MEAN VALUE OF THE ADDITIVE ANALOGUE OF SMARANDACHE FUNCTION *

Yi Yuan and Zhang Wenpeng
Research Center for Basic Science, Xi'an Jiaotong University Xi'an, Shaanxi, P.R.China
yuanyi@mail.xjtu.edu.cn

Abstract

For any positive integer n, let $S(n)$ denotes the Smarandache function, then $S(n)$ is defined the smallest $m \in N^{+}$, where $n \mid m!$. In this paper, we study the mean value properties of the additive analogue of $S(n)$, and give an interesting mean value formula for it.

Keywords: Smarandache function; Additive Analogue; Mean Value formula.

§1. Introduction and results

For any positive integer n, let $S(n)$ denotes the Smarandache function, then $S(n)$ is defined the smallest $m \in N^{+}$, where $n \mid m$!. In paper [2], Jozsef Sandor defined the following analogue of Smarandache function:

$$
\begin{equation*}
S_{1}(x)=\min \{m \in N: x \leq m!\}, \quad x \in(1, \infty) \tag{1}
\end{equation*}
$$

which is defined on a subset of real numbers. Clearly $S(x)=m$ if $x \in$ $((m-1)!, m!]$ for $m \geq 2$ (for $m=1$ it is not defined, as $0!=1!=1!$), therefore this function is defined for $x>1$.

About the arithmetical properties of $S(n)$, many people had studied it before (see reference [3]). But for the mean value problem of $S_{1}(n)$, it seems that no one have studied it before. The main purpose of this paper is to study the mean value properties of $S_{1}(n)$, and obtain an interesting mean value formula for it. That is, we shall prove the following:

Theorem. For any real number $x \geq 2$, we have the mean value formula

$$
\sum_{n \leq x} S_{1}(n)=\frac{x \ln x}{\ln \ln x}+O(x) .
$$

§2. Proof of the theorem

In this section, we shall complete the proof of the theorem. First we need following one simple Lemma. That is,

[^0]Lemma. For any fixed positive integers m and n, if $(m-1)!<n \leq m$!, then we have

$$
m=\frac{\ln n}{\ln \ln n}+O(1)
$$

Proof. From $(m-1)!<n \leq m$! and taking the logistic computation in the two sides of the inequality, we get

$$
\begin{equation*}
\sum_{i=1}^{m-1} \ln i<\ln n \leq \sum_{i=1}^{m} \ln i \tag{2}
\end{equation*}
$$

Using the Euler's summation formula, then

$$
\begin{equation*}
\sum_{i=1}^{m} \ln i=\int_{1}^{m} \ln t d t+\int_{1}^{m}(t-[t])(\ln t)^{\prime} d t=m \ln m-m+O(\ln m) \tag{3}
\end{equation*}
$$

and
$\sum_{i=1}^{m-1} \ln i=\int_{1}^{m-1} \ln t d t+\int_{1}^{m-1}(t-[t])(\ln t)^{\prime} d t=m \ln m-m+O(\ln m)$.
Combining (2), (3) and (4), we can easily deduce that

$$
\begin{equation*}
\ln n=m \ln m-m+O(\ln m) \tag{5}
\end{equation*}
$$

So

$$
\begin{equation*}
m=\frac{\ln n}{\ln m-1}+O(1) \tag{6}
\end{equation*}
$$

Similarly, we continue taking the logistic computation in two sides of (5), then we also have

$$
\begin{equation*}
\ln m=\ln \ln n+O(\ln \ln m) \tag{7}
\end{equation*}
$$

and

$$
\begin{equation*}
\ln \ln m=O(\ln \ln \ln n) \tag{8}
\end{equation*}
$$

Hence,

$$
m=\frac{\ln n}{\ln \ln n}+O(1)
$$

This completes the proof of Lemma.
Now we use Lemma to complete the proof of Theorem. For any real number $x \geq 2$, by the definition of $s_{1}(n)$ and Lemma we have

$$
\begin{align*}
\sum_{n \leq x} S_{1}(n) & =\sum_{\substack{n \leq x \\
(m-1)!<n \leq m!}} m \tag{9}\\
& =\sum_{n \leq x}\left(\frac{\ln n}{\ln \ln n}+O(1)\right) \\
& =\sum_{n \leq x} \frac{\ln n}{\ln \ln n}+O(x)
\end{align*}
$$

By the Euler's summation formula, we deduce that

$$
\begin{align*}
& \sum_{n \leq x} \frac{\ln n}{\ln \ln n} \\
= & \int_{2}^{x} \frac{\ln t}{\ln \ln t} d t+\int_{2}^{x}(t-[t])\left(\frac{\ln t}{\ln \ln t}\right)^{\prime} d t+\frac{\ln x}{\ln \ln x}(x-[x]) \tag{10}\\
= & \frac{x \ln x}{\ln \ln x}+O\left(\frac{x}{\ln \ln x}\right) .
\end{align*}
$$

So, from (9) and (10) we have

$$
\sum_{n \leq x} S_{1}(n)=\frac{x \ln x}{\ln \ln x}+O(x)
$$

This completes the proof of Theorem.

References

[1] F.Smarandache, Only Problems, Not Solutions, Xiquan Publ.House, Chicago, 1993.
[2] Jozsef Sandor, On an additive analogue of the function S, Smaramche Notions Journal, 13 (2002), 266-270.
[3] Jozsef Sandor, On an generalization of the Smarandache function, Notes Numb. Th. Discr. Math. 5 (1999), 41-51.
[4] Tom M Apostol, Introduction to Analytic Number Theory, New York, Springer-Verlag, 1976.

[^0]: *This work is supported by the Zaizhi Doctorate Foundation of Xi'an Jiaotong University.

