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curves according to Sabban frame in Anti de Sitter 3-Space. Moreover, we give the rela-

tionship between the base curve and its Smarandache curve associated with theirs Sabban
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§1. Introduction

It is well known that there are three kinds of Lorentzian space. Minkowski space is a flat

Lorentzian space and de Sitter space is a Lorentzian space with positive constant curvature.

Lorentzian space with negative constant curvature is called Anti de Sitter space which is quite

different from those of Minkowski space and de Sitter space according to causality. The Anti de

Sitter space is a vacuum solution of the Einstein’s field equation with an attractive cosmological

constant in the theory of relativity. The Anti de Sitter space is also important in the string

theory and the brane world scenario. Due to this situation, it is a very significant space from

the viewpoint of the astrophysics and geometry (Bousso and Randall, 2002; Maldacena, 1998;

Witten, 1998).

Smarandache geometry is a geometry which has at least one Smarandachely denied axiom.

An axiom is said to be Smarandachely denied, if it behaves in at least two different ways

within the same space (Ashbacher, 1997). Smarandache curves are the objects of Smarandache

geometry. A regular curve in Minkowski space-time, whose position vector is composed by

Frenet frame vectors on another regular curve, is called a Smarandache curve (Turgut and

Yılmaz, 2008). Special Smarandache curves are studied in different ambient spaces by some

authors (Bektaş and Yüce, 2013; Koc Ozturk et al., 2013; Taşköprü and Tosun, 2014; Turgut

and Yımaz, 2008; Yakut et al., 2014).
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This paper is organized as follows. In section 2, we give local diferential geometry of non-

dejenerate regular curves in Anti de Sitter 3-space which is denoted by H3
1. We call that a curve

is AdS curve in H3
1 if the curve is immersed unit speed non-dejenerate curve in H3

1. In section 3,

we consider that any spacelike AdS curve β whose position vector is composed by Frenet frame

vectors on another timelike AdS curve α in H
3
1. The AdS curve β is called AdS Smarandache

curve of α in H3
1. We define eleven different types of AdS Smarandache curve β of α according

to Sabban frame in H3
1. Also, we give some relations between Sabban apparatus of α and β for

all of possible cases. Moreover, we obtain some corollaries for the spacelike AdS Smarandache

curve β of AdS timelike curve α which is a planar curve, horocycle or helix, respectively. In

subsection 3.1, we define AdS stereographic projection, that is, the stereographic projection from

H3
1 to R3

1. Then, we give an example for base AdS curve and its AdS Smarandache curve, which

are helices in H3
1. Finally, we draw the pictures of some AdS curves by using AdS stereographic

projection in Minkowski 3-space.

§2. Preliminary

In this section, we give the basic theory of local differential geometry of non-degenerate curves

in Anti de Sitter 3-space which is denoted by H3
1. For more detail and background about Anti

de Sitter space, see (Chen et al., 2014; O’Neill, 1983)..

Let R
4
2 denote the four-dimensional semi Euclidean space with index two, that is, the real

vector space R4 endowed with the scalar product

〈x ,y 〉 = −x1y1 − x2y2 + x3y3 + x4y4

for all x = (x1, x2, x3, x4), y = (y1, y2, y3, y4) ∈ R4. Let {e1, e2, e3, e4} be pseudo-orthonormal

basis for R4
2. Then δij is Kronecker-delta function such that 〈ei, ej〉 = δijεj for ε1 = ε2 =

−1, ε3 = ε4 = 1.

A vector x ∈ R4
2 is called spacelike, timelike and lightlike (null) if 〈x , x 〉 > 0 (or x = 0),

〈x , x 〉 < 0 and 〈x , x 〉 = 0, respectively. The norm of a vector x ∈ R4
2 is defined by ‖x‖ =√

|〈x , x 〉|. The signature of a vector x is denoted by

sign(x) =





1, x is spacelike

0, x is null

−1, x is timelike

The sets

S
3
2 = {x ∈ R

4
2 | 〈x , x 〉 = 1 }

H
3
1 = {x ∈ R

4
2 | 〈x , x 〉 = −1 }

are called de Sitter 3-space with index 2 (unit pseudosphere with dimension 3 and index 2 in

R4
2) and Anti de Sitter 3-space (unit pseudohyperbolic space with dimension 3 and index 2 in
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R4
2), respectively.

The pseudo vector product of vectors x1 , x2 , x3 is given by

x1 ∧ x2 ∧ x3 =

∣∣∣∣∣∣∣∣∣∣∣

−e1 −e2 e3 e4

x1
1 x1

2 x1
3 x1

4

x2
1 x2

2 x2
3 x2

4

x3
1 x3

2 x3
3 x3

4

∣∣∣∣∣∣∣∣∣∣∣

(1)

where {e1, e2, e3, e4} is the canonical basis of R4
2 and xi = (xi

1, x
i
2, x

i
3, x

i
4), i = 1, 2, 3. Also, it

is clear that

〈x , x1 ∧ x2 ∧ x3〉 = det(x, x1, x2, x3)

for any x ∈ R4
2. Therefore, x1 ∧ x2 ∧ x3 is pseudo-orthogonal to any xi, i = 1, 2, 3.

We give the basic theory of non-degenerate curves in H3
1. Let α : I → H3

1 be regular curve

(i.e., an immersed curve) for open subset I ⊂ R. The regular curve α is said to be spacelike or

timelike if α̇ is a spacelike or timelike vector at any t ∈ I where α̇(t) = dα/dt. The such curves

are called non-degenerate curve. Since α is a non-degenerate curve, it admits an arc length

parametrization s = s(t). Thus, we can assume that α(s) is a unit speed curve. Then the unit

tangent vector of α is given by t(s) = α′(s). Since 〈α(s) , α(s) 〉 = −1, we have 〈α(s) , t′(s) 〉 =

−δ1 where δ1 = sign(t(s)). The vector t′(s) − δ1α(s) is pseudo-orthogonal to α(s) and t(s).

In the case when 〈α′′(s) , α′′(s) 〉 6= −1 and t′(s) − δ1α(s) 6= 0, the pirinciple normal vector

and the binormal vector of α is given by n(s) = t′(s)−δ1α(s)
‖t′(s)−δ1α(s)‖ and b(s) = α(s) ∧ t(s) ∧ n(s),

respectively. Also, geodesic curvature of α are defined by κg(s) = ‖t′(s) − δ1α(s)‖. Hence, we

have pseudo-orthonormal frame field {α(s), t(s), n(s), b(s)} of R4
2 along α. The frame is also

called the Sabban frame of non-dejenerate curve α on H3
1 such that

t(s) ∧ n(s) ∧ b(s) = δ3 α(s), n(s) ∧ b(s) ∧ α(s) = δ1 δ3 t(s)

b(s) ∧ α(s) ∧ t(s) = −δ2 δ3 n(s), α(s) ∧ t(s) ∧ n(s) = b(s).

where sign(t(s)) = δ1, sign(n(s)) = δ2, sign(b(s)) = δ3 and det(α, t, n, b) = −δ3.

Now, if the assumption is < α′′(s), α′′(s) > 6= −1, we can give two different Frenet-Serret

formulas of α according to the causal character. It means that if δ1 = 1 (δ1 = −1), then α is

spacelike (timelike) curve in H3
1. In that case, the Frenet-Serret formulas are




α′(s)

t′(s)

n′(s)

b′(s)




=




0 1 0 0

δ1 0 κg(s) 0

0 −δ1δ2κg(s) 0 −δ1δ3τg(s)

0 0 δ1δ2τg(s) 0







α(s)

t(s)

n(s)

b(s)




(2)

where the geodesic torsion of α is given by τg(s) = δ1 det(α(s),α′(s),α′′(s),α′′′(s))

(κg(s))2
.

Remark 2.1 The condition < α′′(s), α′′(s) > 6= −1 is equivalent to κg(s) 6= 0. Moreover, we
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can show that κg(s) = 0 and t′(s) − δ1α(s) = 0 if and only if the non-degenerate curve α is a

geodesic in H3
1.

We can give the following definitions by (Barros et al., 2001; Chen et al., 2014).

Definition 2.2 Let α : I ⊂ R → H3
1 is an immersed spacelike (timelike) curve according to the

Sabban frame {α, t, n, b} with geodesic curvature κg and geodesic torsion τg. Then,

(1) If τg ≡ 0 , α is called a planar curve in H3
1;

(2) If κg ≡ 1 and τg ≡ 0 , α is called a horocycle in H3
1;

(3) If τg and κg are both non-zero constant, α is called a helix in H3
1.

Remark 2.3 From now on, we call that α is a spacelike (timelike) AdS curve if α : I ⊂ R → H
3
1

is an immersed spacelike (timelike) unit speed curve in H3
1.

§3. Spacelike Smarandache Curves of Timelike Curves in H
3
1

In this section, we consider any timelike AdS curve α = α(s) and define its spacelike AdS

Smarandache curve β = β(s⋆) according to the Sabban frame {α(s), t(s), n(s), b(s)} of α in

H3
1 where s and s⋆ is arc length parameter of α and β, respectively.

Definition 3.1 Let α = α(s) be a timelike AdS curve with Sabban frame ϕ = {α, t, n, b}
and geodesic curvature κg and geodesic torsion τg. Then the spacelike vivj−Smarandache AdS

curve β = β(s⋆) of α is defined by

β(s⋆(s)) =
1√
2
(avi(s) + bvj(s)), (3)

where vi, vj ∈ ϕ for i 6= j and a, b ∈ R such that

vivj Condition

αt a2 + b2 = 2

αn a2 − b2 = 2

αb a2 − b2 = 2

tn a2 − b2 = 2

tb a2 − b2 = 2

nb a2 + b2 = −2

(Undefined)

. (4)

Theorem 3.2 Let α = α(s) be a timelike AdS curve with Sabban frame ϕ = {α, t, n, b} and

geodesic curvature κg and geodesic torsion τg. If β = β(s⋆) is spacelike vivj−Smarandache AdS

curve with Sabban frame {β, tβ, nβ, bβ} and geodesic curvature κ̃g, geodesic torsion τ̃g where

vi, vj ∈ ϕ for i 6= j, then the Sabban apparatus of β can be constructed by the Sabban apparatus
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of α such that

vivj Condition

αt b2κg(s)
2 − 2 > 0

αn b2τg(s)
2 − (bκg(s) + a)

2
> 0

αb b2τg(s)
2 − a2 > 0

tn 2(κg(s)
2 − 1) + b2

(
τg(s)

2 − 1
)

> 0

tb (aκg(s) − bτg(s))
2 − a2 > 0

nb (Undefined)

. (5)

Proof We suppose that vivj = αt . Now, let β = β(s⋆) be spacelike αt−Smarandache

AdS curve of timelike AdS curve α = α(s). Then, β is defined by

β(s⋆(s)) =
1√
2
(aα(s) + bt(s)) (6)

such that a2 + b2 = 2, a, b ∈ R from the Definition 3.1. Differentiating both sides of (6) with

respect to s, we get

β′(s⋆(s)) =
dβ

ds⋆

ds⋆

ds
=

1√
2

(aα′(s) + bt′(s))

and by using (2),

tβ(s⋆(s))
ds⋆

ds
=

1√
2

(at(s) + b (−α(s) + κg(s)n(s))) ,

where

ds⋆

ds
=

√
b2κg(s)

2 − 2

2
(7)

with condition b2κg(s)
2 − 2 > 0.

(From now on, unless otherwise stated, we won’t use the parameters ”s” and ”s⋆” in the

following calculations for the sake of brevity).

Hence, the tangent vector of spacelike αt−Smarandache AdS curve β is to be

tβ =
1√
σ

(−bα + at + bκgn) , (8)

where σ = b2κg
2 − 2.

Differentiating both sides of (8) with respect to s, we have

tβ
′ =

√
2

σ2
(λ1α + λ2t + λ3n + λ4b) (9)
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by using again (2) and (7), where

λ1 = b3κgκg
′ − aσ

λ2 = −ab2κgκg
′ + b

(
κg

2 − 1
)
σ

λ3 = −2bκg
′ + aκgσ

λ4 = bκgτgσ .

(10)

Now, we can compute

tβ
′ − β =

1√
2σ2

((
2λ1 − aσ2

)
α +

(
2λ2 − bσ2

)
t + 2λ3n+2λ4b

)
(11)

and

‖tβ
′ − β‖ =

1

σ2

√
−σ4 + 2 (aλ1 + bλ2)σ2 + 2

(
−λ1

2 − λ2
2 + λ3

2 + λ4
2
)
. (12)

From the equations (11) and (12), the principal normal vector of β is

nβ =
1√
2µ

((
2λ1 − aσ2

)
α +

(
2λ2 − bσ2

)
t + 2λ3n + 2λ4b

)
(13)

and the geodesic curvature of β is

κ̃g =

√
µ

σ2
, (14)

where

µ = −σ4 + 2 (aλ1 + bλ2)σ2 + 2
(
−λ1

2 − λ2
2 + λ3

2 + λ4
2
)
. (15)

Also, from the equations (6), (8) and (13), the binormal vector of β as pseudo vector

product of β, tβ and nβ is given by

bβ =
1√
σµ

((
−b2κgλ4

)
α + (abκgλ4) t + 2λ4n +

(
−b2κgλ1 + abκgλ2 − 2λ3

)
b
)
. (16)

Finally, differentiating both sides of (9) with respect to s, we get

tβ
′′ =

−2

σ7/2



(
2λ1σ

′ − (λ1
′ − λ2)σ

)
α +

(
2λ2σ

′ − (λ1 + λ2
′ + κgλ3)σ

)
t

+
(
2λ3σ

′ − (κgλ2 + λ3
′ − τgλ4)σ

)
n +

(
2λ4σ

′ − (τgλ3 + λ4
′)σ
)
b


 (17)

by using again (2) and (7). Hence, from the equations (6), (8), (9), (14) and (17), the geodesic

torsion of β is

τ̃g =
2

σµ


 κg(bλ1 − aλ2)(bτgλ3 + aλ4 + bλ4

′) − bκg(bλ1
′ − aλ2

′)λ4

+2τg(λ3
2 + λ4

2) + abκg
2λ3λ4 − 2(λ3

′λ4 − λ3λ4
′)


 (18)

under the condition a2 + b2 = 2. Thus, we obtain the Sabban aparatus of β for the choice

vivj = αt.

It can be easily seen that the other types of vivj−Smarandache curves β of α by using
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same method as the above. The proof is complete. 2
Corollary 3.3 Let α = α(s) be a timelike AdS curve and β = β(s⋆) be spacelike vivj−Smarandache

AdS curve of α, then the following table holds for the special cases of α under the conditions

(4) and (5):

vivj α is planar curve α is horocycle α is helix

αt planar curve undefined helix

αn undefined undefined helix

αb undefined undefined helix

tn planar curve undefined helix

tb planar curve undefined helix

Definition 3.4 Let α = α(s) be a timelike AdS curve with Sabban frame ϕ = {α, t, n, b} and

geodesic curvature κg and geodesic torsion τg. Then the spacelike vivjvk−Smarandache AdS

curve β = β(s⋆) of α is defined by

β(s⋆(s)) =
1√
3
(avi(s) + bvj(s) + cvk(s)), (19)

where vi, vj , vk ∈ ϕ for i 6= j 6= k and a, b, c ∈ R such that

vivjvk Condition

αtn a2 + b2 − c2 = 3

αtb a2 + b2 − c2 = 3

αnb a2 − b2 − c2 = 3

tnb a2 − b2 − c2 = 3

. (20)

Theorem 3.5 Let α = α(s) be a timelike AdS curve with Sabban frame ϕ = {α, t, n, b} and

geodesic curvature κg and geodesic torsion τg. If β = β(s⋆) is spacelike vivjvk−Smarandache

AdS curve with Sabban frame {β, tβ, nβ, bβ} and geodesic curvature κ̃g, geodesic torsion τ̃g

where vi, vj , vk ∈ ϕ for i 6= j 6= k, then the Sabban apparatus of β can be constructed by the
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Sabban apparatus of α such that

vivjvk Condition

αtn (b2 − c2)κg(s)
2 − 2acκg(s) + c2(τg(s)

2 − 1) − 3 > 0

αtb (bκg(s) − cτg(s))
2 −

(
c2 + 3

)
> 0

αnb
(
b2 + c2

)
τg(s)

2 − (a + bκg(s))
2 > 0

tnb (aκg(s) − cτg(s))
2 + b2

(
τg(s)

2 − κg(s)
2
)
− a2 > 0

. (21)

Proof We suppose that vivjvk = αtb . Now, let β = β(s⋆) be spacelike αtb−Smarandache

AdS curve of timelike AdS curve α = α(s). Then, β is defined by

β(s⋆(s)) =
1√
3
(aα(s) + bt(s) + cb(s)) (22)

such that a2 + b2 − c2 = 3, a, b, c ∈ R from the Definition 3.4. Differentiating both sides of (22)

with respect to s, we get

β′(s⋆(s)) =
dβ

ds⋆

ds⋆

ds
=

1√
3

(aα′(s) + bt′(s) + cb′(s))

and by using (2),

tβ(s⋆(s))
ds⋆

ds
=

1√
3

(at(s) + b (−α(s) + κg(s)n(s)) + c (−τg(s)n(s)))

where

ds⋆

ds
=

√
(b κg(s) − c τg(s))

2 − (c2 + 3)

3
(23)

with the condition (bκg(s) − cτg(s))
2 −

(
c2 + 3

)
> 0.

(From now on, unless otherwise stated, we won’t use the parameters “s” and “s⋆” in the

following calculations for the sake of brevity).

Hence, the tangent vector of spacelike αtb−Smarandache AdS curve β is to be

tβ =
1√
σ

(−bα + at + (bκg − cτg)n) , (24)

where σ = (bκg − cτg)
2 −

(
c2 + 3

)
.

Differentiating both sides of (24) with respect to s, we have

tβ
′ =

√
3

σ2
(λ1α + λ2t + λ3n + λ4b) (25)
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by using again (2) and (23), where





λ1 = b (bκg − cτg) (bκg
′ − cτg

′) − aσ

λ2 = −a (bκg − cτg) (bκg
′ − cτg

′) +
(
b
(
−1 + κg

2
)
− cκgτg

)
σ

λ3 = −
(
3 + c2

)
(bκg

′ − cτg
′) + aκgσ

λ4 = τg (bκg − cτg) σ

(26)

Now, we can compute

tβ
′ − β =

1√
3σ2

((
3λ1 − aσ2

)
α +

(
3λ2 − bσ2

)
t + 3λ3n +

(
3λ4 − cσ2

)
b
)

(27)

and

‖tβ
′ − β‖ =

1

σ2

√
−σ4 + 2 (aλ1 + bλ2 − cλ4)σ2 + 3

(
−λ1

2 − λ2
2 + λ3

2 + λ4
2
)
. (28)

From the equations (27) and (28), the principal normal vector of β is

nβ =
1√
3µ

((
3λ1 − aσ2

)
α +

(
3λ2 − bσ2

)
t + 3λ3n +

(
3λ4 − cσ2

)
b
)

(29)

and the geodesic curvature of β is

κ̃g =

√
µ

σ2
, (30)

where

µ = −σ4 + 2 (aλ1 + bλ2 − cλ4)σ2 + 3
(
−λ1

2 − λ2
2 + λ3

2 + λ4
2
)
. (31)

Also, from the equations (22), (24) and (29), the binormal vector of β as pseudo vector

product of β, tβ and nβ is given by

bβ =
1√
σµ




(c(bκg − cτg)λ2 − (ac)λ3 − b(bκg − cτg)λ4)α

− (c(bκg − cτg)λ1 + (bc)λ3 − a(bκg − cτg)λ4) t

−
(
(ac)λ1 + (bc)λ2 − (c2 + 3)λ4

)
n

−
(
(bκg − cτg)(bλ1 − aλ2) + (c2 + 3)λ3

)
b




. (32)

Finally, differentiating both sides of (25) with respect to s, we get

tβ
′′ =

−3

σ7/2



(
2λ1σ

′ − (λ1
′ − λ2)σ

)
α +

(
2λ2σ

′ − (λ1 + λ2
′ + κgλ3)σ

)
t

+
(
2λ3σ

′ − (κgλ2 + λ3
′ − τgλ4)σ

)
n +

(
2λ4σ

′ − (τgλ3 + λ4
′)σ
)
b


 (33)

by using again (2) and (23). Hence, from the equations (22), (24), (25), (30) and (33), the

geodesic torsion of β is

τ̃g =
3

σµ




c (aλ3 − λ2 (bκg − cτg)) (λ2 − λ1
′) − c (bλ3 + λ1 (bκg − cτg)) (λ1 + κgλ3 + λ2

′)

+λ4 (bκg − cτg) (b (λ2 − λ1
′) + a (λ1 + κgλ3 + λ2

′)) + c (aλ1 + bλ2) (κgλ2 − τgλ4 + λ3
′)

−
(
3 + c2

)
λ4 (κgλ2 − τgλ4 + λ3

′) +
((

3 + c2
)
λ3 + (bλ1 − aλ2) (bκg − cτg)

)
(τgλ3 + λ4

′)




(34)

under the condition a2 + b2 − c2 = 3. Thus, we obtain the Sabban aparatus of β for the choice
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vivjvk = αtb.

It can be easily seen that the other types of vivjvk−Smarandache curves β of α by using

same method as the above. The proof is complete. 2
Corollary 3.6 Let α = α(s) be a timelike AdS curve and β = β(s⋆) be spacelike vivjvk−Smarandache

AdS curve of α, then the following table holds for the special cases of α under the conditions

(20) and (21):

vivjvk α is planar curve α is horocycle α is helix

αtn planar curve undefined helix

αtb planar curve undefined helix

αnb undefined undefined helix

tnb planar undefined helix

Definition 3.7 Let α = α(s) be a timelike AdS curve with Sabban frame {α, t, n, b} and

geodesic curvature κg and geodesic torsion τg. Then the spacelike αtnb−Smarandache AdS

curve β = β(s⋆) of α is defined by

β(s⋆(s)) =
1√
4
(a0α(s) + b0t(s) + c0n(s) + d0b(s)), (35)

where a0, b0, c0, d0 ∈ R such that

a0
2 + b2

0 − c0
2 − d0

2 = 4. (36)

Theorem 3.8 Let α = α(s) be a timelike AdS curve with Sabban frame {α, t, n, b} and

geodesic curvature κg and geodesic torsion τg. If β = β(s⋆) is spacelike αtnb−Smarandache

AdS curve with Sabban frame {β, tβ, nβ, bβ} and geodesic curvature κ̃g, geodesic torsion τ̃g,

then the Sabban apparatus of β can be constructed by the Sabban apparatus of α under the

condition

(b0κg(s) − d0τg(s))
2 − (a0 + c0κg(s))

2
+ c0

2τg(s)
2 − b0

2 > 0. (37)

Proof Let β = β(s⋆) be spacelike αtnb−Smarandache AdS curve of timelike AdS curve

α = α(s). Then, β is defined by

β(s⋆(s)) =
1√
4
(a0α(s) + b0t(s) + c0n(s) + d0b(s)) (38)

such that a0
2 + b0

2 − c0
2 − d0

2 = 4, a0, b0, c0, d0 ∈ R from the Definition 3.7. Differentiating
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both sides of (38) with respect to s, we get

β′(s⋆(s)) =
dβ

ds⋆

ds⋆

ds
=

1√
4

(a0α
′(s) + b0t

′(s) + c0n
′ + d0b

′(s))

and by using (2),

tβ(s⋆(s))
ds⋆

ds
=

1√
4

(a0t(s) + b0 (−α(s) + κg(s)n(s)) + c0 (κg(s)t(s) + τg(s)b(s)) + d0 (−τg(s)n(s)))

where

ds⋆

ds
=

√
(b0κg(s) − d0τg(s))

2 − (a0 + c0κg(s))
2
+ c0

2τg(s)
2 − b0

2

4
(39)

with the condition (b0κg(s) − d0τg(s))
2 − (a0 + c0κg(s))

2
+ c0

2τg(s)
2 − b0

2 > 0.

(From now on, unless otherwise stated, we won’t use the parameters “s” and “s⋆” in the

following calculations for the sake of brevity).

Hence, the tangent vector of spacelike αtnb−Smarandache AdS curve β is to be

tβ =
1√
σ

(−b0α + (a0 + c0κg) t + (b0κg − d0τg) n + c0τgb) , (40)

where σ = (b0κg − d0τg)
2 − (a0 + c0κg)

2
+ c0

2τg
2 − b0

2.

Differentiating both sides of (40) with respect to s, we have

tβ
′ =

2

σ2
(λ1α + λ2t + λ3n + λ4b) (41)

by using again (2) and (39) where

λ1 = −b0

(
a0c0 + c2

0κg − b0 (b0κg − d0τg)
)
κg

′ + b0

(
c2
0τg − d0 (b0κg − d0τg)

)
τg

′ − (a0 + c0κg) σ

λ2 =

(
−b2

0 (c0 + a0κg) + b0d0 (a0 − c0κg) τg + c0

(
c0

2 + d0
2
)
τ 2

g

)
κg

′

+
(
b0d0κg (a0 + c0κg) −

(
c2
0 + d2

0

)
(a0 + c0κg) τg

)
τg

′ +
(
b0

(
κ2

g − 1
)
− d0κgτg

)
σ

λ3 =
−
(
a0c0 (b0κg + d0τg) + c2

0

(
d0κgτg − b0

(
τ 2

g − 1
))

+ b0

(
4 + d2

0

))
κg

′

+
(
2a0c0d0κg + c2

0

(
d0

(
1 + κ2

g

)
− b0κgτg

)
+ d0

(
4 + d2

0

))
τg

′ +
(
a0κg + c0

(
κ2

g − τ 2
g

))
σ

λ4 =
c0 (c0 (a0 + c0κg) − b0 (b0κg − d0τg)) τgκg

′+

c0

(
τg

(
b0d0κg −

(
c2
0 + d2

0

)
τg

)
+ σ

)
τg

′ + (b0κg − d0τg) τgσ

(42)

Now, we can compute

tβ
′ − β =

1

2σ2

((
4λ1 − a0σ

2
)
α +

(
4λ2 − b0σ

2
)
t +

(
4λ3 − c0σ

2
)
n +

(
4λ4 − d0σ

2
)
b
)

(43)

and

‖tβ
′ − β‖ =

1

σ2

√
−σ4 + 2 (a0λ1 + b0λ2 − c0λ3 − d0λ4) σ2 + 4

(
−λ1

2 − λ2
2 + λ3

2 + λ4
2
)
.

(44)



12 Mahmut Mak and Hasan Altınbaş

From the equations (43) and (44), the principal normal vector of β is

nβ =
1

2
√

µ

((
4λ1 − a0σ

2
)
α +

(
4λ2 − b0σ

2
)
t +

(
4λ3 − c0σ

2
)
n +

(
4λ4 − d0σ

2
)
b
)

(45)

and the geodesic curvature of β is

κ̃g =

√
µ

σ2
, (46)

where

µ = −σ4 + 2 (a0λ1 + b0λ2 − c0λ3 − d0λ4)σ2 + 4
(
−λ1

2 − λ2
2 + λ3

2 + λ4
2
)

(47)

Also, from the equations (38),(40) and (45), the binormal vector of β as pseudo vector

product of β, tβ and nβ is given by

bβ =
1√
µσ

(
(−b2

0κgλ4 + c0(−d0κgλ3 + a0λ4) − c2
0(τgλ2 − κgλ4) − d0(d0τgλ2 + a0λ3)

+b0(c0τgλ3 + d0(κgλ2 + τgλ4)))α + (b0(−d0(κgλ1 + λ3) + (c0 + a0κg)λ4)

+(c2
0λ1 − a0c0λ3 + d0(d0λ1 − a0λ4))τg)t + (a2

0λ4 − b0(d0λ2 − b0λ4)

−c0λ1(d0κg − b0τg) − a0(d0λ1 + c0(τgλ2 − κgλ4)))n + (c2
0κgλ1 − a2

0λ3

−b2
0(κgλ1 + λ3) + b0(c0λ2 + d0τgλ1) + a0(c0(λ1 − κgλ3) + (b0κg − d0τg)λ2t))b

)
(48)

Finally, differentiating both sides of (41) with respect to s, we get

tβ
′′ =

−4

σ7/2



(
2λ1σ

′ −
(
λ1

′ − λ2

)
σ
)
α +

(
2λ2σ

′ − (λ1 + λ2
′ + κgλ3)σ

)
t

+
(
2λ3σ

′ − (κgλ2 + λ3
′ − τgλ4)σ

)
n +

(
2λ4σ

′ − (τgλ3 + λ4
′)σ
)
b


 (49)

by using again (2) and (49). Hence, from the equations (38), (40), (41), (46) and (49), the

geodesic torsion of β is

τ̃g =
4

µσ

(
(b2

0κgλ4 + (a0 + c0κg)(d0λ3 − c0λ4) + (c2
0 + d2

0)τgλ2

−b0(c0τgλ3 + d0(κgλ2 + τgλ4)))(λ2 − λ′
1)

+(b0(−d0(κgλ1 + λ3) + (c0 + a0κg)λ4) + (c2
0λ1 − a0c0λ3

+d0τg(d0λ1 − a0λ4)))(λ1 + κgλ3 + λ′
2) + (d0((a0 + c0κg)λ1

+b0λ2) − (a0(a0 + c0κg) + b2
0)λ4 − c0τg(b0λ1 − a0λ2))(κgλ2 − λ4τg + λ′

3)

+(−c2
0κgλ1 + a2

0λ3 + b2
0(κgλ1 + λ3) − b0(c0λ2 + d0λ1τg) + a0(c0(−λ1 + κgλ3)

+λ2(−b0κg + d0τg)))(λ3τg + λ′
4)) (50)

under the condition (36). The proof is complete. 2
Corollary 3.9 Let α = α(s) be a timelike AdS curve and β = β(s⋆) be spacelike αtnb−Smarandache

AdS curve of α, then the following table holds for the special cases of α under the conditions

(36) and (37):
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α is planar curve α is horocycle α is helix

αtnb planar curve undefined helix

Consequently, we can give the following corollaries by Corollary 3.3, Corollary 3.6, Corol-

lary 3.9.

Corollary 3.10 Let α be a timelike horocycle in H3
1. Then, there exist no spacelike Smaran-

dache AdS curve of α in H3
1.

Corollary 3.11 Let α be a timelike AdS curve and β be any spacelike Smarandache AdS curve

of α. Then, α is helix if and only if β is helix.

§4. Examples and AdS Stereographic Projection

Let R3
1 denote Minkowski 3-space (three-dimensional semi Euclidean space with index one),

that is, the real vector space R
3 endowed with the scalar product

〈x , y 〉
⋆

= −x1 y1 + x2 y2 + x3 y3

for all x = (x1, x2, x3), y = (y1, y2, y3) ∈ R3. The set

S
2
1 =

{
x ∈ R

3
1 | 〈x , x 〉

⋆
= 1

}

is called de Sitter plane (unit pseudosphere with dimension 2 and index 1 in R3
1). Then, the

stereographic projection Φ from H3
1 to R3

1 and its inverse is given by

Φ : H
3
1\Γ → R

3
1\S

2
1 , Φ(x) =

(
x2

1 + x1
,

x3

1 + x1
,

x4

1 + x1

)

and

Φ−1 : R
3
1\S

2
1 → H

3
1\Γ , Φ−1 (x) =

(
1 + 〈x , x 〉

⋆

1 − 〈x , x 〉
⋆

,
2x1

1 − 〈x , x 〉
⋆

,
2x2

1 − 〈x , x 〉
⋆

,
2x3

1 − 〈x , x 〉
⋆

)

according to set Γ =
{

x ∈ H3
1 | x1 = −1

}
, respectively. It is easily seen that Φ is conformal

map.

Hence, the stereographic projection Φ of H3
1 is called AdS stereographic projection. Now,

we can give the following important proposition about projection regions of any AdS curve.

Proposition 4.1 Let Φ be AdS stereographic projection. Then the following statements are

satisfied for all x ∈ H3
1:

(a) x1 > −1 ⇔ 〈Φ (x) , Φ (x) 〉
⋆

< 1;

(b) x1 < −1 ⇔ 〈Φ (x) , Φ (x) 〉
⋆

> 1.
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Now, we give an example for timelike AdS curve as helix and some spacelike Smarandache

AdS curves of the base curve. Besides, we draw pictures of these curves by using Mathematica.

Example 4.2 Let AdS curve α be

α(s) =

(√
2 cosh(

√
2s), 21/4 cosh(

√
5s) +

√
1 +

√
2 sinh(

√
5s),

√
2 sinh(

√
2s),

√
1 +

√
2 cosh(

√
5s) + 21/4 sinh

√
5s

)
.

Then the tangent vector of α is given by

t(s) =

(
2 sinh(

√
2s),

√
5
(
1 +

√
2
)

cosh
√

5s + 21/4
√

5 sinh(
√

5s),

2 cosh(
√

2s), 21/4
√

5 cosh(
√

5s) +

√
5
(
1 +

√
2
)

sinh(
√

5s)

)
,

and since

〈t(s) , t(s)〉 = −1,

α is timelike AdS curve. By direct calculations, we get easily the following rest of Sabban

frame’s elements of α:

n(s) =

(
cosh(

√
2s), 23/4 cosh(

√
5s) +

√
2
(
1 +

√
2
)

sinh(
√

5s),

sinh(
√

2s),

√
2
(
1 +

√
2
)

cosh(
√

5s) + 23/4 sinh(
√

5s)

)
,

b(s) =

(√
5 sinh(

√
2s), 2

√
1 +

√
2 cosh(

√
5s) + 25/4 sinh(

√
5s),

√
5 cosh(

√
2s), 25/4 cosh(

√
5s) + 2

√
1 +

√
2 sinh(

√
5s)

)
.

and the geodesic curvatures of α are obtained by

κg = 3
√

2 , τg = −
√

10.

Thus, α is a helix in H3
1. Now, we can define some spacelike Smarandache AdS curves of α as

the following:

αnβ(s⋆(s)) = 1√
2

(√
3α(s) − n(s)

)

αnbβ(s⋆(s)) = 1√
3

(√
6 α(s) −

√
2n(s) + b(s)

)

αtnbβ(s⋆(s)) = 1
2

(√
71
6 α(s) − 3

2t(s) + 1
3n(s) + 1

3b(s)
)
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and theirs geodesic curvatures are obtained by

αnκg = 1.9647 , αnτg = −0.0619

αnbκg = 1.9773 , αnbτg = −0.0126

αtnbκg = 2.0067 , αtnbτg = −0.0044

in numeric form, respectively. Hence, the above spacelike Smarandache AdS curves of α are

also helix in H3
1, seeing Figure 1.

(a) (b)

(c) (d)

Figure 1



16 Mahmut Mak and Hasan Altınbaş

where, (a) is the timelike AdS helix α, (b) the spacelike αn-Smarandache AdS helix of α, (c)

the spacelike αnb-Smarandache AdS helix of α and (d) the spacelike αtnb-Smarandache AdS

helix of α.
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