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Kashihara[2] defined the Pseudo-Smarandache function Z by 

m(m+l) 

Z(n) = min { m ~ 1 : n I 
2 

} 

Properties of this function have been studied in [1], [2] etc. 

1. By answering a question by C. Ashbacher, Maohua Le proved that S(Z(n» - Z(S(n» 
changes signs infmitely often. Put 

d s,z (n) = I S(Z(n» - Z(S(s» I 

We will prove first that 

lim inf d s,z (n) ~ 1 (1) 
n-oo 

and 

(2) 
n-+oo 

p(p+l) 

Indeed, let n = , where p is an odd prime. Then it is not difficult to see that 
2 

Sen) = p and Zen) = p. Therefore, 

I S(Z(n»-Z(S(n» I = I S(P)-S(P) I = I p-(P-l) 1=1 

implying (1). We note that if the equation S(Z(n» = Z(S(n» has infinitely many 
solutions, then clearly the lim inf in (1) is 0, otherwise is 1, since 

I S(Z(n» - Z(S(n» I ~ 1, 

S(Z(n» - Z(S(n» being an integer. 
pol 

Now let n = p be an odd prime. Then, since Z(P) = p-l, S(P) = P and S(p-l) ~ -
2 
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(see [4]) we get 
p-l 

~(p)= I S(P-l)-(P-l) I =p-l-S(p-l)~ - 00 asp_oo 
2 

proving (2). Functions of type ~~g have been studied recently by the author [5] (see also 
[3]). 

(2n-l)2n 

2. Since n I -- , clearly Zen) ::::; 2n-l for all n. 
2 . 

This inequality is best possible for even n, since Z(2k) = 2k+1 
- 1. We note that for odd n, 

we have Z(n)::::; n - 1, and this is best possible for odd n, since Z(P) = p-l for prime p. By 

k 
Z(n) Z(2 ) 1 

::::; 2 - and --=2--
n o 

Z(o) 

we get lim sup -- = 2. (3) 
D--+oo D 

p(p+l) p 

Since Z( --) = p, and - 0 (p - 00), it follows 
2 P(P+l)12 

Z(n) 

liminf- =0 

For Z(Z(n)), the following can be proved. By 

p(p+l) 

Z(Z( __ )) = p-l , clearly 
2 

Z(Z(o» 

liminf --
n-+<O n 

=0 

(4) 

(5) 

On the other hand, by Z(Z(n)) ::::; 2Z(n) - 1 and (3), we have 

Z(Z(n» 

limsup __ ::::;4 (6) 
0-+00 n 
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3. We now prove 

lim inf I Z(2n) - Zen) I = 0 (7) 
JI-+<O 

and 

lim sup I Z(2n) - Z(n) I = +00 (8) 
n~ 

Indeed, in [1] it was proved that Z(2p) = p-l for a prime p= 1(mod4). Since Z(P) = p-l, 
this proves relation (7). 

On the other hand, let n = 2k. Since Z(2k) = 2k+! - 1 and Z(2k+!) = 2k+2 
- 1, clearly 

Z(2k+l) _ Z(2k) = 2k+1 -+ 00 as k -+ 00. 
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