On certain new inequalities and limits for the Smarandache function

József Sándor

Department of Mathematics, Babes-Bolyai University, 3400 Cluj - Napoca, Romania

I. Inequalities

1) If $n \geq 4$ is an even number, then $S(n) \leq \frac{n}{2}$.
-Indeed, $\frac{n}{2}$ is integer, $\frac{n}{2}>2$, so in $\left(\frac{n}{2}\right)!=1 \cdot 2 \cdot 3 \cdots \frac{n}{2}$ we can simplify with 2 , so $n \left\lvert\,\left(\frac{n}{2}\right)!\right.$.
This simplies clearly that $S(n) \leq \frac{n}{2}$.
2) If $n>4$ is an even number, then $S\left(n^{2}\right) \leq n$
-By $n!=1 \cdot 2 \cdot 3 \cdots \frac{n}{2} \cdots n$, since we can simplify with 2 , for $n>4$ we get that $n^{2} \mid n!$. This clearly implies the above stated inequality. For factonials, the above inequality can be much improved, namely one has:
3) $\underline{S}\left(\underline{(m!)^{2}}\right) \leq \underline{2 m \text { and more generally, } S}\left((m!)^{n}\right) \leq n \cdot m$ for all positive integers m and n.
-First remark that $\frac{(m n)!}{(m!)^{n}}=\frac{(m n)!}{m!(m n-m)!} \cdot \frac{(m n-m)!}{m!(m n-2 m)!} \cdots \frac{(2 m)!}{m!\cdot m!}=$
$=\mathrm{C}_{2 m}^{m} \cdot \mathrm{C}_{3 m}^{m} \ldots \mathrm{C}_{n m}^{m}$, where $\mathrm{C}_{n}^{k}=\binom{n}{k}$ denotes a binomial coefficient. Thus $(m!)^{n}$ divides ($m n$)!, implying the stated inequality. For $n=2$ one obtains the first part.
4) Let $n>1$. Then $S\left(\underline{\left.(n!)^{(n-1)!}\right) \leq n!}\right.$
-We will use the well-known result that the product of n consecutive integers is divisible by $n!. \operatorname{By}(n!)!=1 \cdot 2 \cdot 3 \cdots n \cdot((n+1)(n+2) \cdots 2 n) \cdots((n-1)!-1) \cdots(n-1)!n$
each group is divisible by $n!$, and there are ($n-1$)! groups, so $(n!)^{(n-1)!}$ divides $(n!)$!. This gives the stated inequality.
5) For all m and n one has $[S(m), S(n)] \leq S(m \cdot S(n) \leq[m, n]$. where $[a, b]$ denotes the

$$
\ell \cdot c \cdot m \text { of } a \text { and } b .
$$

-If $m=\prod_{P_{i}}^{a i}, n=\prod q_{j}^{b j}$ are the canonical representations of m, resp. n, then it is well-known that $S(m)=S\binom{a i}{P_{i}}$ and $S(n)=S\left(q_{j}^{b j}\right)$, where $S\binom{a i}{P_{i}}=\max \left\{S\binom{a i}{P_{i}}: i=1, \cdots, r\right\} ; S\left(q_{j}^{b j}\right)=$ $\max \left\{S\left(q_{j}^{b j}\right): j=1, \cdots, h\right\}$, with r and h the number of prime divisors of m, resp. n. Then clearly $[S(m), S(n)] \leq S(m) \cdot S(n) \leq{ }_{P i}{ }^{a i} \cdot q_{j}^{b j} \leq[m, n]$
6) $(\underline{S}(m), S(n)) \geq \frac{S(m) \cdot S(n)}{m n} \cdot(m, n)$ for all m and n

- Since $(S(m), S(m))=\frac{S(m) \cdot S^{(n)}}{[S(m), S(n)]} \geq \frac{S(m) \cdot S(n)}{[m, n]}=\frac{S(m) \cdot S(n)}{n m} \cdot(m, n)$
by 5) and the known formula $[m, n]=\frac{m n}{(m, n)}$.

7) $\frac{(S(m), S(n))}{(m, n)} \geq\left(\frac{S(m n)}{m n}\right)^{2}$ for all m and n
-Since $S(m n) \leq m S(n)$ and $S(m n) \leq n S(m)\left(\right.$ See [1]), we have $\left(\frac{S(m n)}{m n}\right)^{2} \leq \frac{S(m) S(n)}{m n}$, and the result follows by 6).
8) We have $\left(\frac{S(m n)}{m n}\right)^{2} \leq \frac{S(m) S(n)}{m n} \leq \frac{1}{(m n)}$
-This follows by 7) and the stronger inequality from 6), namely $S(m) S(n) \leq[m n]=\frac{m n}{(m, n)}$
Corollary $S(m n) \leq \frac{m n}{\sqrt{m n}}$
9) $\operatorname{Max}\{S(m), S(n)\} \geq \frac{S(m n)}{(m n)}$ for all m, n; where (m, n) denotes the $g \cdot c \cdot d$ of m and n.
-We apply the known result: $\max \{S(m), S(n)\}=S([m, n])$ On the other hand, since
$[\mathrm{m}, \mathrm{n}] \mid \mathrm{m} \cdot \mathrm{n}$, by Corollary 1 from our paper [1] we get $\frac{S(m n)}{m n} \leq \frac{S(m, n i)}{(m, n]}$.
Since $[m, n]=\frac{m n}{(m, n)}$,
The result follows:
Remark. Inequality g) compliments Theorem 3 from [1],
namely that $\max \{S(m), S(n)\} \leq S(m n)$.
10) Let $d(n)$ be the number of divisors of n. Then $\frac{S(n!)}{n!} \leq \frac{S\left(n^{i(n) / 2}\right)}{n^{d(n) / 2}}$
-We will use the known relation $\prod_{k \mid n} k=n^{d(n) / 2}$, where the product is extended over all divisors k of n. Since this product divides $\prod_{k \leq n} k=n$!, by Corollary 1 from [1] we can write $\frac{S(n!)}{n!} \leq \frac{S\left(\prod_{k / n} k\right)}{\prod_{k / n} k}$, which gives the desired result.
Remark If n is of the form m^{2}, then $d(n)$ is odd, but otherwise $d(n)$ is even. So, in each case $n^{d(n) / 2}$ is a positive integer.
11) For infinitely many n we have $S(n+1)<S(n)$, but for infinitely many m one has

$$
\underline{S(m+1)}>\underline{S(m)}
$$

-This is a simple application of 1). Indeed, let $n=p-1$, where $p \geq 5$ is a prime. Then, by

1) we have $S(n)=S(p-1) \leq \frac{p-1}{2}<p$. Since $p=S(p)$, we have $S(p-1)<S(p)$.

Let in the same manner $n=p+1$. Then, as above, $S(p+1) \leq \frac{\mathrm{P}+1}{2}<p=S(p)$.
12) Let p be a prime. Then $S(p!+1)>S(p!)$ and $S(p!-1)>S(p!)$
-Clearly, $S(p!)=p$. Let $p!+1=\prod q_{j}^{\partial j}$ be the prime factorization of $p!+1$. Here each $q_{j}>p$, thus $S(p!+1)=S\left(q_{j}^{\partial j}\right)$ (for certain $\left.j\right) \geq S\left(p^{\partial j}\right) \geq S(p)=p$. The same proof applies to the case $p!-1$.

Remark: This offers a new proof for M).
13) Let $P_{\underline{k}}$ be the $k t h$ prime number. Then $S\left(p_{1} p_{2} \ldots \underline{P}_{\underline{k}}+1\right)>S\left(p_{1} p_{2} \cdots P_{k}\right)$ and -3-
$\left.\underline{S}\left(p_{1} \underline{p}_{2 \ldots} \underline{P}_{\underline{k}}-1\right)>\underline{S\left(p_{1}\right.} \underline{p}_{\underline{2}} \cdots \underline{P}_{\underline{k}}\right)$
-Almost the same proof as in 12) is valid, by remarking that $S\left(p_{1} p_{2} \cdots P_{k}\right)=P_{k}$ (since
$\left.p_{1}<p_{2}<\cdots<p_{k}\right)$.
14) For infinitely many n one has $\left(\underline{S(n)^{2}}\right)<\underline{S(n-1) \cdot S(n+1) \text { and for infinitely many } m}$ $(\underline{S(m)})^{2}>\underline{S(m-1) \cdot S(m+1)}$.
-By $S(p+1)<p$ and $S(p-1)<p$ (See the proof in 11) we have
$\frac{S(p-1)}{S(p)}<\frac{S(p)}{S(p)}<\frac{S(p)}{S(p-1)}$. Thus $(S(p))^{2}>S(p-1) \cdot S(p+1)$.
On the other hand, by putting $x_{n}=\frac{S(n+1)}{S(n)}$, we shall see in part II, that $\lim _{n \rightarrow \infty} \sup x_{n}=+\infty$. Thus $x_{n-1}<x_{n}$ for infinitely many n, giving
$(S(n))^{2}<S(n-1) \cdot S(n+1)$.
II. Limits:

1) $\quad \lim _{n \rightarrow \infty} \inf \frac{S^{\prime}(n)}{n}=0$ and $\lim _{n \rightarrow \infty} \sup \frac{S_{(n)}}{n}=1$
-Clearly, $\frac{S(n)}{n}>0$. Let $n=2^{m}$. Then, since $S\left(2^{m}\right) \leq 2 m$, and $\lim _{m \rightarrow \infty} \frac{2 m}{2 m}=0$, we have $\lim _{m \rightarrow \infty} \frac{S\left(2^{m}\right)}{2^{m}}=0$, proving the first part. On the other hand, it is well known that $\frac{S(n)}{n} \leq 1$.

For $n=p_{k}$ (the $k t h$ prime), one has $\frac{S\left(p_{k}\right)}{p_{k}}=1 \rightarrow 1$ as $k \rightarrow \infty$, proving the second part.
Remark: With the same proof, we can derive that $\lim _{n \rightarrow \infty} \inf \frac{S\left(n^{r}\right)}{n}=0$ for all integers r.
-As above $S\left(2^{k r}\right) \leq 2 k r$, and $\frac{2 k r}{2^{k}} \rightarrow 0$ as $k \rightarrow \infty(r$ fixed $)$, which gives the result.
2) $\quad \lim _{n \rightarrow \infty} \inf \frac{S(n-1)}{S(n)}=0$ and $\lim _{n \rightarrow \infty} \sup \frac{S(n+1)}{S(n)}=+\infty$
-Let p_{r} denote the r th prime. Since $\left(p_{A} \ldots p_{r}, 1\right)=1$, Dirichlet's theorem on arithmetical progressions assures the existence of a prime p of the form $p=a \cdot p_{A} \ldots p_{\tau}-1$.

Then $S(p+1)=S\left(a p_{\Lambda} \cdots p_{r}\right) \leq a \cdot S\left(p_{\Lambda} \cdots p_{r}\right)$ by $S(m n) \leq m S(n)($ see $[1])$
But $S\left(p_{\Lambda} \cdots p_{\tau}\right)=\max \left\{p_{\Lambda}, \cdots, p_{\tau}\right\}=p_{\tau}$. Thus $\frac{S(p+1)}{S(p)} \leq \frac{a p_{\tau}}{a p_{\Lambda} \cdots p_{\tau}-1} \leq$
$\frac{p_{r}}{p_{1} \ldots p_{r}-1} \rightarrow 0$ as $r \rightarrow \infty$. This gives the first part.
Let now p be a prime of the form $p=b p_{\Lambda} \cdots p_{r}+1$.

Then $S(p-1)=S\left(b p_{1} \cdots p_{\tau}\right) \leq b S\left(p_{\mathrm{A}} \cdots p_{\tau}\right)=b \cdot p_{\tau}$, and $\frac{S(p-1)}{S\left(p_{j}\right)} \leq \frac{b p_{r}}{b p_{1} \cdots p_{r}+1} \leq \frac{p_{-}}{p_{\Lambda} \cdots p_{r}} \rightarrow 0$ as $r \rightarrow \infty$.
3) $\quad \lim _{n \rightarrow \infty} \inf [S(n+1)-S(n)]=-\infty$ and $\lim _{m \rightarrow \infty} \sup [S(n+1)-S(n)]=+\infty$
-We have $S(p+1)-S / p) \leq \frac{p+1}{2}-p=\frac{-p+1}{2} \rightarrow-\infty$ for an odd prime
$p($ see 1$)$ and 11$))$. On the other hand, $S(p)-S(p-1) \geq p-\frac{p-1}{2}=\frac{p+1}{2} \rightarrow \infty$
(Here $S(p)=p$), where $p-1$ is odd for $p \geq 5$. This finishes the proof.
4) Let $\sigma(n)$ denotes the sum of divisors of n. Then $\lim _{n \rightarrow \infty} \inf \frac{S(\sigma(n))}{n}=0$
-This follows by the argument of 2) for $n=p$. Then $\sigma(\varphi)=p+1$ and $\frac{S(p+1)}{p} \rightarrow 0$, where $\{p\}$ is the sequence constructed there.
5) Let $\varphi(n)$ be the Enter totient function. Then $\lim _{n \rightarrow \infty} \inf \frac{s(\varphi(n))}{n}=0$
-Let the set of primes $\{p\}$ be defined as in 2). Since $\varphi(n)=p-1$ and $\frac{S(p-1)}{p}=\frac{S(p-1)}{S(p)} \rightarrow 0$, the assertion is proved. The same result could be obtained by taking $n=z^{k}$. Then, since $\varphi\left(2^{k}\right)=2^{k-1}$, and $\frac{S\left(2^{k-1}\right)}{2^{k}} \leq \frac{2 \cdot(k-1)}{2^{k}} \rightarrow o$ as $k \rightarrow \infty$, the assertion follows:
6) $\quad \lim _{n \rightarrow \infty} \inf \frac{S(S(n))}{n}=0$ and $\max _{n \in \aleph} \frac{S(S(n))}{n}=1$.
-Let $n=p!(p$ prime $)$. Then, since $S(p!)=p$ and $S(p)=p$, from $\frac{p}{p!} \rightarrow 0(p \rightarrow \infty)$
we get the first result. Now, clearly $\frac{S(S(n))}{n} \leq \frac{S(n)}{n} \leq 1$. By letting $n=p$ (prime), clearly one has $\frac{S(S(p))}{p}=1$, which shows the second relation.
7) $\quad \lim _{n \rightarrow \infty} \inf \frac{\sigma(S(n))}{S(n)}=1$.
-Clearly, $\frac{\sigma(k)}{k}>1$. On the other hand, for $n=p$ (prime), $\frac{\sigma(S(p))}{S(p)}=\frac{p+1}{p} \rightarrow 1$ as $p \rightarrow \infty$.
8) Let $\mathrm{Q}(n)$ denote the greatest prime power divisor of n. Then $\lim _{n \rightarrow \infty} \inf \frac{\varphi(S(n))}{\partial(n)}=0$.
-Let $n=p_{1}^{k} \cdots p_{r}^{k}(k>1$, fixed $)$. Then, clearly $\partial(n)=p_{r}^{k}$.
By $S(n)=S\left(p_{r}^{k}\right)\left(\right.$ since $S\left(p_{r}^{k}\right)>S\left(p_{i}^{k}\right)$ for $\left.i<k\right)$ and $S\left(p_{r}^{k}\right)=j \cdot p_{r}$, with $j \leq k$ (which is known) and by $\varphi\left(j p_{k}\right) \leq j \cdot \varphi\left(p_{r}\right) \leq k\left(p_{r}-1\right)$, we get $\frac{\varphi(S(n))}{\partial(n)} \leq \frac{k \cdot\left(p_{r}-1\right)}{p_{r}^{*}} \rightarrow 0$ as $r \rightarrow \infty$ (k fixed).
9) $\quad \lim _{m \rightarrow \infty} \frac{S\left(m^{2}\right)}{m^{2}}=0$
-By 2) we have $\frac{S\left(m^{2}\right)}{m^{2}} \leq \frac{1}{m}$ for $m>4$, even. This clearly inplies the above remark.
Remark. It is known that $\frac{S(m)}{m} \leq \frac{2}{3}$ if $m \neq 4$ is composite. From $\frac{S\left(m^{2}\right)}{m^{2}} \leq \frac{1}{m}<\frac{2}{3}$ for $m>4$, for the composite numbers of the perfect squares we have a very strong improvement.
10) $\lim _{n \rightarrow \infty} \inf \frac{\sigma(S(n))}{n}=0$
$-\operatorname{By} \sigma(\mathrm{n})=\underset{d / n}{\overline{\mathrm{Z}} d}=\underset{d / n}{\bar{Z}} \frac{1}{d} \leq n_{d=1}^{n \bar{Z}} \frac{1}{d}<n \cdot(2 \log n)$, we get $\sigma(n)<2 n \log n$ for $n>1$. Thus $\frac{\sigma(S(n))}{n}<\frac{2 S(n) \log S(n)}{n}$. For $n=2^{k}$ we have $S\left(2^{k}\right) \leq 2 k$, and since $\frac{4 k \log 2 k}{2^{k}} \rightarrow 0$
$(k \rightarrow \infty)$, the result follows.
11) $\lim _{n \rightarrow \infty} \sqrt[n]{S(n)}=1$
-This simple relation follows by $1 \leq S(n) \leq n$, so $1 \leq \sqrt[n]{S(n)} \leq \sqrt[n]{n}$; and by $\sqrt[n]{n} \rightarrow 1$ as $n \rightarrow \infty$. However, 11) is one of a (few) limits, which exists for the Smarandache function. Finally, we shall prove that:
12) $\lim _{n \rightarrow \infty} \sup \frac{\sigma(n S(n))}{n S(n)}=+\infty$.
-We will use the facts that $S(p!)=p, \frac{\sigma^{\prime} p!}{p!}=\bar{Z} \frac{1}{d \mid p t} \geq 1+\frac{1}{2}+\cdots+\frac{1}{p} \rightarrow \infty$ as $p \rightarrow \infty$, and the inequality $\sigma(a b) \geq a \sigma(b)$ (see [2]).

Thus $\frac{\sigma(S(p!) p!}{p!\cdot S(p!)} \geq \frac{S(p!) \cdot \sigma(p!)}{p!\cdot p}=\frac{\sigma(p!)}{p!} \rightarrow \infty$. Thus, for the sequence $\{n\}=\{p!\}$, the results follows.

References

[1] J Sándor. On certain inequalities involving the Smarandache function. Smarandache Notions J. F (1996), 3-6;
[2] J. Sándor. On the composition of some arithmetic functions. Studia Univ. Babes-Bolyai, 34 (1989), F - 14.

