On a dual of the Pseudo-Smarandache function

József Sándor Babeş-Bolyai University, 3400 Cluj-Napoca, Romania

1 Introduction

In paper [3] we have defined certain generalizations and extensions of the Smarandache function. Let $f: \mathbb{N}^{*} \rightarrow \mathbb{N}^{*}$ be an arithmetic function with the following property: for each $n \in \mathbb{N}^{*}$ there exists at least a $k \in \mathbb{N}^{*}$ such that $n \mid f(k)$. Let

$$
\begin{equation*}
F_{f}: \mathbb{N}^{*} \rightarrow \mathbb{N}^{*} \text { defined by } F_{f}(n)=\min \left\{k \in \mathbb{N}^{*}: n \mid f(k)\right\} \tag{1}
\end{equation*}
$$

This function generalizes many particular functions. For $f(k)=k$! one gets the Smarandache function, while for $f(k)=\frac{k(k+1)}{2}$ one has the Pseudo-Smarandache function Z (see [1], [4-5]). In the above paper [3] we have defined also dual arithmetic functions as follows: Let $g: \mathbb{N}^{*} \rightarrow \mathbb{N}^{*}$ be a function having the property that for each $n \geq 1$ there exists at least a $k \geq 1$ such that $g(k) \mid n$.

Let

$$
\begin{equation*}
G_{g}(n)=\max \left\{k \in \mathbb{N}^{*}: g(k) \mid n\right\} \tag{2}
\end{equation*}
$$

For $g(k)=k$! we obtain a dual of the Smarandache function. This particular function, denoted by us as S_{*} has been studied in the above paper. By putting $g(k)=\frac{k(k+1)}{2}$ one obtains a dual of the Pseudo-Smarandache function. Let us denote this function, by analogy by Z_{*}. Our aim is to study certain elementary properties of this arithmetic function.

2 The dual of yhe Pseudo-Smarandache function

Let

$$
\begin{equation*}
Z_{*}(n)=\max \left\{m \in \mathbb{N}^{*}: \left.\frac{m(m+1)}{2} \right\rvert\, n\right\} \tag{3}
\end{equation*}
$$

Recall that

$$
\begin{equation*}
Z(n)=\min \left\{k \in \mathbb{N}^{*}: n \left\lvert\, \frac{k(k+1)}{2}\right.\right\} \tag{4}
\end{equation*}
$$

First remark that

$$
Z_{*}(1)=1 \text { and } Z_{*}(p)=\left\{\begin{array}{l}
2, p=3 \tag{5}\\
1, p \neq 3
\end{array}\right.
$$

where p is an arbitrary prime. Indeed, $\left.\frac{2 \cdot 3}{2}=3 \right\rvert\, 3$ but $\left.\frac{m(m+1)}{2} \right\rvert\, p$ for $p \neq 3$ is possible only for $m=1$. More generally, let $s \geq 1$ be an integer, and p a prime. Then:

Proposition 1.

$$
Z_{*}\left(p^{3}\right)= \begin{cases}2, & p=3 \tag{6}\\ 1, & p \neq 3\end{cases}
$$

Proof. Let $\left.\frac{m(m+1)}{2} \right\rvert\, p^{s}$. If $m=2 M$ then $M(2 M+1) \mid p^{s}$ is impossible for $M>1$ since M and $2 M+1$ are relatively prime. For $M=1$ one has $m=2$ and $3 \mid p^{s}$ only if $p=3$. For $m=2 M-1$ we get $(2 M-1) M \mid p^{k}$, where for $M>1$ we have $(M, 2 M-1)=1$ as above, while for $M=1$ we have $m=1$.

The function Z_{*} can take large values too, since remark that for e.g. $n \equiv 0(\bmod 6)$ we have $\left.\frac{3 \cdot 4}{2}=6 \right\rvert\, n$, so $Z_{*}(n) \geq 3$. More generally, let a be a given positive integer and n selected such that $n \equiv 0(\bmod a(2 a+1))$. Then

$$
\begin{equation*}
Z_{*}(n) \geq 2 a \tag{7}
\end{equation*}
$$

Indeed, $\left.\frac{2 a(2 a+1)}{2}=a(2 a+1) \right\rvert\, n$ implies $Z_{*}(n) \geq 2 a$.
A similar situation is in
Proposition 2. Let q be a prime such that $p=2 q-1$ is a prime, too. Then

$$
\begin{equation*}
Z_{=}(p q)=p \tag{8}
\end{equation*}
$$

Proof. $\frac{p(p+1)}{2}=p q$ so clearly $Z_{*}(p q)=p$.
Remark. Examples are $Z_{*}(5 \cdot 3)=5, Z_{*}(13 \cdot 7)=13$, etc. It is a difficult open problem that for infinitely many q, the number p is prime, too (see e.g. [2]).

Proposition 3. For all $n \geq 1$ one has

$$
\begin{equation*}
1 \leq Z_{*}(n) \leq Z(n) \tag{9}
\end{equation*}
$$

Proof. By (3) and (4) we can write $\frac{m(m+1)}{2}|n| \frac{k(k+1)}{2}$, therefore $m(m+1) \mid k(k+1)$. If $m>k$ then clearly $m(m+1)>k(k+1)$, a contradiction.

Corollary. One has the following limits:

$$
\begin{equation*}
\varliminf_{n \rightarrow \infty} \frac{Z_{*}(n)}{Z(n)}=0, \quad \varlimsup_{n \rightarrow \infty} \frac{Z_{*}(n)}{Z(n)}=1 . \tag{10}
\end{equation*}
$$

Proof. Put $n=p$ (prime) in the first relation. The first result follows by (6) for $s=1$ and the well-known fact that $Z(p)=p$. Then put $n=\frac{a(a+1)}{2}$, when $\frac{Z_{*}(n)}{Z(n)}=1$ and let $a \rightarrow \infty$.

As we have seen,

$$
Z\left(\frac{a(a+1)}{2}\right)=Z_{*}\left(\frac{a(a+1)}{2}\right)=a .
$$

Indeed, $\left.\frac{a(a+1)}{2} \right\rvert\, \frac{k(k+1)}{2}$ is true for $k=a$ and is not true for any $k<a$. In the same manner, $\left.\frac{m(m+1)}{2} \right\rvert\, \frac{a(a+1)}{2}$ is valied for $m=a$ but not for any $m>a$. The following problem arises: What are the solutions of the equation $Z(n)=Z_{*}(n)$?

Proposition 4. All solutions of equation $Z(n)=Z_{n}(n)$ can be written in the form $n=\frac{r(r+1)}{2}\left(r \in \mathbb{N}^{*}\right)$.

Proof. Let $Z_{*}(n)=Z(n)=t$. Then $n\left|\frac{t(t+1)}{2}\right| n$ so $\frac{t(t+1)}{2}=n$. This gives $t^{2}+t-$ $2 n=0$ or $(2 t+1)^{2}=8 n+1$, implying $t=\frac{\sqrt{8 n+1}-1}{2}$, where $8 n+1=m^{2}$. Here m must be odd, let $m=2 r+1$, so $n=\frac{(m-1)(m+1)}{8}$ and $t=\frac{m-1}{2}$. Then $m-1=2 r$, $m+1=2(r+1)$ and $n=\frac{r(r+1)}{2}$.

Proposition 5. One has the following limits:

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \sqrt[n]{Z_{\mathbf{*}}(n)}=\lim _{n \rightarrow \infty} \sqrt[n]{Z(n)}=1 \tag{11}
\end{equation*}
$$

Proof. It is known that $Z(n) \leq 2 n-1$ with equality only for $n=2^{k}$ (see e.g. [5]). Therefore, from (9) we have

$$
1 \leq \sqrt[n]{Z_{*}(n)} \leq \sqrt[n]{Z(n)} \leq \sqrt[n]{2 n-1}
$$

and by taking $n \rightarrow \infty$ since $\sqrt[n]{2 n-1} \rightarrow 1$, the above simple result follows.
As we have seen in (9), upper bounds for $Z(n)$ give alse upper bounds for $Z_{*}(n)$. E.g. for $n=$ odd, since $Z(n) \leq n-1$, we get also $Z_{*}(n) \leq n-1$. However, this upper bound is too large. The optimal one is given by:

Proposition 6.

$$
\begin{equation*}
Z_{*}(n) \leq \frac{\sqrt{8 n+1}-1}{2} \text { for all } n \tag{12}
\end{equation*}
$$

Proof. The definition (3) implies with $Z_{*}(n)=m$ that $\left.\frac{m(m+1)}{2} \right\rvert\, n$, so $\frac{m(m+1)}{2} \leq n$, i.e. $m^{2}+m-2 n \leq 0$. Resolving this inequality in the unknown m, easily follows (12). Inequality (12) cannot be improved since for $n=\frac{p(p+1)}{2}$ (thus for infinitely many n) we have equality. Indeed,

$$
\left(\sqrt{\frac{8(p+1) p}{2}+1}-1\right) / 2=(\sqrt{4 p(p+1)+1}-1) / 2=[(2 p+1)-1] / 2=p
$$

Corollary.

$$
\begin{equation*}
\varliminf_{n \rightarrow \infty} \frac{Z_{*}(n)}{\sqrt{n}}=0, \quad \varlimsup_{n \rightarrow \infty} \frac{Z_{*}(n)}{\sqrt{n}}=\sqrt{2} . \tag{13}
\end{equation*}
$$

Proof. While the first limit is trivial (e.g. for $n=$ prime), the second one is a consequence of (12). Indeed, (12) implies $Z_{*}(n) / \sqrt{n} \leq \sqrt{2}\left(\sqrt{1+\frac{1}{8 n}}-\sqrt{\frac{1}{8 n}}\right)$, i.e. $\varlimsup_{n \rightarrow \infty} \frac{Z_{*}(n)}{\sqrt{n}} \leq \sqrt{2}$. But this upper limit is exact for $n=\frac{p(p+1)}{2}(p \rightarrow \infty)$.

Similar and other relations on the functions S and Z can be found in [4-5].
An inequality connecting $S_{*}(a b)$ with $S_{*}(a)$ and $S_{*}(b)$ appears in [3]. A similar result holds for the functions Z and Z_{*}.

Proposition 7. For all $a, b \geq 1$ one has

$$
\begin{equation*}
Z_{*}(a b) \geq \max \left\{Z_{*}(a), Z_{*}(b)\right\}, \tag{14}
\end{equation*}
$$

$$
\begin{equation*}
Z(a b) \geq \max \{Z(a), Z(b)\} \geq \max \left\{Z_{*}(a), Z_{*}(b)\right\} \tag{15}
\end{equation*}
$$

Proof. If $m=Z_{*}(a)$, then $\left.\frac{m(m+1)}{2} \right\rvert\, a$. Since $a \mid a b$ for all $b \geq 1$, clearly $\left.\frac{m(m+1)}{2} \right\rvert\, a b$, implying $Z_{*}(a b) \geq m=Z_{*}(a)$. In the same manner, $Z_{*}(a b) \geq Z_{*}(b)$, giving (14).

Let now $k=Z(a b)$. Then, by (4) we can write $a b \left\lvert\, \frac{k(k+1)}{2}\right.$. By $a \mid a b$ it results $a \left\lvert\, \frac{k(k+1)}{2}\right.$, implying $Z(a) \leq k=Z(a b)$. Analogously, $Z(b) \leq Z(a b)$, which via (9) gives (15).

Corollary. $Z_{*}\left(3^{s} \cdot p\right) \geq 2$ for any integer $s \geq 1$ and any prime p.
Indeed, by (14), $Z_{*}\left(3^{s} \cdot p\right) \geq \max \left\{Z_{*}\left(3^{s}\right), Z(p)\right\}=\max \{2,1\}=2$, by (6).
We now consider two irrational series.
Proposition 8. The series $\sum_{n=1}^{\infty} \frac{Z_{*}(n)}{n!}$ and $\sum_{n=1}^{\infty} \frac{(-1)^{n-1} Z_{*}(n)}{n!}$ are irrational.
Proof. For the first series we apply the following irrationality criterion ([6]). Let (v_{n}) be a sequence of nonnegative integers such that
(i) $v_{n}<n$ for all large n;
(ii) $v_{n}<n-1$ for infinitely many n;
(iii) $v_{n}>0$ for infinitely many n.

Then $\sum_{n=1}^{\infty} \frac{v_{n}}{n!}$ is irrational.
Let $v_{n}=Z_{*}(n)$. Then, by (12) $Z_{*}(n)<n-1$ follows from $\frac{\sqrt{8 n+1}-1}{2}<n-1$, i.e. (after some elementary fact, which we omit here) $n>3$. Since $Z_{z}(n) \geq 1$, conditions (i)-(iii) are trivially satisfied.

For the second series we will apply a criterion from [7]:
Let $\left(a_{k}\right),\left(b_{k}\right)$ be sequences of positive integers such that
(i) $k \mid a_{1} a_{2} \ldots a_{k}$;
(ii) $\frac{b_{k+1}}{a_{k+1}}<b_{k}<a_{k}\left(k \geq k_{0}\right)$. Then $\sum_{k=1}^{\infty}(-1)^{k-1} \frac{b_{k}}{a_{1} a_{2} \ldots a_{k}}$ is irrational.

Let $a_{k}=k, b_{k}=Z_{*}(k)$. Then (i) is trivial, while (ii) is $\frac{Z_{*}(k+1)}{k+1}<Z_{*}(k)<k$. Here $Z_{*}(k)<k$ for $k \geq 2$. Further $Z_{*}(k+1)<(k+1) Z_{*}(k)$ follows by $1 \leq Z_{*}(k)$ and $Z_{*}(k+1)<k+1$.

References

[1] C. Ashbacker, An introduction to the Smarandache function, Erhus Univ. Press, Vail, AZ, 1995.
[2] R.K. Guy, Unsolved problems in number theory, Springer-Verlag, Second Ed., 1994.
[3] J. Sándor, On certain generalizations of the Smarandache function, Notes Numb. Theory Discr. Math. 5(1999), No.2, 41-51.
[4] J. Sándor, A note on two arithemtic functions, Octogon Math. Mag. vol.8(2000), No.2, 522-524.
[5] J. Sándor, On the Open Problem OQ.354, Octogon Math. Mag. vol.8(2000), No.2, 524-525.
[6] J. Sándor, Irrational numbers (Romanian), Univ. Timişoara, 1987, pp.1-18.
[7] J. Sándor, On the irrationality of some alternating series, Studia Univ. Babeş-Bolyai 33(1988), 8-12.

