On certain new inequalities and limits for the Smarandache function

József Sándor

Department of Mathematics, Babes-Bolyai University, 3400 Cluj - Napoca, Romania

I. Inequalities

- 1) If $n \ge 4$ is an even number, then $S(n) \le \frac{n}{2}$.
- -Indeed, $\frac{n}{2}$ is integer, $\frac{n}{2} > 2$, so in $(\frac{n}{2})! = 1 \cdot 2 \cdot 3 \cdots \frac{n}{2}$ we can simplify with 2, so $n \mid (\frac{n}{2})!$.

 This simplies clearly that $S(n) \leq \frac{n}{2}$.
- 2) If n > 4 is an even number, then $S(n^2) \le n$
- —By $n! = 1 \cdot 2 \cdot 3 \cdot \cdot \cdot \frac{n}{2} \cdot \cdot \cdot n$, since we can simplify with 2, for n > 4 we get that $n^2 | n!$. This clearly implies the above stated inequality. For factorials, the above inequality can be much improved, namely one has:
- 3) $S((m!)^2) \le 2m$ and more generally, $S((m!)^n) \le n \cdot m$ for all positive integers m and n.

-First remark that
$$\frac{(m\,n)!}{(m!\,)^n} = \frac{(m\,n)!}{m!\,(mn-m)!} \cdot \frac{(mn-m)!}{m!\,(mn-2m)!} \cdot \cdot \cdot \cdot \frac{(2m)!}{m!\cdot m!} =$$

= $C_{2m}^m \cdot C_{3m}^m \cdot C_{nm}^m$, where $C_n^k = \binom{n}{k}$ denotes a binomial coefficient. Thus $(m!)^n$ divides $(m \ n)!$, implying the stated inequality. For n = 2 one obtains the first part.

- 4) Let n > 1. Then $S((n!)^{(n-1)!}) \le n!$
- —We will use the well-known result that the product of n consecutive integers is divisible by

$$n!$$
. By $(n!)! = 1 \cdot 2 \cdot 3 \cdot \cdot \cdot n \cdot ((n+1)(n+2) \cdot \cdot \cdot 2n) \cdot \cdot \cdot ((n-1)!-1) \cdot \cdot \cdot ((n-1)! n)$

each group is divisible by n!, and there are (n-1)! groups, so $(n!)^{(n-1)!}$ divides (n!)!. This gives the stated inequality.

5) For all m and n one has $[S(m), S(n)] \leq S(m \cdot S(n)) \leq [m, n]$, where [a, b] denotes the

 $\ell \cdot c \cdot m$ of a and b.

-If $m = \prod_{Pi}^{ai}$, $n = \prod_{Qj}^{bj}$ are the canonical representations of m, resp. n, then it is well-known that $S(m) = S\binom{ai}{Pi}$ and $S(n) = S(q_j^{bj})$, where $S\binom{ai}{Pi} = \max\left\{S\binom{ai}{Pi}: i = 1, \dots, r\right\}$; $S(q_j^{bj}) = \max\left\{S(q_j^{bj}): j = 1, \dots, h\right\}$, with r and h the number of prime divisors of m, resp. n. Then clearly $[S(m), S(n)] \leq S(m) \cdot S(n) \leq P_i^{ai} \cdot q_j^{bj} \leq [m, n]$

6)
$$\left(\underline{S(m)},\underline{S(n)}\right) \geq \frac{\underline{S(m)}\cdot\underline{S(n)}}{mn}\cdot\underline{(m,n)}$$
 for all m and n

-Since
$$(S(m), S(m)) = \frac{S(m) \cdot S(n)}{[S(m), S(n)]} \ge \frac{S(m) \cdot S(n)}{[m, n]} = \frac{S(m) \cdot S(n)}{n m} \cdot (m, n)$$

by 5) and the known formula $[m,n] = \frac{mn}{(m,n)}$.

7)
$$\frac{\left(S(m), S(n)\right)}{(m, n)} \ge \left(\frac{S(mn)}{mn}\right)^2$$
 for all m and n

—Since $S(mn) \le m S(n)$ and $S(mn) \le n S(m)$ (See [1]), we have $\left(\frac{S(mn)}{mn}\right)^2 \le \frac{S(m) S(n)}{mn}$, and the result follows by 6).

8) We have
$$\left(\frac{S(mn)}{mn}\right)^2 \le \frac{S(m)S(n)}{mn} \le \frac{1}{(mn)}$$

—This follows by 7) and the stronger inequality from 6), namely S(m) $S(n) \le [m \ n] = \frac{mn}{(m,n)}$ Corollary $S(m \ n) \le \frac{mn}{\sqrt{mn}}$

9) Max $\{S(m), S(n)\} \ge \frac{S(mn)}{(mn)}$ for all m, n; where (m,n) denotes the $g \cdot c \cdot d$ of m and n.

—We apply the known result: max $\{S(m), S(n)\} = S([m, n])$ On the other hand, since $[m, n] \mid m \cdot n$, by Corollary 1 from our paper [1] we get $\frac{S(mn)}{mn} \le \frac{S([m, n])}{[m, n]}$.

Since $[m, n] = \frac{mn}{(m, n)}$,

The result follows:

Remark. Inequality g) compliments Theorem 3 from [1], namely that max $\{S(m), S(n)\} \leq S(m n)$.

- 10) Let d(n) be the number of divisors of n. Then $\frac{S(n!)}{n!} \leq \frac{S(n^{d(n)/2})}{n^{d(n)/2}}$
- —We will use the known relation $\prod_{k|n} k = n^{d(n)/2}$, where the product is extended over all divisors k of n. Since this product divides $\prod_{k < n} k = n!$, by Corollary 1 from [1] we can write

$$\frac{S(n!)}{n!} \le \frac{S(\prod k)}{\prod k \choose k}$$
, which gives the desired result.

Remark If n is of the form m^2 , then d(n) is odd, but otherwise d(n) is even. So, in each case $n^{d(n)/2}$ is a positive integer.

- 11) For infinitely many n we have S(n+1) < S(n), but for infinitely many m one has S(m+1) > S(m).
- —This is a simple application of 1). Indeed, let n = p 1, where $p \ge 5$ is a prime. Then, by
- 1) we have $S(n) = S(p-1) \le \frac{p-1}{2} < p$. Since p = S(p), we have S(p-1) < S(p).

Let in the same manner n = p + 1. Then, as above, $S(p + 1) \le \frac{p+1}{2} .$

- 12) Let p be a prime. Then S(p!+1) > S(p!) and S(p!-1) > S(p!)
- —Clearly, S(p!)=p. Let $p!+1=\prod q_j^{\partial j}$ be the prime factorization of p!+1. Here each $q_j>p$, thus $S(p!+1)=S(q_j^{\partial j})$ (for certain $j)\geq S(p^{\partial j})\geq S(p)=p$. The same proof applies to the case p!-1.

Remark: This offers a new proof for M).

- 13) Let P_k be the kth prime number. Then $S(p_1p_2...P_k+1) > S(p_1p_2...P_k)$ and -3- $S(p_1p_2...P_k-1) > S(p_1p_2...P_k)$
- —Almost the same proof as in 12) is valid, by remarking that $S(p_1p_2\cdots P_k) = P_k$ (since $p_1 < p_2 < \cdots < p_k$).
- 14) For infinitely many n one has $\left(S(n)^2\right) < S(n-1) \cdot S(n+1)$ and for infinitely many m, $\left(S(m)\right)^2 > S(m-1) \cdot S(m+1)$.

—By S(p+1) < p and S(p-1) < p (See the proof in 11) we have

$$\frac{S(p+1)}{S(p)} < \frac{S(p)}{S(p)} < \frac{S(p)}{S(p-1)}$$
 . Thus $\left(S(p)\right)^2 > S(p-1) \cdot S(p+1)$.

On the other hand, by putting $x_n = \frac{S(n+1)}{S(n)}$, we shall see in part II,

that $\lim_{n \to \infty} \sup x_n = +\infty$. Thus $x_{n-1} < x_n$ for infinitely many n, giving

$$\left(S(n)\right)^2 < S(n-1) \cdot S(n+1).$$

II. Limits:

1)
$$\lim_{n\to\infty}\inf\frac{S(n)}{n}=0 \text{ and } \lim_{n\to\infty}\sup\frac{S(n)}{n}=1$$

-Clearly, $\frac{S(n)}{n} > 0$. Let $n = 2^m$. Then, since $S(2^m) \le 2m$, and $\lim_{m \to \infty} \frac{2m}{2m} = 0$, we have

 $\lim_{m\to\infty}\frac{S(2^m)}{2^m}=0$, proving the first part. On the other hand, it is well known that $\frac{S(n)}{n}\leq 1$.

For $n = p_k$ (the kth prime), one has $\frac{S(p_k)}{p_k} = 1 \to 1$ as $k \to \infty$, proving the second part.

<u>Remark:</u> With the same proof, we can derive that $\lim_{n\to\infty}\inf\frac{S(n^r)}{n}=0$ for all integers r.

—As above $S(2^{kr}) \leq 2kr$, and $\frac{2kr}{2^k} \to 0$ as $k \to \infty$ (r fixed), which gives the result.

2)
$$\lim_{n\to\infty} \inf \frac{S(n+1)}{S(n)} = 0 \text{ and } \lim_{n\to\infty} \sup \frac{S(n+1)}{S(n)} = +\infty$$

-Let p_r denote the rth prime. Since $(p_{\Lambda}...p_r,1)=1$, Dirichlet's theorem on arithmetical progressions assures the existence of a prime p of the form $p=a\cdot p_{\Lambda}...p_r-1$.

$$\operatorname{Then} S(p+1) = S(ap_{\Lambda} \cdots p_{\tau}) \leq \ a \cdot S(p_{\Lambda} \cdots p_{\tau}) \ by \ S(mn) \leq mS(n) \ \Big(\operatorname{see} \ [1] \Big)$$

But
$$S(p_{\Lambda}\cdots p_{\tau})=\max\left\{p_{\Lambda},\cdots,\ p_{\tau}\right\}=p_{\tau}.$$
 Thus $\frac{S(p+1)}{S(p)}\leq\frac{ap_{\tau}}{ap_{\Lambda}\cdots p_{\tau}-1}\leq$

$$\frac{p_r}{p_{\Lambda}...p_r-1} \to 0$$
 as $r \to \infty$. This gives the first part.

Let now p be a prime of the form $p = bp_{\Lambda} \cdots p_{r} + 1$.

Then $S(p-1)=S(bp_{\Lambda}\cdots p_{\tau})\leq b\,S(p_{\Lambda}\cdots p_{\tau})=b\cdot p_{\tau},$

and $\frac{S(p-1)}{S(p)} \le \frac{bp_r}{bp_1\cdots p_r+1} \le \frac{p_r}{p_\Lambda\cdots p_r} \to 0$ as $r \to \infty$.

3) $\lim_{n\to\infty}\inf\left[S(n+1)-S(n)\right]=\\ -\infty \text{ and } \lim_{m\to\infty}\sup\left[S(n+1)-S(n)\right]=\\ +\infty$

—We have $S(p+1)-S/p) \leq \frac{p+1}{2}-p = \frac{-p+1}{2} \to -\infty$ for an odd prime

p (see 1) and 11)). On the other hand, $S(p) - S(p-1) \ge p - \frac{p-1}{2} = \frac{p+1}{2} \to \infty$

(Here S(p) = p), where p - 1 is odd for $p \ge 5$. This finishes the proof.

- 4) Let $\sigma(n)$ denotes the sum of divisors of n. Then $\lim_{n\to\infty}\inf\frac{S(\sigma(n))}{n}=0$
- —This follows by the argument of 2) for n = p. Then $\sigma(\varphi) = p + 1$ and $\frac{S(p+1)}{p} \to 0$, where $\{p\}$ is the sequence constructed there.
- 5) Let $\varphi(n)$ be the Enter totient function. Then $\liminf_{n\to\infty} \frac{S(\varphi(n))}{n} = 0$

-Let the set of primes $\{p\}$ be defined as in 2). Since $\varphi(n)=p-1$ and $\frac{S(p-1)}{p}=\frac{S(p-1)}{S(p)}\to 0$, the assertion is proved. The same result could be obtained by taking $n=z^k$. Then, since $\varphi(2^k)=2^{k-1}$, and $\frac{S(2^{k-1})}{2^k}\leq \frac{2\cdot (k-1)}{2^k}\to o$ as $k\to\infty$, the assertion follows:

6) $\lim_{n\to\infty}\inf\frac{S(S(n))}{n}=0 \text{ and } \max_{n\in\mathbb{N}}\frac{S(S(n))}{n}=1.$

—Let n = p! (p prime). Then, since S(p!) = p and S(p) = p, from $\frac{p}{p!} \to 0 (p \to \infty)$

we get the first result. Now, clearly $\frac{S\left(S(n)\right)}{n} \leq \frac{S(n)}{n} \leq 1$. By letting n = p (prime), clearly one has $\frac{S\left(S(p)\right)}{p} = 1$, which shows the second relation.

7) $\lim_{n \to \infty} \inf \frac{\sigma(S(n))}{S(n)} = 1.$

—Clearly,
$$\frac{\sigma(k)}{k} > 1$$
. On the other hand, for $n = p$ (prime), $\frac{\sigma\left(S(p)\right)}{S(p)} = \frac{p+1}{p} \to 1$ as $p \to \infty$.

8) Let
$$Q(n)$$
 denote the greatest prime power divisor of n . Then $\lim_{n\to\infty}\inf\frac{\varphi\left(S(n)\right)}{\partial(n)}=0$.

—Let
$$n=p_1^k\cdots p_r^k$$
 $(k>1,$ fixed). Then, clearly $\partial(n)=p_r^k$

By
$$S(n) = S(p_{\tau}^k)$$
 (since $S(p_{\tau}^k) > S(p_i^k)$ for $i < k$) and $S(p_{\tau}^k) = j \cdot p_{\tau}$, with $j \le k$ (which is

known) and by
$$\varphi(j|p_k) \leq j \cdot \varphi(p_r) \leq k(p_r - 1)$$
, we get $\frac{\varphi(S(n))}{\partial(n)} \leq \frac{k \cdot (p_r - 1)}{p_r^*} \to 0$ as $r \to \infty$ (k fixed).

9)
$$\lim_{\substack{m \to \infty \\ m \text{ even}}} \frac{S(m^2)}{m^2} = 0$$

—By 2) we have $\frac{S(m^2)}{m^2} \leq \frac{1}{m}$ for m > 4, even. This clearly inplies the above remark.

Remark. It is known that $\frac{S(m)}{m} \leq \frac{2}{3}$ if $m \neq 4$ is composite. From $\frac{S(m^2)}{m^2} \leq \frac{1}{m} < \frac{2}{3}$ for m > 4, for the composite numbers of the perfect squares we have a very strong improvement.

10)
$$\lim_{n \to \infty} \inf \frac{\sigma(S(n))}{n} = 0$$

—By
$$\sigma(n) = \overline{Z} d = n \overline{Z} \frac{1}{d} \le n \overline{Z} \frac{1}{d} \le n \overline{Z} \frac{1}{d} < n \cdot (2 \log n)$$
, we get $\sigma(n) < 2n \log n$ for $n > 1$. Thus $\frac{\sigma(S(n))}{n} < \frac{2S(n) \log S(n)}{n}$. For $n = 2^k$ we have $S(2^k) \le 2k$, and since $\frac{4k \log 2k}{2^k} \to 0$

 $(k \to \infty)$, the result follows.

11)
$$\lim_{n \to \infty} \sqrt[n]{S(n)} = 1$$

—This simple relation follows by $1 \le S(n) \le n$, so $1 \le \sqrt[n]{S(n)} \le \sqrt[n]{n}$; and by $\sqrt[n]{n} \to 1$ as $n \to \infty$. However, 11) is one of a (few) limits, which exists for the Smarandache function. Finally, we shall prove that:

12)
$$\lim_{n\to\infty} \sup \frac{\sigma(nS(n))}{nS(n)} = +\infty.$$

—We will use the facts that S(p!) = p, $\frac{\sigma(p!)}{p!} = \overline{Z} \frac{1}{d} \ge 1 + \frac{1}{2} + \dots + \frac{1}{p} \to \infty$ as $p \to \infty$, and the inequality $\sigma(ab) \ge a \, \sigma(b)$ (see [2]).

Thus $\frac{\sigma\left(S(p!)p!}{p! \cdot S(p!)} \ge \frac{S(p!) \cdot \sigma(p!)}{p! \cdot p} = \frac{\sigma(p!)}{p!} \to \infty$. Thus, for the sequence $\{n\} = \{p!\}$, the results follows.

References

- [1] <u>J. Sándor</u>. On certain inequalities involving the Smarandache function. Smarandache Notions J. <u>F</u> (1996), 3 6;
- [2] <u>J. Sándor</u>. On the composition of some arithmetic functions. Studia Univ. Babes-Bolyai, 34 (1989), F 14.