On an inequality for the Smarandache function

J. Sándor

Babeş-Bolyai University, 3400 Cluj-Napoca, Romania

1. In paper [2] the author proved among others the inequality $S(a b) \leq a S(b)$ for all a, b positive integers. This was refined to

$$
\begin{equation*}
S(a b) \leq S(a)+S(b) \tag{1}
\end{equation*}
$$

in [1]. Our aim is to show that certain results from our recent paper [3] can be obtained in a simpler way from a generalization of relation (1). On the other hand, by the method of Le [1] we can deduce similar, more complicated inequalities of type (1).
2. By mathematical induction we have from (1) immediately:

$$
\begin{equation*}
S\left(a_{1} a_{2} \ldots a_{n}\right) \leq S\left(a_{1}\right)+S\left(a_{2}\right)+\ldots+S\left(a_{n}\right) \tag{2}
\end{equation*}
$$

for all integers $a_{i} \geq 1(i=1, \ldots, n)$. When $a_{1}=\ldots=a_{n}=n$ we obtain

$$
\begin{equation*}
S\left(a^{n}\right) \leq n S(a) . \tag{3}
\end{equation*}
$$

For three applications of this inequality, remark that

$$
\begin{equation*}
S\left((m!)^{n}\right) \leq n S(m!)=n m \tag{4}
\end{equation*}
$$

since $S(m!)=m$. This is inequality 3) part 1 . from [3]. By the same way, $S\left((n!)^{(n-1)!}\right) \leq$ $(n-1)!S(n!)=(n-1)!n=n!$, i.e.

$$
\begin{equation*}
S\left((n!)^{(n-1)!}\right) \leq n! \tag{5}
\end{equation*}
$$

Inequality (5) has been obtained in [3] by other arguments (see 4) part 1.).
Finally, by $S\left(n^{2}\right) \leq 2 S(n) \leq n$ for n even (see [3], inequality 1), $n>4$, we have obtained a refinement of $S\left(n^{2}\right) \leq n$:

$$
\begin{equation*}
S\left(n^{2}\right) \leq 2 S(n) \leq n \tag{6}
\end{equation*}
$$

for $n>4$, even.
3. Let m be a divisor of n, i.e. $n=k m$. Then (1) gives $S(n)=S(k m) \leq S(m)+S(k)$, so we obtain:

If $m \mid n$, then

$$
\begin{equation*}
S(n)-S(m) \leq S\left(\frac{n}{m}\right) \tag{7}
\end{equation*}
$$

As an application of (7), let $d(n)$ be the number of divisors of n. Since $\prod_{k ; n} k=n^{d(n) / 2}$, and $\prod_{k \leq n} k=n$! (see [3]), and by $\prod_{k \mid n} k \prod_{k \leq n} k$, from (7) we can deduce that

$$
\begin{equation*}
S\left(n^{d(n) / 2}\right)+S\left(n!/ n^{d(n) / 2}\right) \geq n . \tag{8}
\end{equation*}
$$

This improves our relation (10) from [3].
4. Let $S(a)=u \cdot S(b)=v$. Then $b \mid v!$ and $u!\mid x(x-1) \ldots(x-u+1)$ for all integers $x \geq u$. But from $a \mid u$! we have $a \mid x(x-1) \ldots(x-u+1)$ for all $x \geq u$. Let $x=u+v+k(k \geq 1)$. Then, clearly $a b(v+1) \ldots(v+k) \mid(u+v+k)!$, so we have $S[a b(v+1) \ldots(v+k)] \leq u+v+k$. Here $v=S(b)$, so we have obtained that

$$
\begin{equation*}
S[a b(S(b)+1) \ldots(S(b)+k)] \leq S(a)+S(b)+k \tag{9}
\end{equation*}
$$

For example, for $k=1$ one has

$$
\begin{equation*}
S[a b(S(b)+1)] \leq S(a)+S(b)+1 . \tag{10}
\end{equation*}
$$

This is not a consequence of (2) for $n=3$, since $S[S(b)+1]$ may be much larger than 1 .

References

[1] M. Le, An inequality concerning the Smarandache function, Smarandache Notions J., vol. 9(199S), 124-12.5.
[2] J. Sándor, On certain inequalities involving the Smarandache function, Smarandache Notions J., vol. 7(1996), 3-6.
[3] J. Sándor, On certain new inequalities and limits for the Smarandache function, Smarandache Notions J., vol. 9(1998), 63-69.

