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INTRODUCTION

I have met the Smarandache's world for the first time about one year ago reading some
articles and problems published in the Journal of Recreational Mathematics.

From then on I discovered the interesting  American Research Press web site
dedicated to the Smarandache notions and held by Dr. Perez (address:
http://www.gallup.unm.edu/~smarandache/),  the Smarandache Notions Journal
always published by American Research Press, and several books on conjectures,
functions, unsolved problems, notions and other proposed by Professor F.
Smarandache in "The Florentin Smarandache papers" special collections at: the
Arizona State University (Tempe, USA), Archives of American  Mathematics
(University of Texas at Austin, USA), University of Craiova Library (Romania), and
Archives of State (Rm. Valcea, Romania).

The Smarandache's universe is undoubtedly very fascinating and is halfway between
the number theory and the recreational mathematics.
 Even though sometime this universe has a very simple structure from number theory
standpoint, it doesn't cease to be deeply mysterious and interesting.

This book, following the Smarandache spirit, presents new Smarandache functions,
new conjectures, solved/unsolved problems, new Smarandache type sequences and
new Smarandache Notions in number theory.
Moreover a chapter (IV)  is dedicated to the analysis of Smarandache Double factorial
function introduced in number theory by F.  Smarandache ("The Florentin
Smarandache papers" special collection, University of Craiova Library, and Archivele
Statului, Filiala Valcea) and another one (V) to the study of some conjectures and
open questions proposed always by F. Smarandache.
In particular we will analyse some conjectures on prime numbers and the
generalizations of Goldbach conjecture.
This book would be a telescope to explore and enlarge our knowledge on the
Smarandache's universe. So let's start our observation.
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Chapter I

On some new Smarandache functions in Number Theory.

A number-theoretic function is any function which is defined for positive integers
argument.
Euler's function (n)ϕ  [3] is such, as are  n!,  n , 2n   etc. The functions which are
interesting from number theory point of view are, of course, those like (n)ϕ  whose
value depends in some way on the arithmetic nature of the argument, and not simply
on its size.  But the behaviour of the function is likely to be highly irregular, and it
may be a difficult matter to describe how rapidly the function value grows as the
argument increases. In the 1970's F. Smarandache created a new function in number
theory whose behaviour is highly irregular like the (n)ϕ  function.
Called the Smarandache function in his honor it also has a simple definition:

if n>0,  then S(n)=m,  where m is the smallest number 0≥  such that n evenly divides
m! [1]

In the 1996,  K. Kashihara [2] defined, analogously to the Smarandache function, the
Pseudo Smarandache function:

given any integer 1n ≥ , the value of the Pseudo Smarandache function Z(n), is the
smallest integer m such that n evenly divides the sum of first m integers.

In this chapter we will define four other Pseudo Smarandache functions in number
theory  analogous to the Pseudo-Smarandache function.
Many of the results obtained for these functions are similar to those of Smarandache
and Pseudo-Smarandache functions. Several examples, conjectures and problem are
given too. Regarding some proposed problems a partial solution is sketched.
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1.1  PSEDUO-SMARANDACHE-TOTIENT FUNCTION

The Pseudo Smarandache totient function Zt(n) is defined as the smallest integer m
such that:

∑
=

m

1k

(k)ϕ

is divisible by n. Here (n)ϕ  is the Euler (or totient) function that is the number of
positive  integers  nk ≤  which are relatively prime to n [3].
In the figure 1.1, the growth of function Zt(n) versus n is showed. As for the Euler
function its  behaviour is highly erratic.

Fig. 1.1
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 Anyway using a logarithmic y axis a clear pattern emerges. We can see that the points
of Zt function tend to dispose  along curves that grow like the square root of n. (Fig.
1.2) In fact according to Walfisz result [3] the sum of first m values of Euler  function
is given by:

3
4

3
2

2

2m

1k

)(ln(ln(m))ln(m)O(m
m3

(k) ⋅⋅+⋅=∑
=

π
ϕ

and then the Zt(n) asymptotic behaviour is decribed as :

Nkfor
3
nk

mZt(n) ∈⋅⋅≈= π

where the k parameter modulates  Zt(n).

Fig. 1.2
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A table of the Zt(n) values for  60n1 ≤≤   follows:

n Zt(n) n     Zt(n) n     Zt(n)

1   1 21 11 41 67
2   2   22 8 42 11
3   4 23 12 43 23
4   3 24 15 44 31
5   5 25 22 45 24
6   4 26 46 46 12
7   9 27 29 47 55
8   10 28 9 48 17
9   7 29 13 49 40
10   5 30 19 50 22
11   8 31 51 51 18

  12     6   32   10   52  153
13   46 33 36 53 26
14   9 34 18 54 29

  15    19   35   21   55   184
16   10 36 15 56 75
17   18 37 88 57 84
18   7 38 60 58 13
19   60 39 142 59 92
20   16 40 16 60 19

Let’s start now to explore some  properties of this new function.

Theorem 1.1.1 The Zt(n) function is not additive and not multiplicative,
that is  )()()( nZtmZtnmZt ⋅≠⋅   and  )()()( nZtmZtnmZt +≠+ [8].

Proof.   In fact for example: Zt(3)Zt(2)3)Zt(2 +≠+  and Zt(3)Zt(2)3)Zt(2 ⋅≠⋅

Theorem 1.1.2   Zt(n)>1 for n >1

Proof.  This is due to the fact that 0(n) >ϕ  for n>0 and 1(n) =ϕ  only for n=1.
Note that Zt(n)=1 if and only if n=1.
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 Theorem 1.1.3  ∑
=

≥
+⋅

≤
)(

1

1
2

)1)(()(
)(

nZt

k

nfor
nZtnZt

kϕ

Proof.  Assume Zt(n)=m. Since 1nfor  n(n) ≥≤ϕ  this implies that

∑∑
==

+⋅
=≤

m

k

mm
k

1

m

1k
2

)1(
(k)ϕ

Theorem 1.1.4   ∑
∞

=1
)(

1

n
nZt

  diverges.

Proof.   By definition  Zt(n)=m, and this implies that  na ⋅=∑
=

m

1k

(k)ϕ  where Na ∈ .

Then   na
m

⋅≈
⋅

2

23

π
   according to Walfisz result reported previously [3].

Therefore   ∑∑ ∑
∞

=

∞

=

∞

=
⋅

>
⋅

≈
⋅

⋅⋅≈
11 1

131

3

1
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2

nn n
nanaZt(n)

and
na

m
π

π

π

diverges, because as known:       ∞→∑∞→
n

nn

1
lim

Conjecture 1.1.1   The sum of reciprocals of Zt(n) function  is asymptotically
equal to the natural logarithm of n:

∑
=

≈≈+⋅≈
N

1n

0.739band0.9743awherebln(N)a
Zt(n)

1
KK
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Theorem 1.1.5   diverges
n
nZt

n
∑

∞

=1

)(

Proof.    In fact:

∑ ∑ ∑
∞

=

∞

=

∞

=

>

⋅

⋅≈
1 1 1

13)(

n n n
nn

na

n
nZt

π

and as known the sum of reciprocals of natural numbers diverges.

Conjecture 1.1.2    K8737.0
)(

1

≈⋅≈∑
=

awhereNa
k
kZt

N

k

Theorem 1.1.6     ∑
=

⋅≤
n

k

kn
1

2

)(
3

ϕ
π

Proof.   According to Walfisz result   
2

2

1

3
)(

π
ϕ

n
k

n

k

⋅
≈∑

=

, and then the theorem is a

consequence of inequality  2nn ≤ .

Theorem 1.1.7     nk
nZt

k

≥∑
=

)(

1

)(ϕ

Proof. The result is a direct consequence of the Zt(n) definition. In fact

                                      Nawherenak
m

k

∈⋅=∑
=1

)(ϕ .

For a=1 we have nk
m

k

=∑
=1

)(ϕ while for a>1  nk
m

k

>∑
=1

)(ϕ

Theorem 1.1.8  







⋅≥

3
)(

n
nZt π
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Proof.  The result is a consequence of definition of Zt(n). In fact:









⋅≥

⋅
⋅≈

33
)(

nna
nZt ππ

where Na ∈  and  the symbol  n  indicated  the floor function [3], that by definition
is the largest  integer  n≤ . In many computer languages, the floor function is called
the integer part function and is denoted int(n).

Theorem 1.1.9   It is not always the case that Zt(n)<n

Proof.  Examine for example the following values of Zt(n): Zt(3)=4, Zt(7)=9 and so
on.

Theorem 1.1.10  The range of Zt(n) function is N-{0} where N is the set of
positive integers numbers.

Proof.  The theorem is a direct consequence of Walfistz result [3]. In fact for each
number m we can found a number n given approximatively by:

Nawhere
a

m
n ∈

⋅
⋅

≈
2

23

π

such that Zt(n)=m.

As for the Smarandache and Pseudo Smarandache function, there are several open
problems involving the Pseudo Smarandache Totient function. Some of those
problems are presented herebelow.

Problem 1.  Find the largest number k such that Zt(n), Zt(n+1), Zt(n+2).....Zt(n+k)
are all increasing (decreasing respectively) values.
For the first 1000 values of Zt(n) the largest found sequences  have  k=5 and k=4
respectively.

Example:
                      Zt(514) < Zt(515) < Zt(516) < Zt(517) < Zt(518) < Zt(519)
                      Zt(544) > Zt(545) > Zt(546) > Zt(547) > Zt(548)

Conjecture 1.1.3    The parameter k is upper limited.
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Unsolved question:  Find that upper limit.

Problem 2.   Find the solution of   Zt(n)=n

For the first 1000 terms only for n=1, 2 and 5 the equation is satisfied. Are the
solutions unique ?
In this case we must solve the following equation:

∑
=

∈⋅=
n

k

Nawherenak
1

)(ϕ

Problem 3.  Let's indicate with A how many times Zt(n)<n and with B how many

times Zt(n)>n. Evaluate  
B
A

n ∞→
lim

Conjecture 1.1.4    The limit is finite and greater than 1.

Problem 4.  Are the following values bounded or unbounded?

)()1( nZtnZtnd −+=

)(
)1(

nZt
nZt

nr
+=

Nmnwhere
mn

mZtnZt
nL ∈

−
−

= ,
)()(

Hint: the experimental data on the first 1000 values of Zt(n) show a linear grows for
the average value of  nd .
So this should implies that  nd   is unbounded.
About nr  the experimental data show no clear trend. So any conclusion is difficult to
drive.

Problem 5.   Find all values of n such that:

                      1) Zt(n)|Zt(n+1)
                      2) Zt(n+1)|Zt(n)
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Examining the first 1000 values of Zt(n), the following solutions to 1) have been
found:

 Zt(1)|Zt(2), Zt(2)|Zt(3), Zt(80)|Zt(81), Zt(144)|Zt(145), Zt(150)|Zt(151),
Zt(396)|Zt(397),     Zt(549)|Zt(550),     Zt(571)|Zt(572),      Zt(830)|Zt(831)

Unsolved question: Is the number of those solutions limited or unlimited?

Solutions to 2) for the first 1000 values of Zt(n):

Zt(34)|Zt(33), Zt(46)|Zt(45), Zt(75)|Zt(74), Zt(86)|Zt(85),
Zt(90)|Zt(89), Zt(108)|Zt(107), Zt(172)|Zt(171), Zt(225)|Zt(224),
Zt(242)|Zt(241),  Zt(464)|Zt(465),      Zt(650)|Zt(649),       Zt(886)|Zt(885)

Unsolved question: Is the number of those solutions limited or unlimited?

If we indicate with C the number of solutions to 1) and with D the solutions to 2),
evaluate:

C
D

n ∞→
lim

22

2)(
lim

DC

CD

n −

−
∞→

Evaluate the number of times C and D are equal and the value of n in correspondence
of which the difference is zero.

Problem 6.   Find all values of n such that Zt(n+1)=Zt(n).

Conjecture 1.1.5  There are no solutions to the Diophantine equation                           
Zt(n+1)=Zt(n).

Experimental data support this conjecture.
Infact the behaviour of nd  (see problem 4 for definition) looks like to point-out that
never .0=nd
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Problem 7.   Is there any relationship between:

                 - Zt(n+m) and Zt(n), Zt(m)
- )( mnZt ⋅  and Zt(N), Zt(m) ?

Problem 8.   Let’s consider the functions Zt(n) and )(nϕ . If we indicate with K how
many times  )()( nnZt ϕ>  and with L how many times )()( nnZt ϕ<   evaluate the
ratio:

L
K

n ∞→
lim

Examining the table of values of Zt(n) and )(nϕ  for the first 100 values of n, we have
that )()( nnZt ϕ>  for:
       n= 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 14, 15, 16, 17, 18, 19, 20, 24, 25, 26, 27......

while )()( nnZt ϕ<  for:
        n=11, 21, 22, 23, 28, 29, 32, 35, 42, 43, 46, 49, 51.......

  For  100001 ≤≤ n   the equation )()( nnZt ϕ=  admits the following 9 solutions:
       n=1,  n=40,  n=45, n=90,  n=607,  n=1025,  n=1214,  n=2050,  n=5345
   
Unsolved question:

- Is the number of solutions of equation )()( nnZt ϕ=   upper limited?
      - Evaluate how many times |K-L|=0

Problem 9.   Analyze the iteration of Zt(n) for all values of n. For iteration we intend
the repeated application  of Zt(n).

For example the k-th iteration of Zt(n) is:

)))((((()( KK nZtZtZtZtnkZt =      where Zt is repeated k times.

Unsolved question:   For all values of n, will always each iteration of Zt(n)
produce a fixed point or a cycle?

A fixed point by definition [3] is a point which does not change upon repeated
application of the Zt function.
An n-cycle, instead,  is a finite sequence of points 1,10 , −nYYY K  such that, under the
function Zt,
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  )( 01 YY Zt=
)( 12 YY Zt=

 )( 21 −− = nn YY Zt
   )( 10 −= nYY Zt .

In other words, it is a periodic trajectory which comes back to the same point after n
iterations of the cycle. A fixed point is a cycle of period 1. [3]
Example of fixed point . For n=234 we have the following result

K5558227556241234 →→→→→→→→

Example of 2-Cycle. For n=154 we have:

K9797185131154 →→→→→→→

Problem 10.   If every integer n produces a cycle or a fixed point, which is the cycle
with the largest period ?

Problem 11.   Solve the equation:  Zt(n)+Zt(n+1)=Zt(n+2)
For the first 1000 values of Zt(n), one solution has been found: Zt(6)+Zt(7)=Zt(8).

Unsolved question: Is the number of solutions finite?

Problem 12.   Solve the equation:   Zt(n)=Zt(n+1)+Zt(n+2)
For the first 1000 values of Zt(n) again one solution has been found:
Zt(49)=Zt(50)+Zt(51)

Unsolved question:   How many other solutions do exist?

Problem 13.   Solve the equation: )2()1()( +⋅+= nZtnZtnZt
No solution has been found for the first 1000 values of Zt(n).

Unsolved question:   Is it this true for all n?

Examining the results of a computer search looks like that the following
inequality hold: )2()1()( +⋅+< nZtnZtnZt .  Is this true for all values of n?   If yes
prove why.

Problem 14.   Find all values of n such that )2()1()( +=+⋅ nZtnZtnZt
Also in this case no solution have been found for the first 1000 values of Zt(n).
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 Unsolved question:   Is this true for all values of n?

Checking the inequality )2()1()( +>+⋅ nZtnZtnZt  only one solution among the first
1000  values of Zt(n) has been found: )3()2()1( ZtZtZt >⋅ . Is that solution unique for
all values of n?

Problem 15.  Find all values of n such that )3()2()1()( +⋅+=+⋅ nZtnZtnZtnZt .
For the first 1000 values of Zt(n) no solution has been found. Is it this true for all n?
If yes,  why?

Problem 16.  Solve the equation Z(n)=Zt(n), where Z(n) is the Pseudo-Smarandache
function [2].
For the first 60 values of Zt(n) and Z(n) two solutions have been found: Z(1)=Zt(1),
Z(24)=Zt(24)=15

Unsolved question:    How many other solutions do exist for all values of n?

Problem 17.   Find all values of n such that:  Zt(n)=Z(n) +/- 1
For the first 60 values of Zt(n) and Z(n) the following solutions have been found:

                   Zt(2)=Z(2)-1                    Zt(5)=Z(5)+1
                   Zt(9)=Z(9)-1                    Zt(6)=Z(6)+1
                   Zt(18)=Z(18)-1                Zt(10)=Z(10)+1
                   Zt(44)=Z(44)-1                Zt(20)=Z(20)+1
                                                            Zt(40)=Z(40)+1
                                                            Zt(51)=Z(51)+1

 Unsolved question:   Is the number of solutions upper limited?

Problem 18.    Solve the equation  S(n)=Zt(n)  where S(n) is the Smarandache
function [1].
For the first 84 values of S(n) four solutions have been found:

S(1)=Zt(1)=1,  S(2)=Zt(2)=2,  S(5)=Zt(5)=5,  S(10)=Zt(10)=5

Unsolved question:    How many other solutions do exist for all values of n?

For those first values note that  qqpZtqpSornnZtnS =⋅=⋅== )()()()(  where p
and q are two distinct primes and q>p.
Is it true for all the solutions  of the equation S(n)=Zt(n)? If yes why?



16

Problem 19.   Find all values of n such that  S(n)=Zt(n) +/- 1
For the first 84 values of S(n) and Zt(n) the following solutions have been found:
                          S(4)=Zt(4)+1          S(3)=Zt(3)-1
                                                          S(6)=Zt(6)-1
                                                          S(9)=Zt(9)-1
                                                          S(17)=Zt(17)-1
                                                          S(18)=Zt(18)-1
                                                          S(34)=Zt(34)-1
                                                          S(51)=Zt(51)-1

Unsolved question:    Is the number of solutions upper limited?

If we look to the solutions of equation S(n)=Zt(n)-1, we can see that we have as
solutions two consecutive integers: 17 and 18.
How many other consecutive integers are solutions of this equation?
Which is the maximum number of consecutive integers?

Problem 20.  Find all values of n such that  )()(2)( nZnZtnS −⋅=
For 841 ≤≤ n  the following two solutions have been found:

)18()18(2)18(),9()9(2)9( ZZtSZZtS −⋅=−⋅=

Is there any relationship among the solutions of this equation?

Problem 21.   Solve the equation Zt(p)=p' where p and p' are different  primes.
For the first 60 values of Zt(n) three solutions have been found:

Zt(29)=13,        Zt(41)=67,           Zt(43)=23

Unsolved question:  How many other solutions do exist?

Problem 22.    Solve the equation:   Zt(p)=p where p is any prime.
For the first 60 values of Zt(n) two solutions have been found:

Zt(2)=2  and  Zt(5)=5

Unsolved question:   Are those the only possible solutions?

Problem 23.   Find the smallest k such that between Zt(n) and Zt(k+n), for n>1, there
is at least a prime.
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Problem 24.  Solve the equation Zt(Z(n))-Z(Zt(n))=0 .

Problem 25.   Find all values of n such that Zt(Z(n))-Z(Zt(n))>0

Problem 26.   Find all values of n such that Zt(Z(n))-Z(Zt(n))<0

Problem 27.  Study the functions Zt(Z(n)), Z(Zt(n)) and Zt(Z(n))-Z(Zt(n)).

Problem 28.  Evaluate   ∑ ∑==
∞→

n n

nZtZZnZZtZ andwhere
Z
Z

n
))(())(( 21

2

1lim

Problem 29.  Evaluate

∑ ∑

∑
−

−

∞→

n n

n

nZtZnZZt

nZtZnZZt

n
))(())((

))(())((

lim

Problem 30.   Evaluate   

( )∑
∑

−
















−

∞→

n

n

nZtZnZZt

nZtZnZZt

n 2

2

))(())((

))(())((

lim

Problem 31.   Evaluate   

∑ ∑−
∞→

n n
nZtZnZZtn ))((

1
))((

1
lim
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Problem 32.  Evaluate

∑∞→
n

nZ
nZt

n )(
)(

lim

Problem 33.   Study the function  F(n)=S(Z(Zt(n)))

Problem 34.  Evaluate

∑ −
∞→

n

nZtZnZZt
n

))(())((lim

Problem 35.  As for the Smarandache function the following Smarandache sums can
be defined for Z(n) and Zt(n)
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Are these sums convergent to a constant value as the Smarandache function does [3]?
If yes evaluate them. Are these constants (if they exist) irrational or trascendental?

Problem 36.  Evaluate the continued fraction [5] and radical [6] for the Pseudo-
Smarandache  and  Pseudo-Smarandache-Totient numbers.

Problem 37.   Is the number 0.1243549107585.... where the sequence of digits is Zt(n)
for 1≥n  an irrational or trascendental number? (We call this number the Pseudo-
Smarandache-Totient  constant).

Problem 38.  Is the Smarandache Euler-Mascheroni sum (see chapter II for
definition) convergent for Zt(n) and Z(n) numbers?   If yes evaluate the convergence
value.
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Problem 39.   Evaluate

∑
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kZtk       and        ∑
∞

=

−⋅−

1

1)()1(

k

kZk

Problem 40.   Evaluate

∏
∞

=1
)(

1

n
nZt

     and      ∏
∞

=1
)(

1

n
nZ

Problem 41   Evaluate

)(
)(

lim
k
kZt

k θ∞→
    and     

)(

)(
lim

' k

kZ
k θ∞→

where    ∑
≤

=

kn

nZtk ))(ln()(θ     and   ∑
≤

=

kn

nZk ))(ln()('θ

Problem 42.   Evaluate
SF ⋅= 4π    where    ∑=

k
ka

S
)(

1

for the Smarandache (a(k)=S(k)), Pseudo Smarandache (a(k)=Z(k)) and Pseudo
Smarandache-Totient (a(k)=Z(k)) numbers. Are these numbers F almost integers?

Problem 43.    Are  there m, n, k non-null  positive integers for which

)()( nZtmnmZt k ⋅=⋅ ?

Of course for m=1, the equation has infinite solutions because )()1( nZtnZt =⋅ .

For n=1 we have kmmZt =⋅ )1(  and then m will be a solution for k=1 if it is a fixed
point of function Zt(n), that is if and only if Zt(m)=m.
The solutions (if they exist) for m>1 and n>1 are left to the reader.
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Problem 44.   Let’s indicate with FZt(n)=m the number of different integers k such
that Zt(k)=n.

 Study the function FZt(n) and evaluate :

m

k
kFZt

m

m

k
∑

=

∞→
1

)(

lim

Problem 45.   Are there integers k>1 and n>1 such that )()( knZtknZt k ⋅⋅= ?

Problem 46.  Study the convergence of the Pseuto-Smarandache-Totient harmonic
series:

∑
∞

=

>

1

0""
)(

1

n
a

numberrealaisawhere
nZt

Problem 47.  Study the convergence of the series:

∑
∞

=

−+

1
)(

1

n
nxZt

nxnx

where nx  is any increasing sequence such that  ∞=
∞→

nx
n
lim

Problem 48.   Evaluate:

n

n

k
k
kZt

n

∑
=

∞→
2

)ln(
))(ln(

lim

 Is this limit convergent to some known mathematical constant?

Problem 49.   Solve the functional equation:

.2int)(1)()( ≥=++−+ egeranisrwherennZtrnZtrnZt L
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Let’s indicate with N(x,r) the number of solutions of that equation for xn ≤ and  fixed
r.  By a computer search the following result has been obtained:

0)4,410(

0)3,410(

0)2,410(

=

=

=

N

N

N

What about N(x,r) for x> 410  and r=2,3,4 ?  What about N(x,r) for r>4?
What about the functional equation:

?2)(1)()( ≥∈⋅=++−+ andNkandrwherenknZtrnZtrnZt L

Problem 50.   Is there any relationship between   ∏ ∑
= =

m

k

m

k

kmZtandkmZt

1 1

?)()(

Problem 51.   Solve the equation:

0)()( =−



 nZtneϕ

For 50001 ≤≤ n  only one solution has been found: n=2. Is this solution unique?

As already done for the Pseudo-Smarandache-Totient function other possible Pseudo-
Smarandache functions can be defined.
In particular three of them will be introduced: the Pseudo-Smarandache-Squarefree,
Pseudo-Smarandache-Prime and Pseudo Smarandache Divisor  functions.
For the first one,  theorems, conjectures  and open questions are given too.
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1.2  PSEDO-SMARANDACHE-SQUAREFREE  FUNCTION

The Pseudo-Smarandache-Squarefree function Zw(n) is defined as the smallest integer
m such that:

nm

is divisbile by n,  that is the value of m such that  
n

nm  is an integer.

Fig. 1.3

A table of values of Zw(n) function for   1001 ≤≤ n   follows:

Pseudo Smarandache Squarefree Function

1

10

100

1000

1 89 177 265 353 441 529 617 705 793 881 969

n

Z
w

(n
)



24

An alternative definition of this function is given by F. Smarandache in [4]:

The largest square-free number dividing n (the square-free kernel of n).

Applying the notion of Smarandache continued fraction as reported in Castillo [5] and
that of Smarandache continued radical as reported in Russo [6] to the Pseudo
Smarandache squarefree numbers the following interesting convergence values are
obtained. They have been calculated utilizing the Ubasic software package.

K)5(
1

)4(

1
)3(

1
)2(

1
)1(

3
2

3
1

Zw
Zw

Zw
Zw

Zw

+
+

+
+≈⋅+

π

KK ++++++≈+++++ 654321)5()4()3()2()1( ZwZwZwZwZw

Let’s now start to prove several theorems about the Zw(n) function.

  n Zw(n)     n  Zw(n)        n      Zw(n)        n         Zw(n)      n       Zw(n)

  1   1   21   21     41    41 61      61     81      3
  2   2   22   22     42    42 62      62     82      82
  3   3   23   23     43    43 63      21     83      83
  4   2   24   6     44    22 64      2      84      42
  5   5   25   5     45    15 65      65     85      85
  6   6   26   26     46    46 66      66     86      86
  7   7   27   3     47    47 67      67     87      87
  8   2   28   14     48    6       68      34     88      22
  9   3   29   29     49    7       69      69     89      89
  10   10   30   30     50    10 70      70     90      30
  11   11   31   31     51    51 71      71     91      91
  12   6   32   2     52    26 72      6      92      46
  13   13   33   33     53    53 73      73     93      93
  14   14   34   34     54    6       74      74     94      94
  15   15   35   35     55    55 75      15     95      95
  16   2   36   6     56    14 76      38     96      6
  17   17   37   37     57    57 77      77     97      97
  18   6   38   38     58    58 78      78     98      14
  19   19   39   39     59    59 79      79     99      33
  20   10   40   10     60    30 80      10     100     10
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Theorem 1.2.1    Zw(p)=p where p is any prime number.

Proof.    In fact for n=p,  pm   cannot be a multiple of p for pm ≠  because there isn't

any common factor between pandpm  .  On the contrary if m=p then:

1−=⋅= ppkwherepkpp

Theorem 1.2.2    LL sqpcsbqapZw ⋅⋅=⋅⋅ )(     where  p, q,  s... are distinct
primes

Proof.     Without loss of generality let suppose that   bqapn ⋅= .

Of course if m is a prime (equal to p or q) it is very easy to see that   nm     cannot be a
multiple of n. So the smallest value of m such that nm   is a multiple of n is given by
the product  qp ⋅ .
In fact in this case:

.bbqapqabqappkwherenknm −⋅⋅−⋅=⋅=

Theorem 1.2.3  Zw(n)=n if and only if n is squarefree, that is if the prime
decomposition of n contains no repeated factors. All primes  of course are trivially
squarefree [3].

Proof.    The theorem is a direct consequence of theorem 1.2.1 and theorem 1.2.2 with
1=== Kcba .

 Theorem 1.2.4    nnZw ≤)(

Proof.    Direct consequence of theorems 1.2.1, 1.2.2, and 1.2.3.

Theorem 1.2.5    1)( ≥= kforpkpZw   and  p  any  prime.

Proof.    Direct consequence of theorem 1.2.2  for q=s=....=1

According to the previous theorems,  the Zw(n) function is very similar to the Mobius
function [3].
In fact:
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               n                                                                      if n is squarefree

Zw(n)=      1                                                                     if and only if n=1

                  Product of distinct prime factors of n            if n is not squarefree

Now we will prove the following two theorems related to the sum of Zw function and
of its reciprocal respectively.

Theorem 1.2.6      ∑
∞

=1

)(

k
k

kZw       diverges.

Proof.      In fact:

∑ ∑
∞

=

∞

=

>

1 2

)()(

k p
p

pZw

k

kZw
   where p is a prime number, and of course    ∑

∞

=2

)(

p
p

pZw

diverges because the number of primes is infinite [7] and ppZw =)( .

Theorem 1.2.7    ∑
∞

=1
)(

1

k
kZw

    diverges

Proof.   This theorem is a direct consequence of divergence of sum   ∑
p

p
1

  where p

is any prime number.  In fact

∑ ∑
∞

=

∞

=

>

1 2

1

)(

1

k p
pkZw

Theorem 1.2.8   The function Zw(n) is  multiplicative, that is if GCD(m,n)=1
then )()()( nZwmZwnmZw ⋅=⋅ .

Proof.    Without loss of generality, let suppose that bqapm ⋅=   and    dtcsn ⋅=
where  p, q, s, t  are distinct prime numbers.
If  GCD(m,n)=1  then:

)()()( nZwmZwnmZw ⋅=⋅
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In fact  tsqpdtcsbqapZwnmZw ⋅⋅⋅=⋅⋅⋅=⋅ )()(   and  qpbqapZw ⋅=⋅ )( ,

tsdtcsZw ⋅=⋅ )(    according to the theorem 1.2.2.

On the opposite if 1),( ≠nmGCD , let assume that  bqapm ⋅=  and   dscpn ⋅= . So

according to the  theorems 1.2.2 and 1.2.5  sqpdscpbqapZwnmZw ⋅⋅=⋅⋅⋅=⋅ )()(

and  qpbqapZwmZw ⋅=⋅= )()( , spdscpZwnZw ⋅=⋅= )()( , that is
)()()( nZwmZwnmZw ⋅≠⋅

Theorem 1.2.9 The function Zw(n) is not additive, that is
)()()( nZwmZwnmZw +≠+ .

Proof. As an example we can consider the case
1)7()11(6)18()711( =+≠==+ ZwZwZwZw .

Anyway we can find numbers m and n such that the function Zw(n) is additive.
In fact if:

• m and n are squarefree
• k=m+n is squarefree

then Zt(n) is additive. In this case Zw(m+n)=Zw(k)=k and Zw(m)=m, Zw(n)=n
according to theorems 1.2.1 and 1.2.3.

Theorem 1.2.10   11)( ≥≥ nfornZw

Proof.  This theorem is a direct consequence of definition of the Zw(n) function. In
fact for n=1, the smallest m such that 1 divide Zw(1) is trivially 1. For  1≠n , m must
be greater than 1 because 1+n cannot be a multiple of n for any value of n.

 Theorem 1.2.11    11
)(

0 ≥≤< nfor
n

nZw

 Proof.   The theorem is a direct consequence of theorem 1.2.4 and 1.2.10.

Theorem 1.2.12        
n

nZw )(
   is not distributed uniformly in the interval ]0,1].

Proof.    For n=1 and for any squarefree n, by definition the ratio is equal to 1.
If n is not a squarefree number, without loss of generality let suppose that

bqapn ⋅=   where p and q are two distict primes and   1,1 >≥ ba  and viceversa.
 There are two possibilities:
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1. p=q         In this case   
2
1)(1

2)(
1)(

≤≤
−+

=
n

nZw
thenand

pbapn
nZw

2.     qp ≠         In this case  
2
1)(1

2
)(

≤=
⋅

⋅
≤

⋅

⋅
=

n
nZw

thenand
pqp

qp
bqap

qp
n

nZw

So the ratio  
n

nZw )(
  is not distributed uniformly in the interval ]0,1] because in the

interval   ]1,1/2[  doesn' t fall any point of the Zw(n) function.
Moreover from previous result it is obvious that for any value of 1≥n  there is some m

such that  
mn

nZw 1)(
=    for  K4,3,2,1=m

This result implies the following theorem where we prove that the ratio 
n

nZw )(
  can be

made arbitrarily close to zero.

Theorem 1.2.13   For any arbitrary real number  0>ε , there is some number

1≥n  such that    ε<
n

nZw )(
.

Proof.    Let’s form a product of distinct primes kpppq K21=  such that  ε<
q
1

where ε  is any real number greater than zero. Now take a number n such that:

2,, 2121
21 ≥⋅= kk aaawhere

a
p

a
p

a
pn k KKKK

By theorem 1.2.2,

ε<≤
⋅⋅

=
⋅

⋅
= −−− qpppppp

ppp

n
nZw

kk a
k

aaa
k

aa
k 11)(

11
2

1
121

21
2121 KKKK

KK

Theorem 1.2.14 #)#( kk ppZw =  where #kp  is the product of first k primes
(primorial)[3].

Proof.  The theorem is a direct consequence of theorem 1.2.3 being #kp  a squarefree
number.



29

Theorem 1.2.15    The range of Zw function is the set of squarefree numbers.

Proof.    A direct consequence of the fact that the function Zw applied to a squarefree
number returns the squarefree itself and applied to a not squarefree number returns
again a squarefree  number  (see theorems 1.2.1, 1.2.2, 1.2.3).

Theorem 1.2.16    The equation  1
)(

=
n

nZw
  has an infinite number of solutions.

Proof.      The theorem is a direct consequence of theorem 1.2.1 and the well-known
fact that there is an  infinite number of prime numbers [7]

Theorem 1.2.17   We will use the notation FZw(n)=m to denote, as already done
for the Zt(n) function, that m is the number of different integers k such that
Zw(k)=n.

Example FZw(1)=1 since Zw(1)=1 and there are no other numbers n such that
Zw(n)=1

     Now we prove that for hn ≤≤1 , where Nh ∈ :

1. FZw(n)=0 for any n that is not a squarefree number

2. FZw(p)=a   with 







=

)ln(

)ln(

p

h
a   where p is any prime number

3.       FZw(1)=1

4.     ∑∑ ∑∑
−

+






 −+=

= 1 2 1

)(

1
)ln(

)ln()ln(
1)(

s s s

c

i
i

k

W
p

ch
cFZw K

ω

       where :








 ⋅−⋅−⋅−−
= −

)ln(

)ln()ln()ln()ln()ln(

1

13221
p

pspspsch
W kkK

• c is any composite squarefree number
• )(cω is the number of distinct primes of c [3],
• and the sums with index  is  extend over all values of   is  for which 1≥W

Proof. The items 1 and 3 are a direct consequence of definition of Zw(n) function.
About the item 2, according to the theorem 1.2.5 the number of different integers k
such that Zw(k)=p is given by the exponent a of the following inequality:
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)ln(
)ln(

,
p
h

aisthathap ≤≤

Since a must be the largest integer h≤   then   







=

)ln(

)ln(

p

h
a .

Let’s now prove the item 4. Without loss of generality let’s suppose that 21 ppc ⋅=
where 1p  and 2p   are two distint primes.
According to the theorem 1.2.2 all the numbers n that have as distinct factors 1p  and

2p  will have the same Zw(n) value  )( 21 pp ⋅ .

So all the numbers of type  kppp 121 ⋅⋅    such that their product is less or equal to h

will have )( 21 pp ⋅   as Zw value. Then the number of different integers k such that
Zw(k)=c is:








 −=
)ln(

)ln()ln(

1p
ch

k

A similar result holds for the product kppp 221 ⋅⋅ . But we must consider also the

product 21
2121
ss pppp ⋅⋅⋅    for all values of 1s   and  2s   such that the product is less or

equal to h.
So :

∑ 






 ⋅−−
=

2

)ln(

)ln()ln()ln(

1

22
1

s
p

psch
s

where the sum extend over all values of 2s   for which the ratio is 1≥ . Moreover we
need to add 1 because  21)( ppccZw ⋅== .

Theorem 1.2.18     The repeated iteration of the Zw(n) function will terminate
always in a fixed point.

Proof.    We can have three cases:

1. n=1
2. n= squarefree
3. n= not squarefree
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For the case 1  of course Zw (1)=1. Same thing for the case 2 according to the theorem
1.2.3.  For the case 3, according to the theorem 1.2.2, the application of function Zw to
n will produce always a squarefree number and then the successive applications of Zw
to it will produce always  the same number being it squarefree.

Theorem 1.2.19    Both even and odd numbers are invariant under the application
of the Zw function, that is if n is even (odd respectively) then Zw(n) is still even
(odd respectively).

Proof.   Let’s suppose that    .21
21

ka
k

aa pppn KK⋅=   Then .)( 21 kpppnZw KK⋅=
But if n is even (odd respectively) then the product of distinct prime factors also is
even (odd respectively). So this prove the theorem.

 Theorem 1.2.20    The diophantine equation Zw(n)=Zw(n+1) has no solutions.

Proof.  In fact according to the previous theorem if n is even (odd respectively) then
Zw(n) also is even (odd respectively). Therefore the equation Zw(n)=Zw(n+1) can not
be satisfied because Zw(n)  that is even should be equal to Zw(n+1) that instead is
odd.

Theorem 1.2.21     The equations  k
nZw

nZw
=

+
)(

)1(
   and  k

nZw

nZw
=







 +
−1

)(

)1(
with k

any positive integer and n>1 for  the first equation don't admit solutions.

Proof.    We must consider three cases:

1. n and n+1 are squarefree
2. n and n+1 are not squarefree
3. n is squarefree and n+1 is not squarefree and viceversa

For the case 1, without loss of generality let’s assume that qpn ⋅=  and tsn ⋅=+1

where  p, q, s, t are distinct primes. Let’s assume that k
nZw

nZw =
+ )1(
)(

. Then k
ts
qp =

⋅
⋅

according to the theorem 1.2.3.

But 1=⋅−⋅ qpts  being n and n+1 consecutive. This implies that  k
ts

ts =
⋅
−⋅ )1(

  but

this is absurd because  1−⋅ ts  and ts ⋅  don't have any common factor. So our initial

assumption is false. Same thing for the equation k
nZw

nZw
=

+
)(

)1(
.
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For case 2 without loss of generality let’s suppose that:

dcba tsnandqpn ⋅=⋅= +1

where  p, q, s, t are distinct primes.
According to the theorem 1.2.2,  qpnZw ⋅=)(   and tsnZw ⋅=+ )( 1   and then let’s

suppose that  k
qp
ts =

⋅
⋅

.

Since   1=⋅−⋅ qpts , being n and n+1 consecutive,  1' =⋅⋅−⋅⋅ qpmtsm   where  m

and m'  are two integers,  because   dc ts ⋅    and   ba qp ⋅   are multiple of ts ⋅  and
qp ⋅  respectively. This implies that:

k
qpm

qpm =
⋅⋅

⋅⋅+ '1

that is absurd because qpm ⋅⋅+ '1   cannot be a multiple of  qpm ⋅⋅ . So  our initial

assumption   k
nZw

nZw
=

+
)(

)1(
 is not true.  Same thing for the equation  k

nZw
nZw

=
+ )1(
)(

Analogously for the case 3.

Theorem 1.2.22   ∑
=

⋅
>

N

k

N
kZw

1
2

6
)(

π
    for any positive integer N.

Proof.    The theorem is very easy to prove. In fact the sum of first N values of Zw
function can be separated into two parts:

∑ ∑
= =

+
N

m

N

l

lZwmZw

1 4

)()(

where the first sum extend over all m squarefree numbers and the second one over all l
not squarefree numbers smaller or equal than N.
According to the Hardy and Wright result [3], the asymptotic number Q(n) of
squarefree numbers  N≤  is given by:

2
6

)(
π

N
nQ

⋅
=

and then:
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∑ ∑ ∑
= = =

⋅
>+=

N

k

N

m

N

l

N
lZwmZwkZw

1 1 4
2

6
)()()(

π

because for theorem 1.2.3,  Zw(m)=m and the sum of first N squarefree numbers is
always greater or equal to the number Q(N) of squarefree numbers N≤ , namely:

∑
=

≥
N

m

NQm

1

)(

Theorem 1.2.23 ∑
=

⋅
>

N

k
N

N
kZw

1

2

)ln(2
)(      for any positive integer N.

Proof.   In fact:

∑ ∑ ∑ ∑ ∑
= = = = =

=>+=
N

k

N

m

N

p

N

p

N

p

ppZwpZwmZwkZw

1 1 2 2 2

)()()()(  where p is any prime

because by theorem 1.2.1,  Zw(p)=p. But according to the result of Bach and Shallit
[3],  the sum of first N primes is asymptotically equal  to:

)ln(2

2

N
N

⋅

and this completes the proof.

Conjecture 1.2.1   The difference |Zw(n+1)-Zw(n)| is unbounded.

Let’s suppose that 
k

n 22=  for  0≥k . Then  121 2 +=+
k

n , namely (n+1) is a Fermat
number [7].
If the Lehmer & Schinzel conjecture is true [7] then every Fermat number is
squarefree.

This implies that  
kk

nZwnZw 22 212)()1( ≈−=−+  according to the theorems 1.2.3

and  1.2.5 and then this difference can be as large as we want.
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Of course if the Lehmer & Schinzel conjecture is true,  then also the following
conjecture will be true.

Conjecture 1.2.2   The Zw(n) function, is not a Lipschitz function, that is:

M
km

kZwmZw
≥

−
− )()(

  where M is any integer [3].

This conjecture is a direct consequence of the previous one where   m=n+1 and k=n.

As for the Pseudo Smarandache Totient function let’s now introduces some problems
related to the Pseudo Smarandache Squarefree function.

Problem 1.  Which is the largest number k such that Zw(n), Zw(n+1), Zw(n+2).....
Zw(n+k) are all increasing (decreasing respectively) numbers?

For the first 1000 values of Zw(n) the largest identified sequences have  k=4 and k=3
respectively:

Example:
                   Zw(27) < Zw(28) < Zw(29) < Zw(30) < Zw(31)
                    Zw(422) > Zw(423) > Zw(424) > Zw(425)

Conjecture 1.2.3   The parameter k is upper limited.

Unsolved question.  Find that upper limit.

Problem 2.   Solve the equation  Zw(n)+Zw(n+1)=Zw(n+2)

For the first 1000 values of Zw(n), six solutions have been found:
Zw(1)+Zw(2)=Zw(3), Zw(3)+Zw(4)=Zw(5), Zw(15)+Zw(16)=Zw(17),
Zw(31)+Zw(32)=Zw(33), Zw(127)+Zw(128)=Zw(129),  Zw(255)+Zw(256)=Zw(257)

Is the number of solutions finite?

Problem 3.   Solve the equation  Zw(n)=Zw(n+1)+Zw(n+2)

For the first 1000 values of Zw(n) no solution has been found.
For the case n,  n+1 and n+2 all squarefree numbers it is very easy to prove that the
above equation cannot have solutions.
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In fact without loss of generality let suppose that all three numbers are just the product
of two distinct primes. Moreover let suppose that n is even. Then:

qn

tsn

pn

⋅=+
⋅=+

⋅=

22

1

2

where p, q, s, t are distinct primes. Of course being n and n+2 even the first prime
factor must be 2.
Let’s suppose now that the equation  Zw(n)=Zw(n+1)+Zw(n+2)  is satisfied. Then

qtsp ⋅+⋅=⋅ 22 .
Moreover the difference between n+2 and n+1 is 1 and therefore  12 −⋅=⋅ qts . This
implies an absurd.
In fact  142 −⋅=⋅ qp  cannot be true because p⋅2  is always even and 14 −⋅ q  is
always odd. So our initial assumption is false. Therefore if  n,  n+1, n+2 are all
squarefree numbers the equation Zw(n)=Zw(n+1)+Zw(n+2)  cannot have solutions.

Problem 4.    Find all the values of n such that  )2()1()( +⋅+= nZwnZwnZw

No solution has been found for the first 1000 values of Zw(n).
Is this true for all values of n?
Notice that if n is odd then the above equation cannot have solution. In fact
according to the theorem 1.2.19,  if n is odd then Zw(n) is odd and viceversa.
Since the product of  )2()1( +⋅+ nZwnZw  is always even if n is odd, it cannot be equal
to n. Also if n,  n+1 and n+2 are all squarefree then the equation has no solution.

In fact based on theorem 1.2.3 we should have 232 ++= nnn  that of course is an
absurd.

Problem 5.    Solve the equation    )2()1()( +=+⋅ nZwnZwnZw

Also in this case no solution has been found for the first 1000 values of Zw(n).
Is is this true for all values of n?
As for the problem 4, also in this case if n is odd the equation cannot have any
solution. In fact if  n, n+1 and n+2 are all squarefree numbers again the equation

cannot have any solution because otherwise we should have 22 +=+ nnn  that of
course  is absurd.

Problem 6.   Solve the equation )3()2()1()( +⋅+=+⋅ nZwnZwnZwnZw
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For the first 1000 values of Zw(n) no solution has been found. Is this true for all
values of n ?

Problem 7.  Find all the values of n such that  S(n)=Zw(n)  where S(n) is the
Smarandache function [1].

The number of solutions is infinite. In fact the number of prime numbers is infinite
and S(p)=p,  Zw(p)=p. What happens for the composite numbers?

Problem 8.   Find the smallest k such that between Zw(n) and Zw(k+n), for n>1, there
is at least a prime.

Problem 9.   Find all the values of n such that  Zw(Z(n))-Z(Zw(n))=0 where Z is the
Pseudo Smarandache function [2].

Problem 10.   Find all values of n such that  Zw(Z(n))-Z(Zw(n))>0

Problem 11.   Find all values of n such that  Zw(Z(n))-Z(Zw(n))<0

Problem 12.   Study the functions Zw(Z(n)), Z(Zw(n)) and Zw(Z(n))-Z(Zw(n)).

Problem 13.   Is the number 0.12325672....  where the sequence of digits is Zw(n) for
1≥n  an irrational or trascendental number? (We call this number the Pseudo-

Smarandache-Squarefree  constant).

Problem 14.   Is the Smarandache Euler-Mascheroni sum (see chapter II for
definition) convergent for Zw(n) numbers? If yes evaluate the convergence value.

Problem 15.   Evaluate  ∑
∞

=

−⋅−

1

1)()1(

k

kZwk

Problem 16.   Evaluate   ∏
∞

=1
)(

1

n
nZw

Problem 17.   Evaluate  ∑
≤

=
∞→

kn

nZwkwhere
k

kZw

k
))(ln()(

)(

)(
lim θ

θ
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Problem 18.  Are   there    m,   n,   k   non-null   positive    integers  for     which

)()( nZwkmnmZw ⋅=⋅ ?

Problem 19.   Are there integers k>1 and n>1 such that  )()( knZwkknZw ⋅⋅=  ?

Problem 20.   Solve the problems from 28 up to 35 already formulated for the Zt
function also for the Zw function.

Problem 21.  Study the convergence of the Pseudo-Smarandache-Squarefree
harmonic series:

∑
∞

=

∈>

1

.0
)(

1

n

Raandawhere
naZw

Problem 22.  Study the convergence of the series:

∑
∞

=

−+

1
)(

1

n
xZw

xx

n

nn

where  nx  is any increasing sequence such that  ∞=
∞→

nx
n
lim

Problem 23.  Evaluate

n

n

k
k

kZw

n

∑
=

∞→
2

)ln(
))(ln(

lim

Is this limit convergent to some known mathematical constant?

Problem 24.   Solve the functional equation:

2int)(1)()( ≥=++−+ egeranisrwherennZwrnZwrnZw KK

Let's indicate with N(x,r) the number of solutions of this equation for xn ≤  and a fixed
r. By a computer search we have found:
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N(1000,2)=0    N(1000,3)=0     N(1000,4)=0      N(1000,5)=0

Is this result true for all values of n and r?  Wath about the functional equation:

 2int)()()( 1 ≥⋅=+++ − egerstwoarerandkwherenknZwnZwnZw rr KK

Problem 25.    Is there any relationship between :

∑∏
=
















=

m

k

kmZwand

m

k

kmZw

1

?)(

1

Problem 26.   Study the Pseudo-Smarandache-Prime function Zp(n) defined as the
smallest integer m such that:

∑
=

m

k

kp

1

)(

     is divisible by n. Here p(k) is the k-th prime number [7]. By definition we
force Zp(1)=1.

Problem 27. Like the Pseudo-Smarandache-Prime function study the
Pseudo-Smarandache-Divisor function Zd(n) defined as the smallest integer m such
that:

∑
=

m

k

kd

1

)(

is divisible by n. Here d(k) is the number of divisors of k [3]. By definition Zd(1)=1.
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Chapter II

 A set of new Smarandache-type notions in Number Theory.

In [1] F. Smarandache and later in [2] C. Dumitrescu and V. Seleacu defined a lot of
sequences in number theory.
Several concepts of number theory can be applied to the set of Smarandache
sequences as has already been done for example by Castillo [3] for Continued
fractions and Russo [4] for Continued radicals.
In this chapter several new Smarandache-type-notions are introduced. Many open
questions, examples and conjectures are given too.
Anyway there is a lot of room to investigate these subjects deeply and their
connections with Number Theory.
We hope that this chapter will be a starting point for future investigations and
developments.

1) Smarandache Zeta function

This function is an application of well known zeta function [5] of Number Theory to
the set of Smarandache sequences a(n).

Nswhere
na

sSz

n
s

∈= ∑
∞

=1
)(

1
)(

Please refer to the fig. 2.1 where the sum has been evaluated for the first 1000 terms of
the power sequence. The Smarandache power sequence SP(n) is defined as the

smallest m such that  mm  is divisible by n [2].

Conjecture 2.1. The Smarandache Zeta function for the Smarandache power
sequence diverges for s<4. Smarandache-Zeta function 

for first 1000 terms of  Smarandache Power sequence
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100

S
z(

s
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Fig. 2.1

Problem 1.   Is there any Smarandache sequence a(n) such that :

                               ∑
∞

=

∈+⋅−≈

1
)(

)(
,)1(

1

k
ka

ka
NcbwherekSz

c

bπ

2) Smarandache sequence density

Let a(n) be a Smarandache sequence strictly increasing and composed of nonnegative
integers. We can  define the Smarandache sequence density as:

n
nA

S
n

)(
lim

∞→
=δ

where A(n) is the number of terms (in the Smarandache sequence) not exceeding n.

3) Smarandache Continued Radical

For any Smarandache sequence a(n) we can define the Smarandache continued radical

                                        LL++++ )4()3()2()1( aaaa

   As example see [4].
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4) Smarandache generating function

Analogously to the well known definition in number theory of the generating function
[5], for any Smarandache sequence a(n) we can define the following function  Sf(x):

∑ ⋅=

n

nxnaxSf )()(

Problem 2.  Determine the generating function Sf for some of the most popular
Smarandache sequences.

8) Smarandache Euler-Mascheroni Sum

For any Smarandache sequence a(n) we can define the following sum used in number
theory to define the  Euler-Mascheroni constant [5]:

∑
=

∞→
−=

m

k
m

ma
ka

g

1

))(ln(
)(

1
lim

Problem 3.  Is there any Smarandache sequence such that g is a constant?

Conjecture 2.2.  For the Smarandache power sequence [2] the following
conjecture can be formulated:

4
3

9

1
mg ⋅>         for all m values

Problem 4.   For any Smarandache sequence that admits g as a constant, calculate:

∏
=

∞→ −
⋅

n

i
n

ia
na

1 )(
1

1

1

)(

1
lim

Is this limit related to g?

Problem 5.   Is the following inequality satisfied
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∑
=

⋅
<−−<

+⋅

n

k
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gna
kana

1
)(2

1
))(ln(

)(
1

)1(2
1

for any Smarandache sequence a(n)  that has g as constant?

9) Smarandache increasing/decreasing sequence

For any Smarandache sequence a(n) if 0)()1( >−+ nana  for 0nn ≥ , then a(n) is
increasing for 0nn ≥ .
Conversely, if  0)()1( <−+ nana  for 0nn ≥  then a(n) is decreasing for  0nn ≥ .

10) Smarandache A-sequence

An infinite Smarandache sequence a(n) of positive integers K)3()2()1(1 aaa ≤≤≤
is called an A-sequence if a(k) cannot be expressed as the sum of two or more distinct
earlier terms of the sequence.

Example:  The sequence given by concatenation of n copies of the Integer n: 1, 22,
333, 4444, 55555, ... [6] (ID=A000461) is a Smarandache A-sequence because

∑
−

=

<
1

1

)()(

n

k

naka    where a(k) is the k-th term of the sequence.

Problem 6.    Find further examples of Smarandache A-sequence.

Problem 7.   Evaluate:

                                    ∑
∞

=

=

1
.. )(

1
sup)(

k
seqASmaranall ka

AS

that is the largest reciprocal sum for the set of Smarandache  A sequences.

11) Smarandache B2-sequence
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An infinite Smarandache sequence b(n) of positive integers  K)3()2()1(1 bbb ≤≤≤
is called a B2-sequence if all pairwise sums  jijbib ≤+ ),()(  are distinct.

Problem 8.   Find some example of Smarandache B2-sequence.

Problem 9.   Evaluate:

                                     ∑
∞

=

=

1
.2. )(

1
sup)2(

k
seqBSmaranall kb

BS

that is,  the largest reciprocal sum for all Smarandache B2 sequences.

12) Smarandache nonaveraging sequence (or Smarandache C sequences)

An infinite Smarandache sequence c(n) of positive integers  K)3()2()1(1 ccc ≤≤≤     is
said nonaveraging if it contains no three terms in arithmetic progression.
That is, )(2)()( kcjcic ⋅≠+  for any three distinct terms c(i), c(j) and c(k) forming  the
sequence.

Problem 10.   Find some examples of Smarandache nonaveraging sequence.

Problem  11.    Evaluate:

∑
∞

=

=

1
.. )(

1
sup)(

k
seqCSmaranall kc

CS

that is,  the largest reciprocal sum for all Smarandache C sequences.

Problem  12.    Is  S(C) finite?

13) Smarandache primitive sequence

 A Smarandache sequence in which a term cannot be dived by any other ones.
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Example:  Smarandache prime-digital sequence, that is prime-digit numbers which are
themselves  prime:   2, 3, 5, 7, 23, 37, 53, ...  [6] (ID=A019546)

14) Smarandache alternating series

A series of the form

∑ −⋅−

k

k ka 1)()1(

where a(k) is any Smarandache sequence. As example the alternate series has been
calculated for the Smarandache square-product sequence [4].
It converges to  -3.2536....

15) Smarandache Chebyshev Function

For any Smarandache sequence a(n) the following sum can be calculate analogously
to the Chebyshev function defined  in Number Theory [5]:

∑
≤

=

kn

nak ))(ln()(θ

Problem 13.  Study for any Smarandache sequence a(k) the behaviour of the limit:

)(

)(
lim

k

ka

k θ∞→

For instance this limit has been evaluated for the Smarandache  power sequence [2].
According to experimental data the following conjecture can be formulated:

2
4

)(

)(
>< kfor

kk

ka

θ

16) Smarandache Gaussian sum

For any Smarandache sequence a(n) we can define the following function Sg(m)
analogously to the Gauss sum in number theory [5]:
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The following graphs (fig. 2.2 and 2.3) show int(|Sg(m)|) versus m and its average
value for the Smarandache product sequence [2].

17) Smarandache Dirichlet beta function

Analogously to the Dirichlet beta function [5], for any Smarandache sequence a(n) the
following sum can be defined :
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Fig. 2.2
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Fig. 2.3

The first ten Sb(s) values for the Smarandache power sequence [2] calculate using the
first n=1000  terms of sequence follow:

Conjecture 2.3  Sb(s) for the Smarandache power sequence diverge for s<3.

Problem 14.   Is there any Smarandache sequence such that for a particular value of
s,  for instance 0s ,  KsSb =)( 0    where K is the Catalan constant [5]?

                s                        Sb(s)

                1  2.575537289795256
                2  9.422351698410252e-2
                3 -1.482843701206225e-2
                4 -9.05618321791901e-3
                5 -3.525313305129868e-3
                6 -1.256320600490808e-3
                7 -4.339450592280305e-4
                8 -1.476728113473226e-4
                9 -4.98400749475781e-5
               10 -1.673920764594275e-5
               11 -5.605398965109811e-6
               12 -1.873680400189489e-6
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18) Smarandache Mobius Function

For any Smarandache sequence a(n) we can define the following function analogously
to the Mobius function   in number theory [5]:

                     0               if a(n) has one or more repeated prime factors

     Su(n)=    - 1             if a(n)=1

                   k)1(−           if a(n) is a product of k distinct primes

Problem 15.   For a given Smarandache sequence a(n) evaluate

Nswhere
n

nSu

n
sn

∈∑∞→

)(
lim

Is there any Smarandache sequence a(n) such that its Smarandache Zeta function
Sz(n) is related to this sum?

Problem  16.   Evaluate for some Smarandache sequence a(n):

∑
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nSu

Is it convergent?

19) Smarandache Mertens Function

Analogously to the Mertens function in number theory [5] we can define the following
function:

∑
=

=
n

k

kSunSm

1

)()(
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where Su(k) is the Smarandache Mobius function applied to any Smarandache
sequence a(k).

As example see the fig. 2.4 where the function has been applied to Smarandache
power sequence [2].

Problem  17.  Is there any Smarandache sequence such that the Mertens conjecture
[5] is true?

)()( nanSm <

Regarding the Smarandache power sequence the conjecture is false (see fig. 2.4).

Fig. 2.4

20)  Smarandache Ramanujan Constant

For any Smarandache sequence a(n) we can define the following function:

)int( 4 S
eSR

⋅⋅= ππ

where   ∑=

n
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S
)(

1   and assuming that S converge.
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Examples (see [4] for sequences definition):

Problem 18.   Is there any Smarandache sequence a(k) like the cubic-product one
such that SR  is  close to an integer?

Notice also that the product:

SF ⋅= 4π

can produce numbers almost integer.

If F is close to an integer we call it a Smarandache almost integer.

Problem 19.  Is there any Smarandache sequence a(n) that produce other
Smarandache almost integers?

21) Smarandache Dirichlet Eta Function

Analogously to the Dirichlet eta function in number theory [5], we can define the
following function for any   Smarandache sequence a(n):
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     Sequence                       S                              SR

     Square-product             0.728831....     260130672726.5336...
     Cubic-product               0.615792....     30197683486.99318...
     Factorial-product          0.913745....     7438763974956.754...
     Palprime-product 1st    0.513624....     4442196022.5587.....
     Palprime-product 2nd   1.239704....     883067941287422.3...

      Sequence                         S                        F

     Square-product           0.728831....     70.994765.......
     Cubic-product             0.615792....     59.983738.......
     Factorial-product         0.913745....     89.007069.......
     Palprime-product 1st    0.513624....     50.031646.......
     Palprime-product 2nd  1.239704....     120.75843.......
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Conjecture 2.4  The Smarandache Dirichlet Eta function for the Smarandache
power sequence [2] diverge for s<3.

22) Smarandache Dirichlet Lambda Function

Let a(n) be any Smarandache sequence. Analogously to the Dirichlet lambda function
in number theory [5] the following function can be defined:
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Conjecture 2.5   The Smarandache Dirichlet lambda function for the power
sequence [2] diverge for s<5.

Problem 20.  Is there any Smarandache sequence a(n) such that:

)(2)()( sSlsSesSz ⋅=+

for some Ns ∈ , where Sz(s) is the Smarandache Zeta function and Se(s) the
Smarandache Dirichlet Eta function?

Problem 21.   Is there any Ns ∈  such that for a particular Smarandache sequence
Se(s), Sl(s) and Sb(s) are all  related to π ?

23) Smarandache totient function

Using the well known Euler function in number theory [5] the following Smarandache
totient function for any  Smarandache a(n) sequence can be defined:

))(()( nanSt ϕ=

that is the number of positive integers  )(na≤   which are relatively prime to a(n).

    Conjecture 2.6   For the Smarandache power sequence [2] 
2
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S
 converge to zero

    for ∞→n  , where:
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Problem  22.   For any Smarandache sequence a(n) evaluate:
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Problem 23.  For a given Smarandache sequence a(n) evaluate
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Is there any Smarandache sequence such that its Smarandache zeta function Sz(n) is
related to this sum?

24) Smarandache divisor function
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The Smarandache divisor function is defined as the number of the divisors d of a(n),
where a(n) is any  Smarandache sequence, that is:

Sd(n)=d(a(n))

As example see fig. 2.5  where the function Sd has been applied to the Smarandache
power sequence [2].

Fig. 2.5

Conjecture 2.7   For the Smarandache power sequence [2]:

1)ln(
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∑

= N
N
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k γ

       where γ  is the Euler-Mascheroni constant [5].

Problem 24.   Study  
n

nSdE ))((
  for any Smarandache sequence where E(Sd(n)) is the

average value of  Smarandache divisor function.

Conjecture 2.8    For the Smarandache power sequence [2]:
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25) Smarandache Summatory Divisor function

For any Smarandache sequence a(n) the following function can be defined:

))(()( nanSs σ=

where  ))(( naσ  is the sum of the divisors of a(n) [5]. As example see the fig. 2.6. The
function has been applied  to the power sequence [2].

Fig. 2.6

Conjecture 2.9  For the Smarandache power sequence [2] the two following series
are asymptotically equal to:
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Problem 25.  Is there any Smarandache sequence a(n) such that the following
inequality is satisfied?
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where g is the Smarandache Euler-Mascheroni constant for the sequence a(n). This
question is well formulated  if the hypothesis that the Smarandache sequence a(n)
converges to a  g constant value is satisfied.

Problem 26 .   For any Smarandache sequence evaluate:
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26) Smarandache prime factors function

The Smarandache prime factors is defined  for any Smarandache sequence a(n) as:

Spf(n)=r(a(n))

where r(a(n)) is the number of distinct prime factors of a(n) [5].

Conjecture 2.10   For Smarandache power-sequence [2]:
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Problem  27.    For any of Smarandache's sequences a(n) evaluate:
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Chapter III

A set of new Smarandache sequences.

The greatest discovery of all humankind may well have been the natural numbers. For
many past aeons, philosophers and mathematicians have studied the sequence of
natural numbers, uncovering startling and mystifying truths. Mathematics, itself,
began with the natural numbers and the study of their relationships.
The demand for solutions to new and sophisticated problems forced us to use the
natural numbers to construct the great edifice of modern mathematics.
Mathematicians, in their search for these solutions, progressed beyond the natural
numbers, discovering rationale, irrationale, transcendetal and complex numbers.
However, the majority of the mathematicians recognize that the most important
problems in mathematics today still involve the natural number sequences.
In this chapter several new Smarandache sequences are introduced.
In the spirit of F. Smarandache several open questions and problems are presented too.
Each sequence is labeled with an increasing initial number.

1) Smarandache repeated digit sequence with 1-endpoints

   111, 1221, 13331, 144441, 1555551, 16666661, 177777771, 1888888881,
   19999999991, 1101010101010101010101,.....

   Starting with n repeat it n times and then add 1 on the left and on the  rigth.

• How many terms are primes?

• Observe that the sum of digits of each term is given by  22 +n . Then

the n-th term will be not a prime if   
3

22 +n
  is an integer.
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2) Smarandache repeated digit generalized sequence with n-endpoints

   n1n,  n22n,  n333n,  n4444n,  n55555n,  n666666n,  n7777777n,  n88888888n, ....

   where n is any positive integer.

• Determine the general expression for a(n) in terms of n.

3) Smarandache alternate consecutive and reverse sequence

   1, 21, 123, 4321, 12345,  654321, 1234567, 87654321, 123456789, 10987654321,
   1234567891011, .…..

The odd terms are the consecutive integers starting with 1 on the left. The even ones
are the consecutive integers but reversed (namely starting with 1 on the rigth).

• How many primes are there in this sequence?
• Note that in this sequence the n-th term has n digits. The trailing digits of the

terms follow the sequence   1, 1, 3, 1, 5, 1, 7, 1, 9, 1, 1, 1, 3, 1, 5, 1, 7......

• Of course by definition the sum of the digits of each term is given by  
2

)1( +mm
                           

4) Smarandache alternate consecutive and reverse primes sequence (SACRP)

   2, 32, 235, 7532, 235711, 13117532, 2357111317, 1917117532, 23571113171923

The odd terms are the consecutive primes starting with 2 on the left. The even ones are
always the consecutive primes but reversed, namely starting with 2 on the right.

• How many terms are primes?
• Note that the sum of digits of some term is a prime. How many terms are prime

and the sum of their digits is prime too?
• We define as  “additive primes”  a prime number whose digits sum is prime too

(see sequence #11).
• Is there any perfect square among the terms of that sequence? A perfect cube?
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5) Smarandache alternate consecutive and reverse palprimes sequence (SACRPP)

     2, 32, 235, 7532, 235711, 101117532, 235711101121, 131121101117532,
     235711101121131151, 181151131121101117532, ....

   Same as sequence #4,  but using the palindromic primes [1] instead of primes.

• How many terms are primes?

• Evaluate  
)(

)1(
lim

na

na

n

+

∞→
   where a(n) is the n-th term of sequence.

• Evaluate the continued general fraction [2]:

K+
+

+
+

+

)5(
)4(

)4(

)3(
)3(

)2(
)2(

)1(
)1(

a
b

a

b
a

b
a

b
a

      where a(n) is the SACRPP sequence and b(n) the SACRP sequence.

6) Smarandache alternate consecutive and reverse Fibonacci sequence

   1, 11, 112, 3211, 11235, 853211, 11235813, 2113853211, 112358132134, ......

Again as for the sequences #4 and #5 but this time using the Fibonacci sequence.

• Evaluate  
)1(

)(
lim

+∞→ na

na

n
.    Is this limit convergent?

• Is any terms of that sequence a Fibonacci number itself?
• Is this sequence a Smarandache A and C sequence (see chapter II for definition)?
• Let N+ be the number of terms even and N- the number of terms odd. Evaluate

+
−

∞→ N

N

n
lim
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7) Smarandache alternate consecutive and reverse generalized sequence

Let a(n) be a sequence with 1≥n . The Smarandache alternate and reverse generalized
sequence is given by:

         --------    --------------      -----------------
   a(1),  a(2)a(1),  a(1)a(2)a(3),  a(4)a(3)a(2)a(1) ........

namely by the alternate concatenation of terms of a(n).

8) Smarandache additive Fibonacci sequence

   1, 1, 2, 3, 5, 8, 21, 233, 317811, 3524578, .........

   Sequence of Fibonacci numbers whose digits sum is a Fibonacci number too.

• Let <N+> be the average value of all even terms of this sequence and <N-> that of
odd  terms.

      Evaluate >−<−>+<
∞→

NN
n
lim .

      Is this difference convergent or divergent?
      If it converges, find the limit.

• Evaluate 
>+<
>−<

∞→ N

N

n
lim .  Is this ratio convergent or divergent?

• If it converges, find the limit.
• Is that sequence finite?

9) Smarandache additive Square sequence

   1, 4, 9, 36, 81, 100, 121, 144, 169, 196, 225, 324, 400, 441, 484, 529, 900, 961, …

Sequence of squares which digits sum is a square too.

• Is this sequence finite?
• Which is the maximum number of consecutive square that are also additive

square?  (In the first terms reported above this maximum number is 7).
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10) Smarandache additive Cubic sequence

      1, 8, 125, 512, 1000, 1331, 8000, 19683, 35937, .........

Sequence of cubes which digits sum is a cube too.

• Is this sequence finite?
• Which is the maximum number of consecutive cube that are also additive cube?
• Evaluate the continued general fraction :

K+
+

+
+

+

)5(
)4(

)4(

)3(
)3(

)2(
)2(

)1(
)1(

a
b

a

b
a

b
a

b
a

where a(n) is the Smarandache additive square sequence and b(n) the Smarandache
additive cubic sequence.

11) Smarandache additive generalized sequence

Let a(n) be a sequence with 1≥n and let be  kxxxna K21)( =  in base 10.
Then a(n) is a term of Smarandache additive sequence if and only if:

1)(21 ≥=+++ mwheremaxxx kLL

namely if kxxx +++ LL21   belongs to the original sequence a(n).

• Study the Smarandache additive prime sequence, that is the sequence of primes
which sum of digits is a prime.

• Is the Smarandache additive prime sequence finite?
• Find the largest sequence of consecutive additive primes.
     (Today the largest known sequence of this type contains 15 terms and start with
      the prime 2442113).
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12) Smarandache multiplicative square sequence

       1, 4,  9,  49,  144,  289, .........

Sequence of squares which product of digits is a square too.

• Is that sequence finite?
• How many terms in that sequence are also additive squares?

13) Smarandache multiplicative Fibonacci sequence

      1,  1,  2,  3,  5,  8,  13,  21, ........

Sequence of Fibonacci numbers which digit's product is a Fibonacci number too.

• Which is the maximum number of consecutive Fibonacci numbers that are also
Fibonacci-additive?

• Is that sequence finite?

     Conjecure: Yes.

• How many terms are primes?

14) Smarandache multiplicative generalized sequence

Let a(n) be a sequence with 1≥n  and let be kxxxna K21)( =   in base 10.
    Then a(n) is a term of Smarandache multiplicative sequence if and only if:

1)(21 ≥=⋅⋅⋅ mwheremaxxx kKK

    that is if  kxxx ⋅⋅⋅ KK21   belongs to the original sequence a(n).

• Study the Smarandache multiplicative cubic sequence
• Study the Smarandache multiplicative prime sequence.
• Is the Smarandache multiplicative prime sequence finite?
• How many terms in the Smarandache multiplicative prime sequence are

palindromic primes?
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15) Smarandache additive and multiplicative generalized sequence

Let a(n) be a sequence with 1≥n  and let be kxxxna K21)( =  in base 10.
a(n) is a term of Smarandache additive and multiplicative sequence if and only if

kxxx ⋅⋅⋅ KK21  and kxxx +++ LL21  belong to the original sequence a(n).

• Study the Smarandache additive and multiplicative Fibonacci sequence.
• Is the Smarandache additive and multiplicative Fibonacci sequence finite?
• Study the Smarandache additive and multiplicative prime sequence.
• Is the Smarandache additive and multiplicative prime sequence finite?
• How many terms are palindromic primes?

16)  Smarandache  2nn  sequence

    11,  24,  39,  416,   525,  636,  749,  864,  981,  10100,  11121,  12144, ......

The sequence is formed concatenating n and 2n  for n=1, 2, 3, 4.....

The n-th term of the sequence is given by  2)( 2
10)( nnna nd +⋅=  where )( 2nd  is the

number of digits of  2n .

• How many terms of that sequence are palindromes?
• How many primes are in that sequence?

      Conjecture: A finite number.

• How many terms of that sequence are perfect square?

      Conjecture: None.

• How many terms of that sequence are squarefree?

17) Smarandache  3nn  sequence

    11,  28,  327,  464,  5125,  6216,  7343,  8512,  9729,  101000,  111331,  121728,
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    132197,  142744,  153375,  164096 ......

The sequence is formed concatening n and  3n  for n=1, 2, 3, 4.....

The n-th term of the sequence is given by 3)( 3
10)( nnna nd +⋅=  where )( 3nd  is the

number of digits of  3n .

• How many terms in this sequence are palindromes?
• How many primes are in that sequence?

Conjecture: A finite number.

• How many terms in that sequence are perfect cube?
• How many terms in that sequence are squarefree?

• Evaluate 
)(

)1(
lim

na

na

n

+
∞→

   where a(n) is the n-th term of the sequence.

18) Smarandache  mnn  generalized sequence
            

The sequence is obtained concatenating n and  mn  with 1≥m .

19) Smarandache nn2  sequence

    12, 24, 36, 48, 510, 1122, 1326, 1428, 1530, 1632, 1734, 1836, 1938 ......

For each n, the n-th term of the sequence is formed concatenating n and  n⋅2 .

The n-th term of sequence is given by  )2(102)( ndnnna ⋅+⋅=  where d(2n) is the
number of digits of 2n.

• How many terms in that sequence are perfect squares?

Conjecture: A finite number.
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20) Smarandache nkn  generalized sequence with k>1

For each n, the n-th term of sequence is formed concatenating together n and  nk ⋅ .

    ----   ----   ----   ----  ----
    1k1, 2k2, 3k3, 4k4, 5k5, ..................

21) Smarandache multiple sequence

    1, 24, 369, 481216, 510152025, 61218243036, 7142128354249, 816243240485664

The nth term is obtained concatenating together  nnnnn ⋅⋅⋅ KK,3,2, .

• Evaluate for that sequence the simple continued fraction and the continued radical.
• How many terms are primes?

• Evaluate ∑ +
∞→

k
k ka

ka
)(

)1(
lim   where a(n) is the n-th term of Smarandache multiple

sequence.

22) Smarandache )(nnZt   sequence

    11, 22, 34, 43, 55, 64, 79, 810, 97, 105, 118, 126, 1346, 149, 1519, 1610, 1718,
187,
    1960, 2016, 2111, 228 ......

The sequence is obtained concatenating n and Zt(n), where Zt(n) is the Pseudo
Smarandache Totient function.

Note that the n-th term is given by:  )(10)( ))(( nZtnna nZtd +⋅=  where d(Zt(n)) is the
number of digits of Zt(n)

• How many terms are primes?

     Conjecture: An infinte number.
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• Are there k (k>1) terms in this sequence in arithmetical progression? (for example
in these first ones there  are 2 terms: 11 and 22)

• Which is the largest k value?
• Is |a(n+1)-a(n)| bounded or unbounded?

• Is the Smarandache series ∑
∞

=1
)(

1

n
na

  convergent? If yes evaluate the limit.

• If we indicate with N(+) the number of terms even and with N(-) the number of
terms odd, evaluate   )()(lim −−+

∞→
NN

n

• How many terms are perfect square?

Conjecture: A finite number.

• How many terms are perfect cube?

      Conjecture: None

23) Smarandache )(nnf  generalized sequence

Let f(n) be any number-theoretic function. Then the sequence is generated by
concatenating n and f(n).

     -----   -----    -----    -----   -----   -----
    1f(1), 2f(2), 3f(3), 4f(4), 5f(5), 6f(6), ........

• Study the Smarandache )(nnZw  sequence where Zw(n) is the Pseudo
Smarandache Squarefree function (see chapter I).

• Study the Smarandache )(nnZ  sequence where Z(n) is the Pseudo Smarandache
function [6].

• Study the Smarandache )(nnS  sequence where S(n) is the Smarandache function
[5].

24) Smarandache left-rigth natural numbers sequence

    1, 21, 213, 4213, 42135, 642135, 6421357, 86421357, 864213579, 10864213579,
    1086421357911, 121086421357911 ....
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Starting with 1 add first on the left and then on the rigth the natural numbers.

• The n-th term has n digits and their sum is equal to n(n+1)/2.
• Observe that the trailing digits of the terms follow the sequence 1 1 3 3 5 5 7 7 9 9
• Determine the expression of a(n) in terms of n.
• How many terms are primes?
• Let’s observe that the terms of the sequence a(n) for 5)12( ⋅+⋅= kn  and

15)12( +⋅+⋅= kn  (where )Nk ∈  have the last digit equal  to 5 and then can not be
prime. Also the terms which sum of digits is a multiple of 3 can not be a prime,

that is if for the n-th term of the sequence  m
nn

⋅=
+

3
2

)1(
  where m is a natural

number.

25) Smarandache rigth-left natural numbers sequence

    1, 12, 312, 3124, 53124, 531246, 7531246, 75312468, 975312468, 97531246810

Starting with 1 add first on the rigth and then on the left the natural numbers.

• The trailing digits of the terms follow the sequence  2 2 4 4 6 6 8 8 0 0 and only
the first term is equal to 1.

• Evaluate the continued radical and continued fraction for this sequence.

26) Smarandache left-rigth prime sequence

   2, 32, 325, 7325, 732511, 13732511, 1373251117, 191373251117,
   19137325111723,  2919137325111723, ......

Starting with the first prime number 2 add first on the left and then on the rigth the
successive primes.

• The digits sum of the n-th term is approximatively  
)ln(2

2

n
n

⋅
 .

• How many terms are primes?
• How many terms are additive primes?

27) Smarandache rigth-left prime sequence
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    2,  23,  523,  5237,  115237,  11523713,   1711523713,   171152371319,
    23171152371319,    2317115237131929, .....

Starting with the first prime number 2 add first on the rigth and then on the left the
successive primes.

• How many terms are primes?
• Let a(n) the Smarandache left-rigth prime sequence and b(n) the Smarandache

rigth-left prime sequence. Evaluate the Smarandache general continued fraction
[2]:

K+
+

+
+

+

)5(
)4(

)4(

)3(
)3(

)2(
)2(

)1(
)1(

a
b

a

b
a

b
a

b
a

28) Smarandache rigth-left generalized sequence

Let a(n) be any sequence with 1≥n . Then the Smarandache rigth-left sequence is
given by following concatenations:

                --------     ------------      ----------------        ---------------------
    a(1),   a(1)a(2),  a(3)a(1)a(2),  a(3)a(1)a(2)a(4),  a(5)a(3)a(1)a(2)a(4)   .......

• How many terms belong to the original sequence a(n) besides a(1)?

29) Smarandache left-rigth generalized sequence

Let a(n) be any sequence with 1≥n . Then the Smarandache left-rigth sequence is
given by following concatenations:

                --------     ------------       ----------------       ----------------------
    a(1),   a(2)a(1),  a(2)a(1)a(3),  a(4)a(2)a(1)a(3),  a(4)a(2)a(1)a(3)a(5)   .......

• How many terms belong to the original sequence a(n) besides a(1)?
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30) Smarandache  sm pp +  generalized sequence

 How many times a natural number n can be written as sum of  sm pp +   where p is
prime and  1, ≥sm

• Study the sequence generated with 2== sm .
• Evaluate the continued radical [3] for the above sequence.
• Study the sequence generated with m=2 and s=3.
• Is the number  0.00000000000100001.....  where the sequence of digits is the

above sequence, irrational?
• Evaluate the continued radical [3] for that sequence.

31) Smarandache  sm nn +   generalized sequence

How many times a natural number n can be written as a sum of  sm nn +    where s and
m are positive integers.

• Sudy the sequence with s=2 and m=3.
• Which is the maximum value of a(n) for the previous sequence?
      For n<=8000 via a computer program searching the maximum has been found at
      n=1025 with a(1025)=4
• Regarding that  sequence evaluate the continued radical.

32) Smarandache embedded even generalized sequence

    Let a(n) with 1≥n  be a sequence and let’s  suppose that in base 10,
kxxxna K21)( = .

A Smarandache embedded even sequence is the number of distinct even numbers
formed with the digits kxxx K21  of a(n).

• Study the Smarandache embedded even sequence e(n) for the sequence a(n) of the
natural numbers. Which is the maximum value of e(n)?

• Evaluate the asymptotic average value for that  sequence.
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• Find an expression for e(n) in terms of n.
• Study the Smarandache  ebedded  even sequence e(n) for the sequence a(n) of the

Fibonacci numbers. Which is the maximum values of e(n)?

33) Smarandache embedded odd generalized  sequence

Let a(n) with 1≥n  be a sequence and let’s  suppose that in base 10, kxxxna K21)( = .
A Smarandache embedded odd sequence is the number of distinct odd numbers
formed with  the digits kxxx K21  of a(n).

• Study the Smarandache odd embedded sequence o(n) for the sequence a(n) of the
natural numbers.

• Find an expression for o(n) in terms of n.
• Which is the maximum value of o(n)?
• Evaluate the asymptotic average value of that sequence.
• Study the Smarandache  embedded odd sequence for the sequence of the Fibonacci

numbers.

34) Smarandache embedded primes generalized sequence

Let a(n) with 1≥n  be a sequence and let suppose that in base 10, kxxxna K21)( = .

A Smarandache embedded primes sequence is the number of distinct primes numbers
formed with the digits kxxx K21  of a(n).

• Study the Smarandache embedded primes sequence p(n) for the sequence of
natural numbers.

• Which is the maximum value of p(n)?
• Evaluate the continued radical for this sequence.
• Study the Smarandache embedded primes sequence for the sequence a(n) of the

Fibonacci numbers.
• Study the Smarandache embedded primes sequence for the sequence a(n) of the

prime numbers.

35) Smarandache generalized powers primes sequence
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Let a(n) with 1≥n  be a sequence. The Smarandache powers primes sequence is the

sequence of primes of the form  sm tana )()( +   with  m,  n, s and  t positive integers.

• Study the Smarandache Fibonacci powers primes sequence a(n) for m=2 and s=2,
that is the sequence of prime numbers of the form  22 )()( iFjF +  where F(i) is the
i-th term of the Fibonacci sequence.

• How many terms are Fibonacci numbers?

• Evaluate   
)1(

)(
lim

+∞→ na

na

n

• Is that sequence finite?
• Study the Smarandache Fibonacci power primes sequence for m=2 and s=3.
• Is that sequence finite?
• How many terms are Fibonacci numbers?

36) Smarandache pseudo Q numbers

    0, 1, 1, 1, 3, 7, 9, 4, 5, 10, 16, 17, 11, 5, 12, 20, 23, 17, 9, 20, 18, 13, 14,
    33, 43, 31, 28, 27, 2, 29, 4, 57, 34, 73, 33, 2, 34, 6, 71, 114, 90, 4, 71, 116,
    117, 28, 9, 91, 248, 161, 4

Numbers generated by ))3(())2(())1(()( −−+−−+−−= nanananananana  for
n>3 and where a(0)=0, a(1)=a(2)=a(3)=1

• Show these numbers a chaotic behavior like the Q-numbers (for definition of Q
numbers see [1]) ?

• Within the chaotic behaviour is there some signs of order ? (namely this numbers
exhibit approximate Period Doubling, Self-Similarity and Scaling as Q-numbers ?)

37) Smarandache-Cullen generalized primes sequence

Let f(n) be any number-theoretic function with 1≥n . The Smarandache-Cullen primes

sequence is the  sequence of primes of the form  12 )( +⋅ nfn .

• Study the Smarandache-Cullen totient primes sequence, that is the sequence of

primes of the form 12 )( +⋅ nn ϕ , where )(nϕ  is the totient function [1].
• Is that sequence finite?
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     Conjecture: The sequence is infinite.

• Study the Smarandache-Cullen primes sequence, that is the primes of the form

12 )( +⋅ nSn  where S(n) is the Smarandache function [5].
• Study the Pseudo-Smarandache-Cullen primes sequence, that is the primes of the

form 12 )( +⋅ nZn  where Z(n) is the Pseudo Smarandache function [6].
• Study the Smarandache-Cullen-Squarefree primes sequence, that is the primes of

the form 12 )( +⋅ nZwn where Zw(n) is the Pseudo Smarandache Squarefree function.

38) Smarandache-Pseudo-Cullen generalized primes sequence

Let f(n) be any number-theoretic function with 1≥n . The Smarandache-Cullen primes

sequence is the sequence of primes of the form 12 )( −⋅ nfn .

• Study the Smarandache-Pseudo-Cullen totient primes sequence, that is the

sequence of primes of the form 12 )( −⋅ nn ϕ  where )(nϕ  is the totient function [1].
• Is that sequence finite?
• How many palindromic primes are in that sequence?
• Study the Smarandache-Pseudo-Cullen primes sequence, that is the primes of the

form 12 )( −⋅ nSn  where S(n) is the Smarandache function [5].
• Study the Pseudo-Smarandache-Pseudo-Cullen primes sequence, that is the primes

of the form 12 )( −⋅ nZn  where Z(n) is the Pseudo Smarandache function [6].
• Study the Smarandache-Pseudo-Cullen-Squarefree primes sequence, that is the

primes of the form 12 )( −⋅ nZwn  where Zw(n) is the Pseudo Smarandache
Squarefree function

• For any of previous number-theoretic functions let a(n) be the Smarandache-
Cullen primes and b(n) the Smarandache-Pseudo-Cullen primes. Evaluate the
general continued fraction [2] for a(n) and b(n).

39) Smarandache generalized automorphic sequence

Let a(n) be any sequence with 1≥n  and let’s suppose that a(n)=m  Then a(n) belongs
to the sequence if and only if m ends in n.

• Study for example the Smarandache Automorphic Fibonacci sequence.
• Is this sequence finite?
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40) Smarandache generalized doubly automorphic sequence

Let a(n) be any sequence with 1≥n  and let suppose that a(n)=m
Then a(n) belongs to the sequence if and only if m ends in n and n itself belongs to the
sequence.

• Study the Smarandache Doubly Automorphic Fibonacci sequence.
• Is that sequence finite?

41) Gilda's Numbers

    0, 29, 49, 78, 110, 152, 220, 314, 330, 364, 440, 550, 628, 660, 683, 770,
    880, 990, 997, 2207, 5346, 10891, 19075, 22125, 22502, 37396, 44627,
    45381, 67883, 91893

If a Fibonacci sequence is formed with first term equal to the absolute value between
decimal digits in n  and second term equal to the sum of the decimal digits in n, then n

itself occurs as a term in the sequence. Let be ixxxn K21=  in base 10. Then

ixxxF K21)0( −= , ixxxF L++= 21)1( ,   )2()1()( −+−= kFkFkF .

If  nkF =)(  then n belongs to the sequence.

• Is that sequence infinite?

Conjecture: Yes

• Evaluate the continued fraction and continued radical for that sequence.

• Is the series   ∑
∞

=1
)(

1

n
na

  convergent?  If yes find the limit.

42) Gilda primes

    29,  683,  997,  2207,  10891,  67883

Gilda's numbers that are primes.
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• Is that sequence infinite?
• Is there any Gilda's palindromic prime?

43) Smarandache consecutive-deconstructive sequence

    1, 23, 456, 78910, 1112131415, 161718192021, 22232425262728,
    3031323334353637, .....

Start with natural numbers and then group them as showed below:
         ----     -------     -----------     ---------------------    --------
    1,  2  3 ,  4  5  6,   7  8  9  10,   11  12  13  14  15,   16 ......

• How many terms are primes?
• Find an expression for a(n) in terms of n.

44) Smarandache Fibo-deconstructive sequence

    1,  12,  358,  13213455,  89144233377610, .........

Start with the Fibonacci numbers and then group them as showed below:

          ----   -------     ----------------    ---------------------------     ----------
    1,  1  2,  3  5  8,   13  21  34  55,   89  144  233  377  610,    987 ......

• How many terms are primes?
• How many terms are Fibonacci numbers?
• Is there any perfect square among these numbers?

45) Smarandache generalized deconstructive sequence

Let a(n) be any sequence with 1≥n . Then the sequence is formed by grouping the
terms :

               ----------     ---------------    ----------------------      ----------------
    a(1),   a(2) a(3),   a(4) a(5) a(6),   a(7) a(8)a(9)a(10),    a(11)a(12) .....
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46) Smarandache consecutive-deconstructive sum sequence

     1, 5, 15, 34, 65, 111, 175, 260, 369, 505, 671, 870, 1105, 1379, 1695,
    2056, 2465, 2925, 3439, 4010, 4641, 5335, 6095, 6924, 7825, 8801, 9855,
    10990, 12209, 13515, 14911, 16400, 17985, 19669, 21455, 23346

Sum of digits of Smarandache consecutive-deconstructive sequence terms.

• Note that the n-th term is given by: 
2

)1( 2 +nn

• Evaluate the ratio 
)1(

)(

+na

na
 where a(n) is the n-th term of the sequence.

• Evaluate 
+
−

∞→ A
A

n
lim    where A- indicates how many terms are odd and A+ how

many terms are even in the previous sequence.

47)  Francesca-Carlotta's numbers

    16, 21, 25, 50, 66, 102, 115, 154, 193, 291, 471, 573, 675, 777, 879, 2372, 4770,
    3668,  6867, 22502, 22790, 32084, 41666, 46457

If a Fibonacci sequence is formed with first term equal to the number of digits in n and
the second term equal to the sum of the decimal digits in n, then n itself occurs as a
term in the sequence after the first two terms.

• Example: 16 belongs to the sequence, because the sequence 2,7,9,16,25,... contains
16.

• How many terms are primes?
• Is that sequence finite?
• Find an expression for a(n) in terms of n.
• How many terms are perfect square?
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48) Smarandache circular generalized sequence

Let a(n) be any sequence with 1≥n . The Smarandache circular generalized sequence
is given by all the terms a(n) that still belong to the initial sequence on any cyclic
rotation of their digits.

For example let's consider the sequence a(n) of even numbers:

    0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, ......

The Smarandache circular even sequence is:

    0, 2, 4, 6, 8, 20, 22, 24, 26, 28,....

because each term remain even for any cyclic rotation of its digits.
In the same way we can build the Smarandache circular prime sequence.
If n contains the digits 0, 2, 4, 6, 8 or 5 we can rotate them to the last place so that n is
not a circular prime  (we shall assume n contains at least 2 digits).
Thus any circular prime >9 can consist only of the digits 1, 3, 7, 9. One example of
such a number is 9311 since :

1193, 3119, 9311 and 1931

are all primes. We call 1193 a primeval circular prime since it is the smallest number
in this set of primes.
The following sequence of primeval circular primes:

    2, 3, 5, 7, 11, 13, 17, 37, 79, 113, 197, 199, 337, 1193, 3779, 11939,19937,
193939,
   199933, R19, R23, R317, R1031

where Rn indicates the repunit consisting of n ‘1s’, are all the primeval circular
numbers known up to now.

• Is this sequence finite?

Here are some heuristics which suggest that the list is finite if we exclude the repunit

primes.  Consider numbers n with d digits, i.e.  (*)11010 1 −≤≤− nd
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The Prime Number Theorem [4] states (roughly) that the probability of a randomly
chosen number of the size of  n being prime is about:

                                          
)10ln(

1

)ln(

1
)(

⋅
≈≈

dn
np

The number of d digits integers n in the range  (*) which consist only of the digits 1, 3,
7, or 9 is 4 so we might expect roughly

)10ln(

1
4

⋅
⋅
d

d

of these to be prime. In fact this estimate has to be increased since such numbers are
not chosen at random;  they are specifically chosen not to be divisible by 2 or 5 so the
expected number has to be multiplied by  2/1*5/4=5/2 to give the expected number :

dd

dd 4
....086.1

)10ln(

4

2

5
⋅=

⋅
⋅

Any d-digits circular prime which is not a repunit must generate d distinct numbers by
cycling. The probability that these are all primes is roughly

dd

d 







⋅

⋅







)10ln(

1

2

5

and so we expect roughly:

ddd
d

dd 







⋅

=







⋅

⋅





⋅

)10ln(

10

)10ln(

1

2

5
4

d-digits circular primes.  Since:

d

d
d∑

∞

=








⋅

1
)10ln(

10

converges we should only expect a finite number of such circular primes. Here is a
table comparing the actual number  of circular primes with the estimate:

                                             d   Estimated Actual
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                                             1    4.34294   4
                                             2    4.71529        4
                                             3    3.03381   4
                                             4       1.38962        2
                                             5       0.49439        2
                                             6       0.14381   2
                                             7    0.03538   0
                                             8    0.00754   0
                                             9    0.00141   0
                                             10     0.00023   0
                                             11    0.000036   0
                                             12    0.000005   0

• Study the Smarandache circular Fibonacci sequence (1, 1, 2, 3, 5, 8, 55........)
• Is that sequence finite?
• Study the Smarandache circular Lucas sequence.
• Study the Smarandache circular Triangular sequence, namely the circular sequence

obtained starting with the Triangular numbers.

49) Smarandache pseudo 2-expression

How many primes are in the following Smarandache-type expressions?

1+⋅+⋅ nm mnnm  for n and m=1, 2, 3, 4, 5....

    Conjecture: An infinte number.

)1( −+⋅ nmn n  where n and m=1, 2, 3, 4, 5 .....

    Conjecture: An infinite number



79

50)    Conjecture on odd numbers

     Every odd number  n>1 can be written as:
qpn +⋅= 2

where p and q are two odd primes or 1.

The conjecture has been tested  for all odd numbers  610<
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Chapter IV

An introduction to the Smarandache Double factorial function

In [1], [2] and [3] the Smarandache Double factorial function is defined as:

      Sdf(n) is the smallest number such that Sdf(n)!! is divisible by n,
     where the double factorial is given by [4]:

       m!! = 1x3x5x...m, if m is odd;
       m!! = 2x4x6x...m, if m is even.

In this chapter we will study this function and several examples, theorems, conjectures
and problems will be presented. The behaviour of this function is similar to the other
Smarandache functions introduced in the chapter I.
In the table below the first 100 values of fucntion Sdf(n) are given:

According to the experimental data the following two conjectures can be formulated:

 n     Sdf(n)        n        Sdf(n)            n      Sdf(n)      n        Sdf(n)        n         Sdf(n)

 1  1   21   7      41      41 61 61 81 15
 2  2   22   22      42      14 62 62 82 82
 3  3   23   23      43      43 63 9 83 83
 4  4   24   6      44      22 64 8 84 14
 5  5   25   15      45      9 65 13 85 17
 6  6   26   26      46      46 66 22 86 86
 7  7   27   9      47      47 67 67 87 29
 8  4   28   14      48      6 68 34 88 22
 9  9   29   29      49      21 69 23 89 89
 10  10   30   10      50      20 70 14 90 12
 11  11   31   31      51      17 71 71 91 13
 12  6   32   8      52      26 72 12 92 46
 13  13   33   11      53      53 73 73 93 31
 14  14   34   34      54      18 74 74 94 94
 15  5   35   7      55      11 75 15 95 19
 16  6   36   12      56      14 76 38 96 8
 17  17   37   37      57      19 77 11 97 97
 18  12   38   38      58      58 78 26 98 28
 19  19   39   13      59      59 79 79 99 11
 20  10   40   10      60      10 80 10 100 20
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Conjecture 4.1   The series  ∑
∞

=1

)(

n

nSdf   is asymptotically equal to bna ⋅   where a and

b are close to 0.8834.. and   1.759.. respectively.

Conjecture 4.2    The series  ∑
∞

=1
)(

1

n
nSdf

  is asymptotically equal to bna ⋅  where a and

b  are close to 0.9411.. and   0.49.. respectively.

Let's start now with the proof of some theorems.

Theorem 4.1.   Sdf(p)=p   where p is any prime number.

Proof.   For p=2, of course Sdf(2)=2. For p odd instead observes that only for m=p the
factorial of  first m odd integers is a multiple of p, that is  ppp ⋅−=⋅⋅⋅ !)!2(7531 KK .

Theorem 4.2.  For any  squarefree even number n,
{ }kppppnSdf KK,,,max2)( 321⋅=

where  kpppp KK,,, 321  are the prime factors of n.

Proof.  Without loss of generality let's suppose that 321 ,, pppn =  where 123 ppp >>
and  21 =p . Given that the factorial of even integers must be a multiple of n of course
the smallest  integer m such that  m⋅⋅⋅ K642  is divisible by n is 32 p⋅ . Infact for

32 pm ⋅=   we have :

Nkwhereppkpppp ∈⋅⋅⋅=⋅⋅⋅⋅⋅=⋅⋅⋅⋅⋅ )2()2264()2(22642 323232 KKKK

Theorem 4.3. For any squarefree composite odd number n,
{ }kpppnSdf K,,max)( 21=  where  kppp K,, 21  are the prime factors of n.

Proof.   Without loss of generality let suppose that  21 ppn ⋅=  where 1p  and 2p  are
two distinct primes and 12 pp > .  Of course the factorial of odd integers up to 2p  is
a multiple of n because being  21 pp <  the factorial will contain the product  21 pp ⋅
and therefore n:  21531 pp ⋅⋅⋅⋅ KK
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Theorem 4.4.   ∑
∞

=1
)(

1

n
nSdf

  diverges.

Proof.  This theorem is a direct consequence of the divergence of sum  ∑
p

p

1
  where

p is any prime number.

In fact  ∑ ∑
∞

=

∞

=

>

1 2

1

)(

1

k p
pkSdf

  according to the theorem 4.1 and this proves the

theorem.

Theorem 4.5   The Sdf(n) function is not additive that is
1),()()()( =+≠+ mnformSdfnSdfmnSdf .

Proof.   In fact for example )15()2()152( SdfSdfSdf +≠+ .

Theorem 4.6 The Sdf(n) function is not multiplicative, that is
1),()()()( =⋅≠⋅ mnformSdfnSdfmnSdf .

Proof.   In fact for example  )4()3()43( SdfSdfSdf ⋅≠⋅ .

Theorem 4.7   nnSdf ≤)(

Proof.     If n is a squarefree number then based on theorems 4.1, 4.2 and 4.3
nnSdf ≤)( . Let's now consider the case when n is not a squarefree number. Of course

the maximum value of the Sdf(n) function cannot be larger than n because when we
arrive in the factorial to n for shure it is a multiple of n.

Theorem 4.8    ∑
∞

=1

)(

n
n

nSdf     diverges.
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Proof.   In fact   ∑∑
∞

=

∞

=

>

21

)()(

pk
p

pSdf

k

kSdf
   where  p is any prime number  and of

course  ∑
p

p

pSdf )(
 diverges because the number of primes is infinite [5] and

Sdf(p)=p.

Theorem 4.9  11)( ≥≥ nfornSdf

Proof.  This theorem is a direct consequence of the Sdf(n) function definition. In fact
for n=1, the smallest m such that 1 divide Sdf(1) is trivially 1. For 1≠n , m must be
greater than 1 becuase the factorial of 1 cannot be a multiple of n.

Theorem 4.10 1
)(

0 ≤<
n

nSdf
  for  1≥n

Poof.   The theorem is a direct consequence of theorem 4.7 and 4.9.

Theorem 4. 11   kk ppSdf ⋅= 2)#(  where  #kp  is the product of first k primes

(primorial) [4].

Proof.   The theorem is a direct consequence of theorem 4.2.

Theorem  4.12   The equation  1
)(

=
n

nSdf
 has an infinite number of solutions.

Proof.   The theorem is a direct consequence of theorem 4.1 and the well-known fact
that there is an  infinite number of prime numbers [5].

Theorem 4.13   The even (odd respectively) numbers are invariant under the
application of Sdf function,  namely Sdf(even)=even and Sdf(odd)=odd
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Proof.  Of course this theorem is a direct consequence of the Sdf(n) function
definition.

Theorem 4.14   The diophantine equation )1()( += nSdfnSdf  doesn't admit
solutions.

Proof.   In fact according to the previous theorem if n is even (odd respectively) then
Sdf(n) also is  even (odd respectively). Therefore the equation Sdf(n)=Sdf(n+1) can
not be satisfied because Sdf(n)  that is even should be equal to Sdf(n+1) that instead is
odd.

Conjecture 4.3   The function 
n

nSdf )(
 is not distributed uniformly in the interval ]0,1].

Conjecture 4.4   For any arbitrary real number 0>ε , there is some number 1≥n  such

that  ε<
n

nSdf )(

Let's now start with some problems related to the Sdf(n) function.

Problem 1.  Use the notation FSdf(n)=m to denote, as already done for the Zt(n) and
Zw(n) functions,  that m is the number of different integers k such that Zw(k)=n.

Example FSdf(1)=1 since Sdf(1)=1 and there are no other numbers n such that
Sdf(n)=1

Study the function Fsdf(n).

Evaluate   
m

k
kFSdf

m

k
m

∑
=

∞→
1

)(

lim

Problem 2.  Is the difference |Sdf(n+1)-Sdf(n)| bounded or unbounded?
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Problem 3.  Find the solutions of the  equations:  k
nSdf

nSdf
k

nSdf

nSdf
=

+
=

+
)1(

)(

)(

)1(
 where

k is any positive integer  and n>1 for the first equation.

 Conjecture 4.5   The previous equations don't admits solutions.

Problem 4.   Analyze the iteration of Sdf(n) for all values of n. For iteration we intend
the repeated application of Sdf(n). For example the k-th iteration of Sdf(n) is:

  )))(((()( KKK nSdfSdfSdfnSdf k =      where Sdf is repeated k times.

For all values of n, will each iteration of Sdf(n) produces always a fixed point or a
cycle?

Problem 5.   Find the smallest k such that between Sdf(n) and Sdf(k+n), for n>1,
there is at least a prime.

Problem 6.   Is the number  0.1232567491011....  where the sequence of digits is
Sdf(n) for 1≥n  an irrational or trascendental number?  (We call this number the
Pseudo-Smarandache-Double  Factorial constant).

Problem 7.  Is the Smarandache Euler-Mascheroni sum (see chapter II for definition)
convergent for Sdf(n) numbers?  If yes evaluate the convergence value.

Problem 8.   Evaluate   ∑
∞

=

−⋅−

1

1)()1(

k

k kSdf

Problem 9.   Evaluate     ∏
∞

=1
)(

1

n
nSdf
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Problem 10.   Evaluate    ∑
≤

∞→
=

kn
k

nSdfkwhere
k
kSdf

))(ln()(
)(
)(

lim θ
θ

Problem 11.  Are there m, n, k non-null positive integers for which

)()( nSdfmmnSdf k ⋅=⋅  ?

Problem 12.  Are there integers k>1 and n>1 such that  )())(( knSdfknSdf k ⋅⋅=  ?

Problem 13.  Solve the problems from 1 up to 6 already formulated for the Zw(n)
function also  for the Sdf(n) function.

Problem 14.   Find all the solution of the equation Sdf(n)!=Sdf(n!)

Problem 15.   Find all the solutions of the equation   )()( nSdfknSdf k ⋅=  for k>1and
n>1.

Problem 16.   Find all the solutions of the equation   )()( kSdfnnSdf k ⋅=  for k>1.

Problem 17.  Find all the solutions of the equation  )()( mSdfnnSdf mk ⋅=  where k>1
and n,  m >0.

Problem 18.  For the first values of the Sdf(n) function the following inequality is
true:

100012
8

1

)(
≤≤+⋅≤ nforn

nSdf

n

Is this still true for n>1000 ?
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Problem 19.   For the first values of the Sdf(n) function the following inequality is
true:

                                10001
1)(
73.0

≤≤≤ nfor
nn

nSdf

Is this still true for all values of n>1000 ?

Problem 20.  For the first values of the Sdf(n) function the following inequality hold:

10002
)(

11 4
1

≤<<+
−

nforn
nSdfn

Is this  still true for n>1000 ?

Problem 21.   For the first values of the Sdf(n) function the following inequality
holds:

10001
)(

1 4
5

≤≤<
⋅

−
nforn

nSdfn

Is this inequality still true for n>1000 ?

Problem 22.  Study the convergence of the Smarandache Double factorial  harmonic
series:

Raandawhere
nSdf

n
a

∈>∑
∞

=

0
)(

1

1

Problem 23.    Study the convergence of the series:

∑
∞

=

+ −

1

1
)(

n
n

nn
xSdf

xx
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where  nx  is any increasing sequence such that      ∞=
∞→

n
n

xlim

Problem 24.   Evaluate

n

k
kSdf

n

k
n

∑
=

∞→
2

)ln(
))(ln(

lim

Is this limit convergent to some known mathematical constant?

Problem 25.    Solve the functional equation:

nnSdfnSdfnSdf rr =++ − )()()( 1 LL

where r is an integer 2≥  .
Wath about the functional equation:

nknSdfnSdfnSdf rr ⋅=++ − )()()( 1 LL

where r and k are two integers  2≥ .

Problem 26.  Is there any relationship between  ∑∏
==















 m

k

k

m

k

k mSdfandmSdf

11

)( ?
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Chapter V

 On some Smarandache conjectures and unsolved problems

In this chapter some Smarandache conjectures and open questions will be analysed.
The first three conjectures are related to prime numbers and formulated by F.
Smarandache in [1].

1)  First Smarandache conjecture on primes

The equation:

1)( 1 =−= +
x
n

x
nn ppxB  ,

where  np  is the n-th prime,  has a unique solution between 0.5 and 1;

• the maximum solution occurs for n = 1, i.e.

1123 ==− xwhenxx ;

• the minimum solution occurs for n = 31, i.e.

0567148.01113127 axwhenxx ===− K

First of all observe that the function )(xBn  which graph is reported in the fig. 5.1 for
some values of n,  is an increasing function for  0>x  and then it admits a unique
solution for 15.0 ≤≤ x .

Smarandache function Bn(x) vs x

0.6

0.8

1

B
n

(x
)
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Fig. 5.1

In fact the derivate of   )(xBn  function is given by:

)ln()ln()( 11 n
x
nn

x
nn ppppxB

dx

d
⋅−⋅= ++

and then since   nn pp >+1    we have:

0)ln()ln( 11 >>> ++ xforppandpp x
n

x
nnn

This implies that  000)( >>> nandxforxB
dx

d
n  .

Being the )(xBn  an increasing fucntion, the Smarandache conjecture is equivalent to:

100
1

0 ≤−= +
a
n

a
nn ppB

that is,  the intersection of  )(xBn  function with  0ax =  line is always lower or equal
to 1. Then  an Ubasic program has been written to test the new version of

Smarandache conjecture for all primes lower than  272  .  In this range the conjecture
is true. Moreover we have created an histogram for the intersection values of )(xBn

with 0ax =  :
  

    Counts          Interval

    7600437         [0, 0.1]
    2640            ]0.1, 0.2]
    318              ]0.2, 0.3]
    96                ]0.3, 0.4]
    36                ]0.4, 0.5]
    9                  ]0.5, 0.6]
    10                ]0.6, 0.7]
    2                  ]0.7, 0.8]
    3                  ]0.8, 0.9]
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This means for example that the function  )(xBn  intersects the axis 0ax = ,  318 times

in the interval ]0.2, 0.3]   for all n such that  272<np .
In the fig. 5.2 the graph of normalized histrogram is reported ( black dots).
According to the experimental data an interpolating function has been estimated
(continous curve):

2419.6
80 1

108
n

Bn ⋅⋅= −

with a good  2R   value (97%).

Fig. 5.2

Assuming this function as empirical probability density function we can evaluate the

probability that  10 >nB   and then that the Smarandache coinjecture is false.

Normalized Histrogram

y = 8E-08x-6.2419

R2 = 0.9475
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By definition of probability we have:

19

0

1

0

0 1099.6)1( −
∞

∞

⋅≈=>

∫

∫
dnB

dnB

BP

c

n

n

n

where c=3.44E-4  is the lower limit of 0
nB   found with our computer  search. Based on

those experimental data there is a strong evidence that the Smarandache conjecture on
primes is true.

2)  Second Smarandache conjecture on primes.

1)( 1 <−= +
x
n

x
nn ppxB

where 0ax < .  Here np  is the n-th prime number.
This conjecture is a direct consequence of conjecture number 1 analysed before. In
fact being )(xBn  an increasing   function if:

100
1

0 ≤−= +
a
n

a
nn ppB

is verified then for 0ax <   we have no intersections of the )(xBn  function with the line
1)( =xBn ,  and then  )(xBn   is always lower than 1.

3)  Third Smarandache conjecture on primes.

numberprimethnthepandkfor
k

ppkC nnnn
kk −≥<−= + 2

2
)(

11

1
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This conjecture has been verified for prime numbers up to 252  and 102 ≤≤ k  by the
author [2]. Moreover a heuristic that highlight the validity of conjecture out of range
analysed was given too.
At the end of the paper the author reformulated the Smarandache conjecture in the
following one:

Smarandache-Russo conjecture

2
2

)(
02

≥≤ ⋅ kfor
k

kC
an

where 0a  is the Smarandache constant ...567148.00 =a  (see [1]).
So in this case for example the Andrica conjecture (namely the Smarandache
conjecture for k=2) becomes:

....91111.01 <−+ nn pp

Thanks to a program written with Ubasic software the conjecture has been verified to

be true for all primes 252<np and 152 ≤≤ k .
In the following  table the results of the computer search are reported.

     k                       2             3           4          5           6           7           8            9         10          11        12         13          14         15

    Max_C(n,k)   0.6708   0.3110  0.1945  0.1396  0.1082  0.0885  0.0756  0.0659  0.0584  0.0525  0.0476  0.0436   0.0401  0.0372

    2/k^(2a0)       0.4150   0.1654  0.0861  0.0519  0.0343  0.0242  0.0178   0.0136  0.0107  0.0086  0.0071  0.0060   0.0050  0.0043

    delta               0.2402   0.2641  0.2204  0.1826  0.1538  0.1314  0.1134   0.0994  0.0883  0.0792  0.0717  0.0654   0.0600  0.0554

Max_C(n,k) is the largest value of the Smarandache function )(kCn for 152 ≤≤ k  and

252<np  and delta is the difference between  
02

2
ak ⋅

 and Max_C(n,k).

Let’s  now analyse the behaviour of the delta function versus the k parameter. As
highlighted in the following  graph (fig. 5.3),

D
e
lt
a
(k

)

0.08

0.12

0.16

0.20

0.24

0.29
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Fig. 5.3

an interpolating function  with good  2R (0.999) has been estimated:

21
)(

kdkc

kba
kDelta

⋅+⋅+

⋅+
=

where:  ...2271.0....,5344.0..,17771.0...,1525.0 =−=== dcba
Since the Smarandache function decrease asymptotically as n increases it is likely that

the estimated maximum is valid also for  252>np . If this is the case then the
interpolating function found reinforce the Smarandache-Russo conjecture being:

∞→→ kforkDelta 0)(

Let's now analyse some Smarandache conjectures that are a generalization of
Goldbach conjecture.

4) Smarandache generalization of Goldbach conjectures

C. Goldbach (1690-1764) was a German mathematician who became professor of
mathematics in 1725 in St. Petersburg, Russia. In a letter to Euler on June 7, 1742, He
speculated that every even number is the sum of three primes.
Goldbach in his letter was assuming that 1 was a prime number. Since we now
exclude it as a prime, the modern statements of Goldbach's conjectures are [5]:
Every even number equal or greater than 4 can be expressed as the sum of two
primes, and every odd number equal or greater than 9 can be expressed as the sum of
three primes.
The first part of this claim is called the Strong Goldbach Conjecture, and the second
part is the Weak Goldbach Conjecture.
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After all these years, the strong Goldbach conjecture is still not proven, even though
virtually all mathematicians believe it is true.
Goldbach's weak conjecture has been proven, almost!
In 1937, I.M. Vonogradov proved that there exist some number N such that all odd
numbers that are larger than N can be  written as the sum of three primes. This reduce
the problem to finding this number N, and then testing all odd numbers up to N to
verify that they, too, can be written as the sum of three primes.

How big is N? One of the first estimates of its size was approximately [6]:

684616810

But this is a rather large number; to test all odd numbers up to this limit would take
more time and computer power than we have. Recent work has improved the estimate
of N. In 1989 J.R. Chen and T. Wang computed N to be approximately [7]:

4300010

This new value for N is much smaller than the previous one, and suggests that some
day soon we will be able to test all odd numbers up to this limit to see if they can be
written as the sum of three primes.
Anyway assuming the truth of the  generalized Riemann hypothesis [5], the number N

has been reduced to 2010   by Zinoviev [9], Saouter [10] and Deshouillers. Effinger, te
Riele and Zinoviev[11] have now successfully reduced N to 5.
Therefore the weak Goldbach conjecture is true, subject to the truth of the generalized
Riemann hypothesis.
Let's now analyse the generalizations of Goldbach conjectures reported in [3] and [4];
six different conjectures for odd numbers and four conjectures for even numbers have
been formulated. We will consider only the conjectures 1, 4 and 5 for the odd numbers
and the conjectures 1, 2 and 3 for the even ones.

4.1 First Smarandache Goldbach conjecture on even numbers.

Every even integer n can be written as the difference of two odd primes, that is
qpn −=  with p and q  two primes.

This conjecture is equivalent to:
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For each even integer n, we can find a prime q such that the sum of n and q is itself a
prime p.

A program in Ubasic language to check this conjecture has been written.
The result of this check has been that the first Smarandache Goldbach conjecture is

true for all even integers equal or smaller than 292 .
The list of Ubasic program follows.

    1   '  **************************************************
    2   '                        Smarandache Goldbach conjecture
    3   '          on even numbers: n=p-q with p and q two primes
    4   '                              by Felice Russo Oct. 1999
    5   ' ***************************************************
   10   cls
   20   for N=2 to 2^28 step 2
   22   W=3
   25   locate 10,10:print N
   30   for Q=W to 10^9
   40   gosub *Pspr(Q)
   50   if Pass=0 then goto 70
   60   cancel for:goto 80
   70   next
   75   print N,"The Smarandache conjecture is not true up to 10^9 for q=";Q
   80   Sum=N+Q
   90   gosub *Pspr(Sum)
  100   if Pass=1 then goto 120
  110   W=Q+1:goto 30
  120   next
  130   print "The Smarandache conjecture has been verified up to:";N-2
  140   end
 1000   ' **************************************
 1010   '        Strong Pseudoprime Test Subroutine
 1020   '              by Felice Russo 25/5/99
 1030   ' **************************************
 1040   '
 1050   ' The sub return the value of variable PASS.
 1060   ' If pass is equal to 1 then N is a prime.
 1070   '
 1080   '
 1090   *Pspr(N)
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 1100   local I,J,W,T,A,Test
 1110   W=3:if N=2 then Pass=1:goto 1290
 1120   if even(N)=1 or N=1 then Pass=0:goto 1290
 1130   if prmdiv(N)=N then Pass=1:goto 1290
 1140   if prmdiv(N)>0 and prmdiv(N)<N then Pass=0:goto 1290
 1150   I=W
 1160   if gcd(I,N)=1 then goto 1180
 1170   W=I+1:goto 1150
 1180   T=N-1:A=A+1
 1190   while even(T)=1
 1200   T=T\2:A=A+1
 1210   wend
 1220   Test=modpow(I,T,N)
 1230   if Test=1 or Test=N-1 then Pass=1:goto 1290
 1240   for J=1 to A-1
 1250   Test=(Test*Test)@N
 1260   if Test=N-1 then Pass=1:cancel for:goto 1290
 1270   next
 1280   Pass=0
 1290   return

For each even integer n the program check if it is possible to find a prime q, generated
by a subroutine (rows from 1000 to 1290) that tests the primality of an integer, such
that the sum of n and q, sum=n+q (see rows 80 and 90) is again a prime.
If yes the program jumps to the next even integer. Of course we have checked only a
little quantity of integers out of infinite number of them.
Anyway we can get some further information from experimental data about the
validity of this conjeture.
In fact we can calculate the ratio q/n for the first 3000 values, for example, and then
graphs this ratio versus n (see fig. 5.4).

Smarandache Goldbach conjecture
q/N vs N

 for N even and =<3000

0.1

1

10

q
/N
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Fig. 5.4

As we can see this ratio is a decreasing function of n; this means that for each n is very
easy to find a prime q such that n+q is a prime. This heuristic well support the
Smarandache-Goldbach conjecture.

4.2   Second Smarandache-Goldbach conjecture on even numbers.

Every even integer n can be expressed as a combination of four primes as follows:

n=p+q+r-t where  p, q,  r,  t are primes.

For example:  2=3+3+3-7,   4=3+3+5-7,  6=3+5+5-7,  8=11+5+5-13 …….
Regarding this conjecture we can notice that since n is even and t is an odd prime their
sum is an odd integer.
So the conjecture is equivalent to the weak Goldbach conjecture because we can
always choose a prime t such that 9≥+ tn .

4.3  Third Smarandache-Goldbach conjecture on even numbers.

Every even integer n can be expressed as a combination of four primes as follows:

n=p+q-r-t  where  p,  q,  r,  t are primes.
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For example: 2=11+11-3-17,  4=11+13-3-17,  6=13+13-3-17,  8=11+17-7-13 ….

As before this conjecture is equivalent to the strong Goldbach conjecture because the
sum of an even integer  plus two odd primes is an even integer. But according to the
Goldbach conjecture every even integer 4≥  can be expressed as the sum of two
primes.

4.4  First Smarandache Goldbach conjecture on odd numbers.

Every odd integer n, can be written as the sum of two primes minus another prime:

n=p+q-r   where p, q, r are  prime numbers.

For example: 1=3+5-7,    3=5+5-7,   5=3+13-11,  7=11+13-17   9=5+7-3 ….

Since the sum of an odd integer plus an odd prime is an even integer this conjecture is
equivalent to the strong Goldbach conjecture that states that every even integer 4≥
can be written as the sum of two prime numbers.
A little variant of this conjecture can be formulated requiring that all the three primes
must be different.
For this purpose an Ubasic program has been written. The conjecture has been verified
to be true for odd integers  up to  292 .
The algorithm is very simple. In fact for each odd integer n, we put r=3, p=3 and q
equal to the largest primes  smaller than n+r.
Then we check the sum of p and q. If it is greater than n+r then we decrease the
variable q to the largest prime smaller than the previous one. On the contrary if the
sum is smaller than n+r we increase the variable p to the next prime. This loop
continues untill p is lower than q. If this is not the case then we increase the variable r
to the next prime and we restart again the check on p and q. If the sum of n and r
coincide with that of p and q the last check is on the three primes r, p and q that must
be of course different. If this is not the case then we reject this solution and start again
the check.

   1   ' *******************************************
   2   '            First Smarandache-Goldbach conjecture
   3   '                              on odd integers
   4   '                        by Felice Russo Oct. 99
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   5   ' *******************************************
  10   cls:Lim=2^29
  20   for N=1 to Lim step 2
  30   S=3:W=3
  40   locate 10,10:print N
  50   r=S
  60   gosub *Pspr(r)
  70   if Pass=0 then goto 260
  80   Sum1=N+r:L=0:H=Sum1-1
  90   p=W
 100   gosub *Pspr(p)
 110   if Pass=1 and L=0 then goto 140
 120   if Pass=1 and L=1 then goto 190
 130   W=p+1:goto 90
 140   q=H
 150   gosub *Pspr(q)
 160   if Pass=1 then goto 190
 170   H=q-1:goto 140
 190   Sum2=p+q
 200   if p>=q then goto 260
 210   if Sum2>Sum1 then H=q-1:goto 140
 220   if Sum2<Sum1 then W=p+1:L=1:goto 90
 230   if r=p or r=q and p<q then W=p+1:goto 90
 240   if r=p or r=q and p>=q then goto 260
 250   goto 270
 260   S=r+1:if r>2^25 goto 290 else goto 50
 270   next
 280   cls:print "Conjecture verified up to";Lim:goto 300
 290   cls:print "Conjecture not verified up to 2^25 for";N
 300   end
 310   ' **************************************
 320   '         Strong Pseudoprime Test Subroutine
 330   '                by Felice Russo 25/5/99
 340   ' **************************************
 350   '
 360   ' The sub return the value of variable PASS.
 370   ' If pass is equal to 1 then N is a prime.
 380   '
 390   '
 400   *Pspr(N)
 410   local I,J,W,T,A,Test
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 420   W=3:if N=2 then Pass=1:goto 600
 430   if even(N)=1 or N=1 then Pass=0:goto 600
 440   if prmdiv(N)=N then Pass=1:goto 600
 450   if prmdiv(N)>0 and prmdiv(N)<N then Pass=0:goto 600
 460   I=W
 470   if gcd(I,N)=1 then goto 490
 480   W=I+1:goto 460
 490   T=N-1:A=A+1
 500   while even(T)=1
 510   T=T\2:A=A+1
 520   wend
 530   Test=modpow(I,T,N)
 540   if Test=1 or Test=N-1 then Pass=1:goto 600
 550   for J=1 to A-1
 560   Test=(Test*Test)@N
 570   if Test=N-1 then Pass=1:cancel for:goto 600
 580   next
 590   Pass=0
 600   return

4.5  Fourth Smarandache Goldbach conjecture on odd numbers.

Every odd integer n can be expressed as a combination of five primes as follows:

n=p+q+r-t-u   where p, q, r, t, u are all prime numbers.

For example:  1=3+7+17-13-13,        3=5+7+17-13-13,        5=7+7+17-13-13,
                       7=5+11+17-13-13

Also in this case the conjecture is equivalent to the weak Goldbach conjecture. In fact
the sum of two odd primes plus an odd integer is alway an odd integer and according
to the weak Goldbach conjecture it can be expressed as the sum of three primes.

Now we will analyse a conjecture about the wrong numbers introduced in Number
Theory by F. Smarandache and reported for instance in [8] and then we will analyse a
problem proposed by Castillo in [12].

5)  Smarandache Wrong numbers
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                 ________
A number n=a1a2a3...ak  of at least two digits, is said a Smarandache Wrong number
if the sequence:

KKKK ,,,,,, 2,1321 ++ kkk bbaaaa

(where ikb +  is the product of the previous k terms, for any  0≥i ) contains n as its
term [8].
Smarandache conjectured that there are no Smarandache Wrong numbers.
In order to check the validity of this conjecture up to some value 0N , an Ubasic
program has been written.

0N   has been choose equal to 282 . For all integers  0Nn ≤  the conjecture has been
proven to be true. Moreover utilizing the experimental data obtained with the
computer program a heuristic that reinforce the  validity of conjecture can be given.
First of all let's define what we will call the Smarandache Wrongness of an integer n
with at least two digits. For any integer n, by definition of Smarandache Wrong
number we must create the sequence:

KKKK ,,,,,, 2,1321 ++ kkk bbaaaa

 as reported above. Of course this sequence is stopped once a term ikb +  equal or
greater than n is obtained.
Then for each integer n we can define two distance:

nbdandnbd ikik −=−= −++ 121

The Smarandache Wrongness of n is defined as { }21,min dd  that is the minimum
value between d1 and d2 and indicate with W(n). Based on definition of W(n), if the
Smarandache conjecture is false then for some n we should have W(n)=0.
Of course by definition of wrong number, W(n)=n if n contains any digit equal to zero
and W(n)=n-1 if  n is repunit (that is all the digits are 1). In the following analysis we
will exclude this two species of  integers. With the Ubasic program utilized to test the
smarandache conjecture we have calculated the W(n) function for .300012 ≤≤ n  The
graph of W(n) versus n follows.

Wrongness of n vs n
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Fig. 5.5

As we can see W(n) in average increases linearly with n even though at a more close
view (see fig. 5.6) a nice triangular pattern emerges with points scattered in the region
between the x-axis and the triangles.
Anyway the average behaviour of W(n) function seems to support the validity of
Smarandache conjecture.
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Fig. 5.6

Let's now divides the integers n in two family: those which W(n) function is smaller
than 5 and those which W(n) function is greater than 5.
The integers with W(n) smaller than 5 will be called the Smarandache Weak Wrong
numbers.

Up to  282  the sequence of weak wrong numbers is given by the following integers n:

Here W(n) is the Wrongness of n and C_Ww(n) is the number of the weak wrong

numbers between 10 and 210 , 210  and  310   and so on.
Once again the experimental data well support the Smarandache conjecture because
the density of the weak wrong numbers seems goes rapidly to zero.

      n         W(n)              interv.          C_Ww(n)

     12      4 210                 5
     13      4 310                 2

     14      2 410                 4

     23      5 510                 2
     31      4 610                 1

     143      1 710                 1

     431      1 810                  0
     1292      4 282                  0
     1761      3 292                  0
     2911      5
     6148      4
     11663      1
     23326      2
     314933      5
     5242881    1



106

      6)  About  a problem on continued fraction of Smarandache consecutive and
           reverse  sequences.

In [12]  J. Castillo introduced the notion of Smarandache simple continued fraction
and Smarandache general continued fraction. As example he considered the
application of this new concept to the two well-know Smarandache sequences:

Smarandache consecutive sequence

1, 12, 123, 1234, 12345, 123456, 1234567 ......

Smarandache reverse sequence

1, 21, 321, 4321, 54321, 654321, 7654321 .......

At the end of its article the following problem has been formulated:

Is the simple continued fraction of consecutive sequence convergent? If yes calculate
the limit.

L+
+

+
+

+

12345

1
1234

1
123

1
12

1
1

Is the general continued fraction of consecutive and reverse sequences convergent? If
yes calculate the limit.

L+
+

+
+

+

12345

4321
1234

321
123

21
12

1
1

Using the Ubasic software a program to calculate numerically the above continued
fractions has been written.  Here below the result of computation.
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....0833.1

12345

1
1234

1
123

1
12

1
1 ≈

+
+

+
+

+

L

eK≈≈

+
+

+
+

+ ....0822.1

12345

4321
1234

321
123

21
12

1
1

L

where  eK  is the  Keane's constant (see [13])
Moreover for both the sequences the continued radical (see chapter II) and the
Smarandache series [14] have been  evaluated too.

)
18

sin(
7

2
.....442.21234123121

π
⋅≈≈++++ KK

( ) ex x
x

=+≈≈++++
∞→

1
1lim...716.24321321211 KK

B
na

n

≈≈∑
∞

=

......0924.1
)(

1

1

where a(n) is the Smarandache consecutive sequence and B the Brun's constant [15].

....051.1
)(

1

1

≈∑
∞

=n
nb

where b(n) is the Smarandache reverse sequence.
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