Sebastián Martín Ruiz

Applications of Smarandache Function, and Prime and Coprime Functions

$$
C_{k}\left(n_{1}, n_{2}, \cdots, n_{k}\right)=\left\{\begin{array}{ll}
0 & \text { if } \quad n_{1}, n_{2}, \cdots, n_{k} \\
1 & \text { otherwise }
\end{array}\right. \text { are coprime numbers }
$$

Sebastián Martín Ruiz
Avda. De Regla, 43, Chipiona 11550 (Cadiz), Spain
Smaranda@teleline.es
www.terra.es/personal/smaranda

Applications of Smarandache Function, and Prime and Coprime Functions

Rehoboth

This book can be ordered in microfilm format from:
Bell and Howell Co.
(University of Microfilm International)
300 N. Zeeb Road
P.O. Box 1346, Ann Arbor MI 48106-1346, USA
Tel.: 1-800-521-0600 (Customer Service)
http://wwwlib.umi.com/bod/search/basic (Books on Demand)

Copyright 2002 by American Research Press
Rehoboth, Box 141
NM 87322, USA
http://www.gallup.unm.edu/~smarandache/math.htm

ISBN: 1-931233-30-6

Standard Address Number 297-5092
Printed in the United States of America

Contents:

Chapter 1: Smarandache Function applied to perfect numbers Chapter 2: A result obtained using the Smarandache Function Chapter 3: A Congruence with the Smarandache Function Chapter 4: A functional recurrence to obtain the prime numbers using the Smarandache prime function
Chapter 5: The general term of the prime number sequence and the Smarandache prime function
Chapter 6:Expressions of the Smarandache Coprime Function Chapter 7: New Prime Numbers

Chapter 1: Smarandache function applied to perfect numbers

The Smarandache function is defined as follows:
$\mathrm{S}(\mathrm{n})=$ the smallest positive integer such that $\mathrm{S}(\mathrm{n})$! is divisible by n . [1]
In this article we are going to see that the value this function takes when n is a perfect number of the form $n=2^{k-1} \cdot\left(2^{k}-1\right), p=2^{k}-1$ being a prime number.

Lemma 1: Let $n=2^{i} \cdot p$ when p is an odd prime number and i an integer such that:

$$
0 \leq i \leq E\left(\frac{p}{2}\right)+E\left(\frac{p}{2^{2}}\right)+E\left(\frac{p}{2^{3}}\right)+\cdots+E\left(\frac{p}{2^{E\left(\log _{2} p\right)}}\right)=e_{2}(p!)
$$

where $e_{2}(p!)$ is the exponent of 2 in the prime number decomposition of $p!$.
$\mathrm{E}(\mathrm{x})$ is the greatest integer less than or equal to x .
One has that $S(n)=p$.
Demonstration:
Given that $\operatorname{GCD}\left(2^{i}, p\right)=1(\mathrm{GCD}=$ greatest common divisor) one has that $S(n)=\max \left\{S\left(2^{i}\right), S(p)\right\} \geq S(p)=p$. Therefore $S(n) \geq p$.
If we prove that p ! is divisible by n then one would have the equality.

$$
p!=p_{1}^{e_{p_{1}}(p)} \cdot p_{2}^{e_{2}(p)} \cdots p_{s}^{e_{p_{s}}(p)}
$$

where p_{i} is the $i-$ th prime of the prime number decomposition of $p!$. It is clear that
$p_{1}=2, p_{s}=p, e_{p_{s}}(p!)=1$ for which:

$$
p!=2^{e_{2}(p)} \cdot p_{2}{ }^{e_{p}(p)} \cdots p_{s-1}{ }^{e_{s-1}(p)} \cdot p
$$

From where one can deduce that:

$$
\frac{p!}{n}=2^{e_{2}(p)-i} \cdot p_{2}^{e_{p 2}(p)} \cdots p_{s-1}{ }^{e_{S-1}(p)}
$$

is a positive integer since $e_{2}(p!)-i \geq 0$.
Therefore one has that $S(n)=p$
Proposition1: If n is a perfect number of the form $n=2^{k-1} \cdot\left(2^{k}-1\right)$ with k is a positive integer, $2^{k}-1=p$ prime, one has that $S(n)=p$.

Demonstration:
For the Lemma it is sufficient to prove that $k-1 \leq e_{2}(p!)$.
If we can prove that:

$$
\begin{equation*}
k-1 \leq 2^{k-1}-\frac{1}{2} \tag{1}
\end{equation*}
$$

we will have proof of the proposition since:

$$
k-1 \leq 2^{k-1}-\frac{1}{2}=\frac{2^{k}-1}{2}=\frac{p}{2}
$$

As $k-1$ is an integer one has that $k-1 \leq E\left(\frac{p}{2}\right) \leq e_{2}(p!)$
Proving (1) is the same as proving $k \leq 2^{k-1}+\frac{1}{2}$ at the same time, since k is integer, is equivalent to proving $k \leq 2^{k-1}$ (2).

In order to prove (2) we may consider the function: $f(x)=2^{x-1}-x \quad x$ real number.

This function may be derived and its derivate is $f^{\prime}(x)=2^{x-1} \ln 2-1$.
f will be increasing when $2^{x-1} \ln 2-1>0$ resolving x :

$$
x>1-\frac{\ln (\ln 2)}{\ln 2} \cong 1^{\prime} 5287
$$

In particular f will be increasing $\forall x \geq 2$.
Therefore $\forall x \geq 2 \quad f(x) \geq f(2)=0$ that is to say $2^{x-1}-x \geq 0 \quad \forall x \geq 2$.

Therefore: $2^{k-1} \geq k \forall k \geq 2$ integer.

And thus is proved the proposition.

EXAMPLES:

\[

\]

References:

[1] C. Dumitrescu and R. Müller: To Enjoy is a Permanent Component of Mathematics. SMARANDACHE NOTIONS JOURNAL Vol. 9 No 1-2, (1998) pp 21-26

Chapter 2: A result obtained using the Smarandache Function

Smarandache Function is defined as followed:
$S(m)=$ The smallest positive integer so that $S(m)$! is divisible by m. [1]
Let's see the value which such function takes for $m=p^{p^{n}}$ with n integer, $n \geq 2 \quad$ and p prime number. To do so a Lemma required.

Lemma $1 \forall m, n \in \mathbf{N} \quad m, n \geq 2$

$$
m^{n}=E\left[\frac{m^{n+1}-m^{n}+m}{m}\right]+E\left[\frac{m^{n+1}-m^{n}+m}{m^{2}}\right]+\cdots+E\left[\frac{m^{n+1}-m^{n}+m}{\left.\left.m^{E\left[\log _{m}\left(m^{n+1}-m^{n}+m\right)\right.}\right)\right]}\right]
$$

where $\mathrm{E}(\mathrm{x})$ gives the greatest integer less than or equal to x .

Proof:

Let's see in the first place the value taken by $E\left[\log _{m}\left(m^{n+1}-m^{n}+m\right)\right]$.
If $n \geq 2: m^{n+1}-m^{n}+m<m^{n+1}$ and therefore
$\log _{m}\left(m^{n+1}-m^{n}+m\right)<\log _{m} m^{n+1}=n+1$.
And if $m \geq 2$:

$$
\begin{aligned}
& m m^{n} \geq 2 m^{n} \Rightarrow m^{n+1} \geq 2 m^{n} \Rightarrow m^{n+1}+m \geq 2 m^{n} \Rightarrow m^{n+1}-m^{n}+m \geq m^{n} \\
& \Rightarrow \log _{m}\left(m^{n+1}-m^{n}+m\right) \geq \log _{m} m^{n}=n \Rightarrow E\left[\log _{m}\left(m^{n+1}-m^{n}+m\right)\right] \geq n
\end{aligned}
$$

As a result: $n \leq E\left[\log _{m}\left(m^{n+1}-m^{n}+m\right)\right]<n+1$ therefore:

$$
E\left[\log _{m}\left(m^{n+1}-m^{n}+m\right)\right]=n \text { if } n, m \geq 2
$$

Now let's see the value which it takes for $1 \leq k \leq n: E\left[\frac{m^{n+1}-m^{n}+m}{m^{k}}\right]$
$E\left[\frac{m^{n+1}-m^{n}+m}{m^{k}}\right]=E\left[m^{n+1-k}-m^{n-k}+\frac{1}{m^{k-1}}\right]$

> If $\mathrm{k}=1: E\left[\frac{m^{n+1}-m^{n}+m}{m^{k}}\right]=m^{n}-m^{n-1}+1$
> If $1<k \leq n: \quad E\left[\frac{m^{n+1}-m^{n}+m}{m^{k}}\right]=m^{n+1-k}-m^{n-k}$

Let's see what is the value of the sum:

$$
\begin{aligned}
& \mathrm{k}=1 \quad \mathrm{~m}^{\mathrm{n}} \quad-\mathrm{m}^{\mathrm{n}-1} \quad \ldots \quad \quad \ldots \quad \cdots \quad \ldots \quad+1 \\
& \mathrm{k}=2 \quad \mathrm{~m}^{\mathrm{n}-1} \quad-\mathrm{m}^{\mathrm{n}-2} \\
& \mathrm{k}=3 \quad \mathrm{~m}^{\mathrm{n}-2} \quad-\mathrm{m}^{\mathrm{n}-3} \\
& \mathrm{k}=\mathrm{n}-1 \quad \mathrm{~m}^{2} \quad-\mathrm{m} \\
& \mathrm{k}=\mathrm{n} \quad \mathrm{~m} \quad-1
\end{aligned}
$$

Therefore:

$$
\sum_{k=1}^{n} E\left[\frac{m^{n+1}-m^{n}+m}{m^{k}}\right]=m^{n} \quad m, n \geq 2
$$

Proposition: $\quad \forall \quad$ p prime number $\quad \forall n \geq 2$:

$$
S\left(p^{p^{n}}\right)=p^{n+1}-p^{n}+p
$$

Proof:

Having $e_{p}(k)=$ exponent of the prime number p in the prime decomposition of k .

We get:

$$
e_{p}(k)=E\left(\frac{k}{p}\right)+E\left(\frac{k}{p^{2}}\right)+E\left(\frac{k}{p^{3}}\right)+\cdots+E\left(\frac{k}{p^{E\left(\log _{p} k\right)}}\right)
$$

And using the lemma we have
$e_{p}\left[\left(p^{n+1}-p^{n}+p\right)!\right]=E\left[\frac{p^{n+1}-p^{n}+p}{p}\right]+E\left[\frac{p^{n+1}-p^{n}+p}{p^{2}}\right]+\cdots+E\left[\frac{p^{n+1}-p^{n}+p}{\left.p^{E\left[\log _{p}\left(p^{n+1}-p^{n}+p\right)\right.}\right)}\right]=p^{n}$
Therefore:

$$
\frac{\left(p^{n+1}-p^{n}+p\right)!}{p^{p^{n}}} \in \mathrm{~N} \quad \text { and } \quad \frac{\left(p^{n+1}-p^{n}+p-1\right)!}{p^{p^{n}}} \notin \mathrm{~N}
$$

And :

$$
S\left(p^{p^{n}}\right)=p^{n+1}-p^{n}+p
$$

References:
[1] C. Dumitrescu and R. Müller: To Enjoy is a Permanent Component of Mathematics. SMARANDACHE NOTIONS JOURNAL VOL 9:, No. 1-2 (1998) pp 21-26.

Chapter 3: A Congruence with the Smarandache function

Smarandache's function is defined thus:
$\mathrm{S}(\mathrm{n})=$ is the smallest integer such that $\mathrm{S}(\mathrm{n})$! is divisible by n . [1]
In this article we are going to look at the value that has $\mathrm{S}\left(2^{\mathrm{k}}-1\right)(\bmod \mathrm{k})$
For all integer, $2 \leq k \leq 97$.

k	$\mathrm{S}\left(2^{\mathrm{k}}-1\right)$	$\mathrm{S}\left(2^{\mathrm{k}}-1\right)(\bmod \mathrm{k})$
2	3	1
3	7	1
4	5	1
5	31	1
6	7	1
7	127	1
8	17	1
9	73	1
10	31	1
11	89	1
12	13	1
13	8191	1
14	127	1
15	151	1
16	257	1
17	131071	1
18	73	1
19	524287	1
20	41	1
21	337	1
22	683	1
23	178481	1
24	241	1
25	1801	1
26	8191	1
27	262657	127
28	2089	15
29	331	1
30		1

$\mathrm{S}\left(2^{\mathrm{k}}-1\right) \quad \mathrm{S}\left(2^{\mathrm{k}}-1\right)$	$\mathrm{S}\left(2^{\mathrm{k}}-1\right)(\bmod \mathrm{k})$
2147483647	1
65537	1
599479	1
131071	1
122921	1
109	1
616318177	1
524287	1
121369	1
61681	1
164511353	1
5419	1
2099863	1
2113	1
23311	1
2796203	1
13264529	1
673	1
4432676798593	1
4051	1
131071	1
8191	27
20394401	1
262657	1
201961	1
15790321	1
1212847	1
3033169	1
3203431780337	1
1321	1
2305843009213693951	6939511
2147483647	1
649657	1
6700417	1
145295143558111	11
599479	1
761838257287	1
131071	35

k	$\mathrm{S}\left(2^{\mathrm{k}}-1\right) \quad \mathrm{S}\left(2^{\mathrm{k}}-1\right)(\mathrm{mod} \mathrm{k})$	
69	10052678938039	1
70	122921	1
71	212885833	1
72	38737	1
73	9361973132609	1
74	616318177	1
75	10567201	1
76	525313	1
77	581283643249112959	
78	22366891	1
79	1113491139767	1
80	4278255361	1
81	97685839	1
82	8831418697	1
83	57912614113275649087721	1
84	14449	1
85	9520972806333758431	1
86	2932031007403	1
87	9857737155463	1
88	2931542417	1
89	618970019642690137449562111	1
90	18837001	1
91	23140471537	1
92	2796203	47
93	658812288653553079	1
94	165768537521	1
95	30327152671	1
96	22253377	1
97	13842607235828485645766393	1

One can see from the table that there are only 4 exceptions for $2 \leq k \leq 97$

We can see in detail the 4 exceptions in a table:

$$
\begin{array}{ll}
\mathrm{k}=28=2^{2} \circ 7 & \mathrm{~S}\left(2^{28}-1\right) \equiv 15(\bmod 28) \\
\mathrm{k}=52=2^{2} \circ 13 & \mathrm{~S}\left(2^{52}-1\right) \equiv 27(\bmod 52) \\
\mathrm{k}=68=2^{2} \circ 17 & \mathrm{~S}\left(2^{68}-1\right) \equiv 35(\bmod 68) \\
\mathrm{k}=92=2^{2} \circ 23 & \mathrm{~S}\left(2^{92}-1\right) \equiv 47(\bmod 92)
\end{array}
$$

One can observe in these 4 cases that $\mathrm{k}=2^{2} \mathrm{p}$ with p is a prime and more over $S\left(2^{k}-1\right) \equiv \frac{k}{2}+1(\bmod k)$

UNSOLVED QUESTION:

One can obtain a general formula that gives us, in function of k the value $S\left(2^{k}-1\right)(\bmod k)$ for all positive integer values of k ?.

Reference:

[1] Smarandache Notions Journal, Vol. 9, No. 1-2, (1998), pp. 21-26.

Chapter 4: A functional recurrence to obtain the prime numbers using the Smarandache prime function.

Theorem: We are considering the function:
For n integer:

$$
F(n)=n+1+\sum_{m=n+1}^{2 n} \prod_{i=n+1}^{m}\left[-\left[-\frac{\sum_{j=1}^{i}\left(\left\lfloor\frac{i}{j}\right\rfloor-\left\lfloor\frac{i-1}{j}\right\rfloor\right)-2}{i}\right]\right]
$$

one has: $p_{k+1}=F\left(p_{k}\right)$ for all $k \geq 1$ where $\left\{p_{k}\right\}_{k \geq 1}$ are the prime numbers and $\lfloor x\rfloor$ is the greatest integer less than or equal to x .

Observe that the knowledge of p_{k+1} only depends on knowledge of p_{k} and the knowledge of the fore primes is unnecessary.

Proof:
Suppose that we have found a function $P(i)$ with the following property:

$$
P(i)=\left\{\begin{array}{l}
1 \text { if } i \text { is composite } \\
0 \text { if } i \text { is prime }
\end{array}\right.
$$

This function is called Smarandache prime function.(Ref.)
Consider the following product:

$$
\prod_{i=p_{k}+1}^{m} P(i)
$$

If $p_{k}<m<p_{k+1} \prod_{i=p_{k}+1}^{m} P(i)=1$ since $i: p_{k}+1 \leq i \leq m$ are all composites.

If $m \geq p_{k+1} \quad \prod_{i=p_{k}+1}^{m} P(i)=0$ since $P\left(p_{k+1}\right)=0$

Here is the sum:

$$
\begin{aligned}
& \sum_{m=p_{k}+1}^{2 p_{k}} \prod_{i=p_{k}+1}^{m} P(i)=\sum_{m=p_{k}+1}^{p_{k+1}-1} \prod_{i=p_{k}+1}^{m} P(i)+\sum_{m=p_{k+1}}^{2 p_{k}} \prod_{i=p_{k}+1}^{m} P(i)=\sum_{m=p_{k}+1}^{p_{k+1}-1} 1= \\
& \quad=p_{k+1}-1-\left(p_{k}+1\right)+1=p_{k+1}-p_{k}-1
\end{aligned}
$$

The second sum is zero since all products have the factor $P\left(p_{k+1}\right)=0$.
Therefore we have the following recurrence relation:

$$
p_{k+1}=p_{k}+1+\sum_{m=p_{k}+i>=p_{k}+1}^{2 p_{k}} \prod_{n}^{m} P(i)
$$

Let's now see we can find $P(i)$ with the asked property.
Consider:

$$
\left\lfloor\frac{i}{j}\right\rfloor-\left\lfloor\frac{i-1}{j}\right\rfloor=\left\{\begin{array}{llll}
1 & \text { si } & j \mid i \\
0 & \text { si } & j \text { not } \mid i & j=1,2, \cdots, i
\end{array} \quad i \geq 1\right.
$$

We deduce of this relation:

$$
d(i)=\sum_{j=1}^{i}\left\lfloor\frac{i}{j}\right\rfloor-\left\lfloor\frac{i-1}{j}\right\rfloor
$$

where $d(i)$ is the number of divisors of i.

If i is prime $d(i)=2$ therefore:

$$
-\left\lfloor-\frac{d(i)-2}{i}\right\rfloor=0
$$

If i is composite $d(i)>2$ therefore:

$$
0<\frac{d(i)-2}{i}<1 \Rightarrow-\left\lfloor-\frac{d(i)-2}{i}\right\rfloor=1
$$

Therefore we have obtained the Smarandache Prime Function $P(i)$ which is:

$$
P(i)=-\left\lfloor-\frac{\sum_{j=1}^{i}\left(\left\lfloor\frac{i}{j}\right\rfloor-\left\lfloor\frac{i-1}{j}\right\rfloor\right)-2}{i}\right\rfloor \quad i \geq 2 \text { integer }
$$

With this, the theorem is already proved .

References:

[1] E. Burton, "Smarandache Prime and Coprime functions". www.gallup.unm.edu/~Smarandache/primfnct.txt [2]F. Smarandache, "Collected Papers", Vol II 200, p.p. 137, Kishinev University Press, Kishinev, 1997.

Chapter 5: The general term of the prime number sequence and the Smarandache prime function.

Let is consider the function $d(i)=$ number of divisors of the positive integer number i. We have found the following expression for this function:

$$
d(i)=\sum_{k=1}^{i} E\left(\frac{i}{k}\right)-E\left(\frac{i-1}{k}\right)
$$

" $\mathrm{E}(\mathrm{x})=$ Floor $[\mathrm{x}] "$

We proved this expression in the article "A functional recurrence to obtain the prime numbers using the Smarandache Prime Function".

We deduce that the folowing function:

$$
G(i)=-E\left[-\frac{d(i)-2}{i}\right]
$$

This function is called the Smarandache Prime Function (Reference) It takes the next values:

$$
G(i)=\left\{\begin{array}{llll}
0 & \text { if } & \text { i is } & \text { prime } \\
1 & \text { if } & \text { i is } & \text { composite }
\end{array}\right.
$$

Let is consider now $\pi(n)=$ number of prime numbers smaller or equal than n.

It is simple to prove that:

$$
\pi(n)=\sum_{i=2}^{n}(1-G(i))
$$

Let is have too:
$\begin{array}{lll}\text { If } \quad 1 \leq k \leq p_{n}-1 & \Rightarrow E\left(\frac{\pi(k)}{n}\right)=0 \\ \text { If } \quad C_{n} \geq k \geq p_{n} & \Rightarrow E\left(\frac{\pi(k)}{n}\right)=1\end{array}$

We will see what conditions have to carry C_{n}.

Therefore we have the following expression for $p_{n} \mathrm{n}$-th prime number:

$$
p_{n}=1+\sum_{k=1}^{C_{n}}\left(1-E\left(\frac{\pi(k)}{n}\right)\right.
$$

If we obtain C_{n} that only depends on n, this expression will be the general term of the prime numbers sequence, since π is in function with G and G does with $d(i)$ that is expressed in function with i too. Therefore the expression only depends on n.

Let is consider $C_{n}=2(E(n \log n)+1)$
Since $p_{n} \approx n \log n$ from of a certain n_{0} it will be true that

$$
\text { (1) } p_{n} \leq 2(E(n \log n)+1)
$$

If n_{0} it is not too big, we can prove that the inequality is true for smaller or equal values than n_{0}.

It is necessary to that:

$$
E\left[\frac{\pi(2(E(n \log n)+1))}{n}\right]=1
$$

If we check the inequality:

$$
\begin{equation*}
\pi(2(E(n \log n)+1))<2 n \tag{2}
\end{equation*}
$$

We will obtain that:

$$
\frac{\pi\left(C_{n}\right)}{n}<2 \Rightarrow E\left[\frac{\pi\left(C_{n}\right)}{n}\right] \leq 1 \quad ; C_{n} \geq p_{n} \Rightarrow E\left[\frac{\pi\left(C_{n}\right)}{n}\right]=1
$$

We can experimentaly check this last inequality saying that it checks for a lot of values and the difference tends to increase, wich makes to think that it is true for all n.

Therefore if we prove that the (1) and (2) inequalities are true for all n which seems to be very probable; we will have that the general term of the prime numbers sequence is:

Reference:

[1] E. Burton, "Smarandache Prime and Coprime Functions"
Http://www.gallup.unm.edu/~Smarandache/primfnct.txt
[2] F. Smarandache, "Collected Papers", Vol. II, 200 p.,p.137, Kishinev University Press.

Chapter 6: Expressions of the Smarandache Coprime Function

Smarandache Coprime function is defined this way:

$$
C_{k}\left(n_{1}, n_{2}, \cdots, n_{k}\right)=\left\{\begin{array}{ll}
0 & \text { if } \quad n_{1}, n_{2}, \cdots, n_{k} \\
1 & \text { otherwise }
\end{array}\right. \text { are coprime numbers }
$$

We see two expressions of the Smarandache Coprime Function for $\mathrm{k}=2$.

EXPRESSION 1:

$$
C_{2}\left(n_{1}, n_{2}\right)=-\left\lfloor-\frac{n_{1} n_{2}-\operatorname{lcm}\left(n_{1}, n_{2}\right)}{n_{1} n_{2}}\right\rfloor
$$

$\lfloor x\rfloor \quad=$ the biggest integer number smaller or equal than x .

If n_{1}, n_{2} are coprime numbers:

$$
\operatorname{lcm}\left(n_{1}, n_{2}\right)=n_{1} n_{2} \quad \text { therefore: } \quad C_{2}\left(n_{1}, n_{2}\right)=-\left\lfloor\frac{0}{n_{1} n_{2}}\right\rfloor=0
$$

If n_{1}, n_{2} aren't coprime numbers:

$$
\operatorname{lcm}\left(n_{1}, n_{2}\right)<n_{1} n_{2} \Rightarrow 0<\frac{n_{1} n_{2}-\operatorname{lcm}\left(n_{1}, n_{2}\right)}{n_{1} n_{2}}<1 \Rightarrow C_{2}\left(n_{1}, n_{2}\right)=1
$$

EXPRESSION 2:

$$
C_{2}\left(n_{1}, n_{2}\right)=1+\left\lfloor\left.\begin{array}{|}
\prod_{d \mid n n_{1} d \| n_{2}}\left|d-d^{\prime}\right| \\
\prod_{d>1 n_{1}} \prod_{d>1}\left(d+n_{2}\right)
\end{array} \right\rvert\,\right.
$$

If n_{1}, n_{2} are coprime numbers then $d \neq d^{\prime} \quad \forall d, d^{\prime} \neq 1$

$$
\Rightarrow 0<\frac{\prod_{\substack{d n_{1} d d^{n} n_{2} \\ d>1 \\ d^{>}>1}}\left|d-d^{\prime}\right|}{\prod_{d n_{1} d n_{2}}\left(d+d^{\prime}\right)}<1 \Rightarrow C_{2}\left(n_{1}, n_{2}\right)=0
$$

If n_{1}, n_{2} aren't coprime numbers $\exists d=d^{\prime} \quad d>1, d^{\prime}>1 \Rightarrow C_{2}\left(n_{1}, n_{2}\right)=1$

EXPRESSION 3:

Smarandache Coprime Function for $k \geq 2$:

$$
C_{k}\left(n_{1}, n_{2}, \cdots, n_{k}\right)=-\left\lfloor\frac{1}{G C D\left(n_{1}, n_{2}, \cdots, n_{k}\right)}-1\right\rfloor
$$

If $n_{1}, n_{2}, \cdots, n_{k}$ are coprime numbers:

$$
G C D\left(n_{1}, n_{2}, \cdots, n_{k}\right)=1 \Rightarrow C_{k}\left(n_{1}, n_{2}, \cdots, n_{k}\right)=0
$$

If $n_{1}, n_{2}, \cdots, n_{k}$ aren't coprime numbers: $\operatorname{GCD}\left(n_{1}, n_{2}, \cdots, n_{k}\right)>1$
$0<\frac{1}{G C D}<1 \Rightarrow-\left\lfloor\frac{1}{G C D}-1\right\rfloor=1=C_{k}\left(n_{1}, n_{2}, \cdots, n_{k}\right)$

References:

1. E. Burton, "Smarandache Prime and Coprime Function"
2. F. Smarandache, "Collected Papers", Vol II 22 p.p. 137,Kishinev University Press.

Chapter 7: New Prime Numbers

I have found some new prime numbers using the PROTH program of Yves Gallot.
This program in based on the following theorem:

Proth Theorem (1878):

Let $N=k \cdot 2^{n}+1$ where $k<2^{n}$. If there is an integer number a so that $a^{\frac{N-1}{2}} \equiv-1(\bmod N)$ therefore N is prime.

The Proth progam is a test for primality of greater numbers defined as $k \cdot b^{n}+1$ or $k \cdot b^{n}-1$. The program is made to look for numbers of less than 5.000000 digits and it is optimized for numbers of more than 1000 digits..

Using this Program, I have found the following prime numbers:

$$
\begin{array}{llll}
3239 \cdot 2^{12345}+1 & \text { with } 3720 \text { digits } & a=3, & a=7 \\
7551 \cdot 2^{12345}+1 & \text { with } 3721 \text { digits } & a=5, & a=7 \\
7595 \cdot 2^{12345}+1 & \text { with } 3721 \text { digits } & a=3, & a=11 \\
9363 \cdot 2^{12321}+1 & \text { with } 3713 \text { digits } & a=5, & a=7
\end{array}
$$

Since the exponents of the first three numbers are Smarandache number $\operatorname{Sm}(5)=12345$ we can call this type of prime numbers, prime numbers of Smarandache .

Helped by the MATHEMATICA progam, I have also found new prime numbers which are a variant of prime numbers of Fermat. They are the following:

$$
2^{2^{n}} \cdot 3^{2^{n}}-2^{2^{n}}-3^{2^{2}} \text { for } \mathrm{n}=1,4,5,7 .
$$

It is important to mention that for $\mathrm{n}=7$ the number which is obtained has 100 digits.

Chris Nash has verified the values $\mathrm{n}=8$ to $\mathrm{n}=20$, this last one being a number of 815.951 digits, obtaining that they are all composite. All of them have a tiny factor except $\mathrm{n}=13$.

References:

1. Micha Fleuren, "Smarandache Factors and Reverse Factors", Smarandache Notions Journal, Vol. 10, www.gallup.unm.edu/~smarandache/
2. Chris Caldwell, The Prime Pages, www.utm.edu/research/primes

A book for people who love numbers:
Smarandache Function applied to perfect numbers, congruences.
Also, the Smarandache Prime and Coprime functions in connection with the expressions of the prime numbers.

