Topics in Recreational Mathematics 3/2016

Charles Ashbacher

Illustrated by Caytie Ribble, Contributions by Lamarr Widmer and Rachel Pollari

Topics in Recreational Mathematics 3/2016

Editor-in-chief

Charles Ashbacher 5530 Kacena Ave Marion, IA 52302 USA

cashbacher@yahoo.com

Artwork

Caytie Ribble

Problems

Lamarr Widmer

Contributor

Rachel Pollari

ISBN-13: 978-1537333212

Copyright 2016

Palindromic Numbers and Iterations of the Pseudo-Smarandache Function

Charles Ashbacher <u>cashbacher@yahoo.com</u>

Abstract

For $n \ge 1$, the Pseudo-Smarandache function Z(n) is the smallest integer m such that n evenly divides $1+2+3+\ldots+m$. In this paper, some iterations of this function on palindromes that yield palindromes are demonstrated.

This paper was originally published in **Proceedings of the First International Conference on Smarandache Type Notions in Number Theory**, American Research Press, 1997. ISBN 1-879585-58-8.

In his delightful book[1], Kenichiro Kashara introduced the Pseudo-Smarandache function.

Definition: For any $n \ge 1$, the value of the Pseudo-Smarandache function Z(n) is the smallest integer m such that n evenly divides $1 + 2 + 3 + \ldots + m$. It is well known that the sum is equivalent to

$$\frac{m(m+1)}{2}$$

Having been defined only recently, many of the properties of this function remain to be discovered. In this short paper, we will tentatively explore the connections between Z(n) and a subset of the integers known as the palindromic numbers.

Definition: A number is said to be a palindrome if it reads the same forward and backwards. Examples of palindromes are 121, 34566543 and 1111111111.

There are some palindromic numbers n such that Z(n) is also palindromic. For example,

$$Z(909) = 404$$
 and $Z(2222) = 1111$.

In this paper, we will not consider the trivial cases of the single digit numbers.

A simple computer program was used to search for values of n satisfying the above criteria. The range of the search was, $10 \le n \le 10000$. Of the 189 palindromic values of n within that range, 37, or slightly over 19%, satisfied the criteria.

Furthermore, it is sometimes possible to repeat the function and get another palindrome.

$$Z(909) = 404, Z(404) = 303.$$

Once again, a computer program was run looking for values of n within the range $1 \le n \le 10000$. Of the 37 values found in the previous test, 9 or slightly over 24%, exhibited the property of repeated palindromes.

Using the program to test for values of n such that n, Z(n), Z(Z(n)) and Z(Z(Z(n))) are all palindromic, we discovered that of the 9 found in the previous test, 2 or roughly 22% satisfy the new criteria.

Definition: Let $Z^k(n) = Z(Z(Z(...(n)...))$ where the Z function is executed k times. For notational purposes, let $Z^0(n) = n$.

Modifying the program to search for solutions for a value of n so that n and all iterations $Z^k(n)$ are palindromic for k = 1, 2, 3 and 4, we found that there were no solutions in the range $1 \le n \le 10000$. Given the percentages already encountered, this should not be a surprise. In fact, by expanding the search up through 100000, one solution was found.

$$Z(86868) = 17271, Z(17271) = 2222, Z(2222) = 1111, Z(1111) = 505.$$

Since Z(505) = 100, this is the largest such sequence in this region.

Computer searches for larger such sequences can be more efficiently carried out by using only palindromic numbers for n.

Unsolved Question: What is the largest value of m so that for some $Z^k(n)$ is a palindrome for all k = 0, 1, 2, ..., m?

Unsolved Question: Do the percentages discussed previously accurately represent the general case?

Of course, an affirmative answer to the second question would mean that there is no largest value of m.

Conjecture: There is no largest value of m such that for some n, $Z^k(n)$ is a palindrome for all k = 0, 1, 2, 3, ..., m.

There are solid arguments in support of the truth of this conjecture. Palindromes tend to be divisible by palindromic numbers, so if we take a palindromic, many of the numbers that divide it would be palindromic. Furthermore, that palindrome is often the product of two numbers, one of which is a palindrome. Numbers like the repunits, 11 . . .11 and those with a small number of different digits, like 1001 and 505 appeared quite regularly in the computer search.

Reference

1. K. Kashihara, Comments and Topics on Smarandache Notions and Problems, Erhus University Press, Vail, AZ, 1996.