bγ (s) =

(
0,− sin

[∫
τ(s)ds

]
, cos

[∫
τ(s)ds

])
. (3.32)

Here, TN-Smarandache curve of γ is

γ1(s1) =

(
1, a

∫ [
cos
(∫
τ(s)ds

)]
ds+ cos

[∫
τ(s)ds

]
,

a
∫ [

sin
(∫
τ(s)ds

)]
ds+ sin

[∫
τ(s)ds

] )
, (3.33)
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with the Frenet vectors

Tγ1 =
1√

a2 − τ2(s)

(
0, a cos(

∫
τ(s)ds)− τ(s) sin(

∫
τ(s)ds),

a sin(
∫
τ(s)ds) + τ(s) cos(

∫
τ(s)ds)

)
,

Nγ1 =
1

Ω

(
0,−θ1 (s) sin(

∫
τ(s)ds) + θ2 (s) cos(

∫
τ(s)ds),

θ2 (s) sin(
∫
τ(s)ds) + θ1 (s) cos(

∫
τ(s)ds)

)
; Ω =

√
θ21 + θ22,

Bγ1 =
1

Ω

(
(aθ1 − τθ2)√
a2 − τ2(s)

, 0, 0

)
. (3.34)

From the aforementioned calculations, the curvatures of γ1(s1) are

κγ1 =
Ω

(a2 − τ2(s))2
, τγ1 = 0, (3.35)

where

θ1 (s) =
(
(aτ)

(
a2 − τ2

)
+ τ̇ τ2

)
, θ2 (s) =

(
aτ̇τ − τ2

(
a2 − τ2

))
. (3.36)

As above, we can do similar calculations for TB and TNB-Smarandache curves of γ. In all cases, the

curvatures are non-constants (they depend on the torsion of the Salkowski curve) and the torions are

vanished. Thus, this completes the proof.

Remark 3.2 If r(s) is a family of Anti-Salkowski curves δ(s) in G3(τ = b = const., κ = κ(s)), which

can be written as

δ(s) =

(
s,

∫ [∫
κ(s) cos(bs)ds

]
ds,

∫ [∫
κ(s) sin(bs)ds

]
ds

)
, (3.37)

then TN,TB and TNB-Smarandache curves of δ are also plane curves with non-constant curvatures.

4 Spherical indicatrices of a general helix in G3

In what follows, we investigate the spherical indicatrix of the tangent of the helix β(s). By differ-

entiating (3.26) with respect to s, we have the tangent spherical curve as follows:

ΓT = βT(sT) =

(
1,

1

m
sin(m

∫
κ(s)ds),

−1

m
cos(m

∫
(κ(s)ds)

)
. (4.1)

The Frenet vectors of βT(sT) are

TT(sT) =

(
0, cos(m

∫
κ(s)ds), sin(m

∫
κ(s)ds)

)
,

NT(sT) =

(
0,− sin(m

∫
κ(s)ds), cos(m

∫
κ(s)ds)

)
,

BT(sT) = (1, 0, 0), (4.2)

and its curvatures are given by

κT(sT) = m, τT(sT) = 0. (4.3)
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Theorem 4.1 Let β = β(s) be a helix in the Galilean space G3with κ(s) 6= 0 . The curvatures of the

tangent spherical curve βT(sT) of β for each sT ∈ I ⊂ R satisfy the following equalities

〈TT , βT〉G3 = 0, 〈NT , βT〉G3 =
−1

κT

, 〈BT , βT〉G3 =
κ′

T

κ κ2
T
τT
.

Proof. By assumption we have

〈 βT , βT〉G3 = d2, (4.4)

for every sT ∈ I ⊂ R and d is the radius of the Galilean sphere S2
G . By differentiating (4.4) with

respect to s, we have 〈
dβT

dsT

dsT
ds

, βT

〉
G3

= 0,

where sT is the arc length of the tangent spherical curve in G3. So, we get

dsT
ds

= κ(s) ,

then

κ(s) 〈TT , βT〉G3 = 0,

〈TT , βT〉G3 = 0. (4.5)

By a new differentiation of (4.5), we find that

κT κ 〈NT , βT〉G3 + κ 〈TT ,TT〉G3 = 0.

From which

〈NT , βT〉G3 =
−1

κT

. (4.6)

More differentiation of (4.6) gives

−τT κ 〈BT , βT〉G3 + κ 〈NT ,TT〉G3 =
−κT

κ2
T

,

since

〈NT ,TT〉G3 = 0,
dNT

dsT
= −τT BT ,

then

〈BT , βT〉G3 =
κT

κ τT κ2
T

.

Thus, the proof is completed.

From aforementioned information, we have the following proposition.

Proposition 4.1 The Galilean spherical images of a general helix ( or circular helix) in the three-

dimensional Galilean space are plane curves with constant curvatures.

Proposition 4.2 We can also do in similar way the calculations for the other spherical images of

TN,TB and TNB-Smarandache curves, we find that they are plane curves with non-constant

curvatures.
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5 Examples

Example 5.1 Let β(s) be a general helix in three-dimensional Galiliean space with κ = τ = 1
2
√
s
,

parameterized by

β(s) =
(
s, 2
[
sin
√
s−
√
s cos

√
s
]
,−2

[
cos
√
s+
√
s sin

√
s
])

The TN- Smarandache curve of β(s) is given by

β1 (s1) =
(
1, sin

(√
s
)

+ cos
(√
s
)
,− cos

(√
s
)

+ sin
(√
s
))
.

Then, the Frenet vectors are

T1(s1) =

(
0,

cos (
√
s)− sin (

√
s)√

2
,
cos (
√
s) + sin (

√
s)√

2

)
,

N1(s1) =

(
0,−(cos (

√
s) + sin (

√
s))√

2
,
cos (
√
s)− sin (

√
s)√

2

)
,

B1(s1) =
(
cos2

(√
s
)

+ sin2
(√
s
)
, 0, 0

)
.

The derivatives of these vectors give

κ1 (s1) =
1√
2
, τ1 (s1) = 0.

The TB and TNB-Smarandache curves of β (s) can be calculated as above.

The tangent spherical image of β(s) is defined by

βT =
(
1, sin

√
s,− cos

√
s
)
.

From which, one can obtain

TT =
(
0, cos

√
s, sin

√
s
)
,

NT =
(
0,−sin

√
s, cos

√
s
)
,

BT =
((

sin
√
s
)2

+
(
cos
√
s
)2
, 0, 0

)
.

It follows that

κT = 1, τT = 0.

In an analogous way, one can obtain the normal and binormal spherical images of β and their curva-

tures. The general helix β(s) and its TN -Smarandache curve and tangent spherical image are shown

in Figures 1,2,3.
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Figure 1: The general helix β(s).

Figure 2: The TN -Smarandache curve of β(s).

Figure 3: The tangent spherical image of β(s).

Example 5.2 Consider a circular helix ν(s) in G3with non-zero constant curvature and torsion, which

is given by

ν(s) = (s, cos s, sin s) ,

the representation of its tangent spherical curve is

νT = (1,−sin s, cos s) .
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Then, simple calculations lead to

TT = (0,−cos s,−sin s) ,

NT = (0, sins,−coss) ,

BT =
(

(sins)2 + (coss)2 , 0, 0
)
.

By the aid of the derivatives of the above formulas, we obtain the curvatures of νT

κT = 1, τT = 0.

The curve νand its tangent spherical image are shown in Figures 4,5.

Figure 4: A circular helix ν(s).

Figure 5: The tangent spherical image of ν(s).

6 Conclusion

In the three-dimensional Galilean space, Smarandache curves of some special curves such as helix,

circular helix, Salkowski and Ant-Salkowski curves are studied. Furthermore, the spherical images of

the helix are given. Some interesting results are presented. Finally as an application for this work,

some examples are given and plotted.
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