# SMARANDACHE FUNCTIONS OF THE SECOND KIND 

by Ion Bălăcenoiu and Constantin Dumitrescu<br>Departament of Mathematics, University of Craiova<br>Craiova (1100), Romania

The Smarandache functions of the second kind are defined in [1] thus:

$$
S^{k}: \mathbf{N}^{*} \rightarrow \mathbf{N}^{*}, \quad S^{k}(n)=S_{n}(k) \text { for } n \in \mathbf{N}^{*},
$$

where $S_{n}$ are the Smarandache functions of the first kind (see [3]).
We remark that the function $S^{1}$ has been defined in [4] by F. Smarandache because $S^{1}=S$.

Let, for example, the following table with the values of $S^{2}$ :

| n | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $S^{2}(n)$ | 1 | 4 | 6 | 6 | 10 | 6 | 14 | 12 | 12 | 10 | 22 | 8 | 26 | 14 |

Obviously, these functions $S^{k}$ aren't monotony, aren't periodical and they have fixed points.

1. Theorem. For $k, n \in \mathbf{N}^{*}$ is true $S^{k}(n) \leq n \cdot k$.

Proof. Let $n=p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \ldots p_{t}^{\alpha_{t}}$ and $S(n)=\max _{1 \leq \leq i}\left\{S_{p_{i}}\left(\alpha_{i}\right)\right\}=S\left(p_{j}^{\alpha_{j}}\right)$.
Because $\quad S^{k}(n)=S\left(n^{k}\right)=\max _{1 \leq i \leq 1}\left\{S_{p_{t}}\left(\alpha_{i} k\right)\right\}=S\left(p_{r}^{\alpha_{i}, k}\right) \leq k S\left(p_{r}^{\alpha_{r}}\right) \leq k S\left(p_{j}^{\alpha_{j}}\right)=k S(n)$ and $S(n) \leq n$, [see [3]], it results:
(1) $\quad S^{k}(n) \leq n \cdot k \quad$ for every $n, k \in \mathbb{N}^{*}$.
2. Theorem. All prime numbers $p \geq 5$ are maximal points for $S^{k}$, and

$$
S^{k}(p)=p\left[k-i_{p}(k)\right], \quad \text { where } 0 \leq i_{p}(k) \leq\left[\frac{k-1}{p}\right]
$$

Proof. Let $p \geq 5$ be a prime number. Because $S_{p-1}(k)<S_{p}(k), S_{p+1}(k)<S_{p}(k)$ [see [2]] it results that $S^{k}(p-1)<S^{k}(p)$ and $S^{k}(p+1)<S^{k}(p)$, so that $S^{k}(p)$ is a relative maximum value.

Obviously,
(2) $S^{k}(p)=S_{p}(k)=p\left[k-i_{p}(k)\right]$ with $0 \leq i_{p}(k) \leq\left[\frac{k-1}{p}\right]$.
(3) $S^{k}(p)=p k$ for $p \geq k$.
3. Theorem. The mumbers kp. for $p$ prime and $p>k$ are the fixed points of $S^{k}$.

Proof. Let $p$ be a prime number, $m=p_{1}^{a_{1}} \ldots p_{t}^{a_{1}}$ be the prime factorization of $m$ and $p>\max \{m, k\}$. Then $p_{i} \alpha_{i} \leq p_{i}^{\alpha_{i}}<p$ for $i \in \overline{1, t}$, therefore we have:

$$
S^{k}(m \cdot p)=S\left[(m p)^{k}\right]=\max _{1 \leq i s i}\left\{S_{p_{i}^{a_{i}},} S_{p}(k)\right\}=S_{p}(k)=k p
$$

For $m=k$ we obtain:

$$
S^{k}(k p)=k p \text { so that } k p \text { is a fixed point. }
$$

4. Theorem. The functions $S^{k}$ have the following properties:

$$
\begin{gathered}
S^{k}=0\left(n^{l+\varepsilon}\right), \text { for } \varepsilon>0 \\
\lim _{n \rightarrow \infty} \sup \frac{S^{k}(n)}{n}=k
\end{gathered}
$$

Proof. Obviously,

$$
\begin{gathered}
0 \leq \lim _{n \rightarrow \infty} \frac{S^{k}(n)}{n^{1+\varepsilon}}=\lim _{n \rightarrow \infty} \frac{S\left(n^{k}\right)}{n^{1+\varepsilon}} \leq \lim _{n \rightarrow \infty} \frac{k S(n)}{n^{1+\varepsilon}}=k \lim _{n \rightarrow \infty} \frac{S(n)}{n^{1+\varepsilon}}=0 \quad \text { for } \\
S=0\left(n^{1+\varepsilon}\right), \quad[\operatorname{see}[4]] .
\end{gathered}
$$

Therefore we have $S^{k}=0\left(n^{1+\epsilon}\right)$, and:

$$
\lim _{n \rightarrow \infty} \sup \frac{S^{k}(n)}{n}=\lim _{n \rightarrow \infty} \sup \frac{S\left(n^{k}\right)}{n}=\lim _{p \rightarrow \infty} \frac{S\left(p^{k}\right)}{p}=k
$$

5. Theorem, [see[1]]. The Smarandache functions of the second kind standardise $\left(\mathbf{N}^{*}, \cdot\right)$ in $\left(\mathbf{N}^{*}, \leq,+\right)$ by:

$$
\Sigma_{3}: \max \left\{S^{k}(a), S^{k}(b)\right\} \leq S^{k}(a b) \leq S^{k}(a)+S^{k}(b)
$$

and $\left(\mathbf{N}^{*}, \cdot\right)$ in $\left(\mathbf{N}^{*}, \leq, \cdot\right)$ by:

$$
\Sigma_{4}: \max \left\{S^{k}(a), S^{k}(b)\right\} \leq S^{k}(a b) \leq S^{k}(a) \cdot S^{k}(b) \text { for every } a, b \in \mathbf{N}^{*}
$$

6. Theorem. The functions $S^{k}$ are, generally speaking, increasing. It means that:

$$
\forall n \in \mathbf{N}^{*} \equiv m_{0} \in \mathbf{N}^{*} \text { so that } \forall m \geq m_{0} \Rightarrow S^{k}(m) \geq S^{k}(n)
$$

Proof. The Smarandache function is generally increasing, [see [4]], it means that

$$
\begin{equation*}
\forall t \in \mathbf{N}^{*} \quad \exists r_{0}(t) \in \mathbf{N}^{*} \text { so that } \forall r \geq r_{0} \Rightarrow S(r) \geq S(t) \tag{3}
\end{equation*}
$$

Let $t=n^{k}$ and $r_{0}=r_{0}(t)$ so that $\forall r \geq r_{0} \Rightarrow S(r) \geq S\left(n^{k}\right)$.
Let $m_{0}=\left[\sqrt[k]{r_{0}}\right]+1$. Obviously $m_{0} \geq \sqrt[k]{r_{0}} \Leftrightarrow m_{0}^{k} \geq r_{0}$ and $m \geq m_{0} \Leftrightarrow m^{k} \geq m_{0}^{k}$.
Because $m^{k} \geq m_{0}^{k} \geq r_{0}$ it results $S\left(m^{k}\right) \geq S\left(n^{k}\right)$ or $S^{k}(m) \geq S^{k}(n)$.
Therefore

$$
\begin{aligned}
& \forall n \in \mathbf{N}^{*} \exists m_{0}=\left[\sqrt[k]{r_{0}}\right]+1 \quad \text { so that } \\
& \forall m \geq m_{0} \Rightarrow S^{k}(m) \geq S^{k}(n) \text { where } r_{0}=r_{0}\left(n^{k}\right)
\end{aligned}
$$

is given from (3).
7. Theorem. The function $S^{k}$ has its relative minimum values for every $n=p$ !, where $p$ is a prime number and $p \geq \max \{3, k\}$.

Proof. Let $p!=p_{1}^{i_{1}} \cdot p_{2}^{i_{2}} \cdots p_{m}^{\prime_{m}} \cdot p$ be the canonical decomposition of $p!$, where $2=p_{1}<3=p_{2}<\cdots<p_{m}<p$. Because $p$ ! is divisible by $p_{j}^{t_{j}}$ it results $S\left(p_{j}^{i_{j}}\right) \leq p=S(p)$ for every $j \in \overline{1, m}$.

Obviously,

$$
S^{\dot{k}}(p!)=S\left[(p!)^{k}\right]=\max _{1 \leq j \leq m}\left\{S\left(p_{j}^{k i_{j}}\right), S\left(p^{k}\right)\right\}
$$

Because $S\left(p_{j}^{k \cdot l_{j}}\right) \leq k S\left(p_{j}^{t_{j}}\right)<k S(p)=k p=S\left(p^{k}\right)$ for $k \leq p$, it results that we have

$$
\begin{equation*}
S^{k}(p!)=S\left(p^{k}\right)=k p, \text { for } k \leq p \tag{4}
\end{equation*}
$$

Let $p!-1=q_{1}^{i_{1}} \cdot q_{2}^{i_{2}} \cdots q_{t}^{i_{t}}$ be the canonical decomposition for $p!-1$, then $q_{j}>p$ for $j \in \overline{1, t}$.

It follows $S(p!-1)=\max _{1 \leq \leq \leq}\left\{S\left(q_{j}^{i_{j}}\right)\right\}=S\left(q_{m}^{m_{m}}\right)$ with $q_{m}>p$.
Because $S\left(q_{m}^{\prime}\right)>S(p)=S(p!)$ it results $S(p!-1)>S(p!)$.
Analogous it results $S(p!+1)>S(p!)$.
Obviously

$$
\begin{equation*}
S^{k}(p!-1)=S\left[(p!-1)^{k}\right] \geq S\left(q_{m}^{k i m}\right) \geq S\left(q_{m}^{k}\right)>S\left(p^{k}\right)=k p \tag{5}
\end{equation*}
$$

(6) $\quad S^{k}(p!+1)=S\left[(p!+1)^{k}\right]>k \cdot p$

For $p \geq \max \{3, k\}$ out of (4), (5), (6) it results that $p$ ! are the relative minimum points of the functions $S^{k}$.

## REFERENCES

[1] I. Ballicenoiu, Smarandache Numerical functions, Smarandache Function Journal, vol. 4-5, no.1, (1994), p.6-13.
[2] I. Bxilicenoin, The monotoriy of Smarandache functions of first hind, Smarandache Function Journal, vol.6, 1995.
[3] L. Balizenoiu, V. Seleacn, Some properties of Smarandache functions of the type I, Smarandache Function Journal, vol.6, 1995.
[4] F. Smarandache, A function in the Number Theory. An.Univ.Timișoara, seria st.mat. Vol.XVIII, fasc. 1, p.79-88, 1980.

