On a dual of the Pseudo-Smarandache function

József Sándor

Babeş-Bolyai University, 3400 Cluj-Napoca, Romania

1 Introduction

In paper [3] we have defined certain generalizations and extensions of the Smarandache function. Let $f: \mathbb{N}^* \to \mathbb{N}^*$ be an arithmetic function with the following property: for each $n \in \mathbb{N}^*$ there exists at least a $k \in \mathbb{N}^*$ such that n|f(k). Let

$$F_f: \mathbb{N}^* \to \mathbb{N}^* \text{ defined by } F_f(n) = \min\{k \in \mathbb{N}^*: n | f(k)\}.$$
 (1)

This function generalizes many particular functions. For f(k) = k! one gets the Smarandache function, while for $f(k) = \frac{k(k+1)}{2}$ one has the Pseudo-Smarandache function Z (see [1], [4-5]). In the above paper [3] we have defined also dual arithmetic functions as follows: Let $g: \mathbb{N}^* \to \mathbb{N}^*$ be a function having the property that for each $n \geq 1$ there exists at least a $k \geq 1$ such that g(k)|n.

Let

$$G_g(n) = \max\{k \in \mathbb{N}^*: g(k)|n\}. \tag{2}$$

For g(k) = k! we obtain a dual of the Smarandache function. This particular function, denoted by us as S_* has been studied in the above paper. By putting $g(k) = \frac{k(k+1)}{2}$ one obtains a dual of the Pseudo-Smarandache function. Let us denote this function, by analogy by Z_* . Our aim is to study certain elementary properties of this arithmetic function.

2 The dual of yhe Pseudo-Smarandache function

Let

$$Z_*(n) = \max\left\{m \in \mathbb{N}^*: \frac{m(m+1)}{2}|n\right\}. \tag{3}$$

Recall that

$$Z(n) = \min\left\{k \in \mathbb{N}^* : n \middle| \frac{k(k+1)}{2}\right\}. \tag{4}$$

First remark that

$$Z_*(1) = 1$$
 and $Z_*(p) = \begin{cases} 2, & p = 3 \\ 1, & p \neq 3 \end{cases}$ (5)

where p is an arbitrary prime. Indeed, $\frac{2\cdot 3}{2}=3|3$ but $\frac{m(m+1)}{2}|p$ for $p\neq 3$ is possible only for m=1. More generally, let $s\geq 1$ be an integer, and p a prime. Then:

Proposition 1.

$$Z_{*}(p^{s}) = \begin{cases} 2, & p = 3\\ 1, & p \neq 3 \end{cases}$$
 (6)

Proof. Let $\frac{m(m+1)}{2}|p^s$. If m=2M then $M(2M+1)|p^s$ is impossible for M>1 since M and 2M+1 are relatively prime. For M=1 one has m=2 and $3|p^s$ only if p=3. For m=2M-1 we get $(2M-1)M|p^k$, where for M>1 we have (M,2M-1)=1 as above, while for M=1 we have m=1.

The function Z_* can take large values too, since remark that for e.g. $n \equiv 0 \pmod{6}$ we have $\frac{3\cdot 4}{2} = 6|n$, so $Z_*(n) \geq 3$. More generally, let a be a given positive integer and n selected such that $n \equiv 0 \pmod{2a+1}$. Then

$$Z_*(n) \ge 2a. \tag{7}$$

Indeed, $\frac{2a(2a+1)}{2} = a(2a+1)|n$ implies $Z_*(n) \ge 2a$.

A similar situation is in

Proposition 2. Let q be a prime such that p = 2q - 1 is a prime, too. Then

$$Z_{*}(pq) = p. \tag{8}$$

Proof. $\frac{p(p+1)}{2} = pq$ so clearly $Z_*(pq) = p$.

Remark. Examples are $Z_*(5\cdot 3) = 5$, $Z_*(13\cdot 7) = 13$, etc. It is a difficult open problem that for infinitely many q, the number p is prime, too (see e.g. [2]).

Proposition 3. For all $n \ge 1$ one has

$$1 \le Z_*(n) \le Z(n). \tag{9}$$

Proof. By (3) and (4) we can write $\frac{m(m+1)}{2}|n|\frac{k(k+1)}{2}$, therefore m(m+1)|k(k+1). If m > k then clearly m(m+1) > k(k+1), a contradiction.

Corollary. One has the following limits:

$$\underline{\lim_{n\to\infty}} \frac{Z_{\star}(n)}{Z(n)} = 0, \quad \overline{\lim_{n\to\infty}} \frac{Z_{\star}(n)}{Z(n)} = 1.$$
 (10)

Proof. Put n = p (prime) in the first relation. The first result follows by (6) for s = 1 and the well-known fact that Z(p) = p. Then put $n = \frac{a(a+1)}{2}$, when $\frac{Z_*(n)}{Z(n)} = 1$ and let $a \to \infty$.

As we have seen,

$$Z\left(\frac{a(a+1)}{2}\right) = Z_*\left(\frac{a(a+1)}{2}\right) = a.$$

Indeed, $\frac{a(a+1)}{2} \left| \frac{k(k+1)}{2} \right|$ is true for k=a and is not true for any k < a. In the same manner, $\frac{m(m+1)}{2} \left| \frac{a(a+1)}{2} \right|$ is valied for m=a but not for any m>a. The following problem arises: What are the solutions of the equation $Z(n)=Z_*(n)$?

Proposition 4. All solutions of equation $Z(n) = Z_*(n)$ can be written in the form $n = \frac{r(r+1)}{2}$ $(r \in \mathbb{N}^*)$.

Proof. Let $Z_*(n) = Z(n) = t$. Then $n | \frac{t(t+1)}{2} | n$ so $\frac{t(t+1)}{2} = n$. This gives $t^2 + t - 2n = 0$ or $(2t+1)^2 = 8n+1$, implying $t = \frac{\sqrt{8n+1}-1}{2}$, where $8n+1 = m^2$. Here m must be odd, let m = 2r+1, so $n = \frac{(m-1)(m+1)}{8}$ and $t = \frac{m-1}{2}$. Then m-1 = 2r, m+1 = 2(r+1) and $n = \frac{r(r+1)}{2}$.

Proposition 5. One has the following limits:

$$\lim_{n \to \infty} \sqrt[n]{Z_{\star}(n)} = \lim_{n \to \infty} \sqrt[n]{Z(n)} = 1. \tag{11}$$

Proof. It is known that $Z(n) \leq 2n-1$ with equality only for $n=2^k$ (see e.g. [5]). Therefore, from (9) we have

$$1 \le \sqrt[n]{Z_*(n)} \le \sqrt[n]{Z(n)} \le \sqrt[n]{2n-1},$$

and by taking $n \to \infty$ since $\sqrt[n]{2n-1} \to 1$, the above simple result follows.

As we have seen in (9), upper bounds for Z(n) give also upper bounds for $Z_*(n)$. E.g. for n = odd, since $Z(n) \leq n - 1$, we get also $Z_*(n) \leq n - 1$. However, this upper bound is too large. The optimal one is given by:

Proposition 6.

$$Z_{\star}(n) \le \frac{\sqrt{8n+1}-1}{2} \text{ for all } n. \tag{12}$$

Proof. The definition (3) implies with $Z_*(n) = m$ that $\frac{m(m+1)}{2} | n$, so $\frac{m(m+1)}{2} \le n$, i.e. $m^2 + m - 2n \le 0$. Resolving this inequality in the unknown m, easily follows (12). Inequality (12) cannot be improved since for $n = \frac{p(p+1)}{2}$ (thus for infinitely many n) we have equality. Indeed,

$$\left(\sqrt{\frac{8(p+1)p}{2}+1}-1\right)/2=\left(\sqrt{4p(p+1)+1}-1\right)/2=[(2p+1)-1]/2=p.$$

Corollary.

$$\underline{\lim_{n \to \infty} \frac{Z_*(n)}{\sqrt{n}}} = 0, \quad \overline{\lim_{n \to \infty} \frac{Z_*(n)}{\sqrt{n}}} = \sqrt{2}.$$
 (13)

Proof. While the first limit is trivial (e.g. for n = prime), the second one is a consequence of (12). Indeed, (12) implies $Z_*(n)/\sqrt{n} \leq \sqrt{2} \left(\sqrt{1 + \frac{1}{8n}} - \sqrt{\frac{1}{8n}} \right)$, i.e. $\overline{\lim_{n \to \infty} \frac{Z_*(n)}{\sqrt{n}}} \leq \sqrt{2}$. But this upper limit is exact for $n = \frac{p(p+1)}{2}$ $(p \to \infty)$.

Similar and other relations on the functions S and Z can be found in [4-5].

An inequality connecting $S_*(ab)$ with $S_*(a)$ and $S_*(b)$ appears in [3]. A similar result holds for the functions Z and Z_* .

Proposition 7. For all $a, b \ge 1$ one has

$$Z_*(ab) \ge \max\{Z_*(a), Z_*(b)\},$$
 (14)

$$Z(ab) \ge \max\{Z(a), Z(b)\} \ge \max\{Z_*(a), Z_*(b)\}. \tag{15}$$

Proof. If $m = Z_*(a)$, then $\frac{m(m+1)}{2}|a$. Since a|ab for all $b \ge 1$, clearly $\frac{m(m+1)}{2}|ab$, implying $Z_*(ab) \ge m = Z_*(a)$. In the same manner, $Z_*(ab) \ge Z_*(b)$, giving (14).

Let now k = Z(ab). Then, by (4) we can write $ab | \frac{k(k+1)}{2}$. By a|ab it results $a | \frac{k(k+1)}{2}$, implying $Z(a) \le k = Z(ab)$. Analogously, $Z(b) \le Z(ab)$, which via (9) gives (15).

Corollary.
$$Z_*(3^s \cdot p) \ge 2$$
 for any integer $s \ge 1$ and any prime p . (16)

Indeed, by (14), $Z_*(3^s \cdot p) \ge \max\{Z_*(3^s), Z(p)\} = \max\{2, 1\} = 2$, by (6).

We now consider two irrational series.

Proposition 8. The series
$$\sum_{n=1}^{\infty} \frac{Z_*(n)}{n!}$$
 and $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}Z_*(n)}{n!}$ are irrational.

Proof. For the first series we apply the following irrationality criterion ([6]). Let (v_n) be a sequence of nonnegative integers such that

- (i) $v_n < n$ for all large n;
- (ii) $v_n < n-1$ for infinitely many n;
- (iii) $v_n > 0$ for infinitely many n.

Then
$$\sum_{n=1}^{\infty} \frac{v_n}{n!}$$
 is irrational.

Let $v_n = Z_*(n)$. Then, by (12) $Z_*(n) < n-1$ follows from $\frac{\sqrt{8n+1}-1}{2} < n-1$, i.e. (after some elementary fact, which we omit here) n > 3. Since $Z_*(n) \ge 1$, conditions (i)-(iii) are trivially satisfied.

For the second series we will apply a criterion from [7]:

Let (a_k) , (b_k) be sequences of positive integers such that

(i) $k|a_1a_2\ldots a_k;$

(ii)
$$\frac{b_{k+1}}{a_{k+1}} < b_k < a_k \ (k \ge k_0)$$
. Then $\sum_{k=1}^{\infty} (-1)^{k-1} \frac{b_k}{a_1 a_2 \dots a_k}$ is irrational.

Let $a_k = k$, $b_k = Z_*(k)$. Then (i) is trivial, while (ii) is $\frac{Z_*(k+1)}{k+1} < Z_*(k) < k$. Here $Z_*(k) < k$ for $k \ge 2$. Further $Z_*(k+1) < (k+1)Z_*(k)$ follows by $1 \le Z_*(k)$ and $Z_*(k+1) < k+1$.

References

- [1] C. Ashbacker, An introduction to the Smarandache function, Erhus Univ. Press, Vail, AZ, 1995.
- [2] R.K. Guy, Unsolved problems in number theory, Springer-Verlag, Second Ed., 1994.
- [3] J. Sándor, On certain generalizations of the Smarandache function, Notes Numb. Theory Discr. Math. 5(1999), No.2, 41-51.
- [4] J. Sándor, A note on two arithemtic functions, Octogon Math. Mag. vol.8(2000), No.2, 522-524.
- [5] J. Sándor, On the Open Problem OQ.354, Octogon Math. Mag. vol.8(2000), No.2, 524-525.
- [6] J. Sándor, Irrational numbers (Romanian), Univ. Timişoara, 1987, pp.1-18.
- [7] J. Sándor, On the irrationality of some alternating series, Studia Univ. Babeş-Bolyai 33(1988), 8-12.