SOME PROPERTIES OF THE PSEUDO-SMARANDACHE FUNCTION

RICHARD PINCH

Abstract

Charles Ashbacher [1] has posed a number of questions relating to the pseudo-Smarandache function $Z(n)$. In this note we show that the ratio of consecutive values $Z(n+1) / Z(n)$ and $Z(n-1) / Z(n)$ are unbounded; that $Z(2 n) / Z(n)$ is unbounded; that $n / Z(n)$ takes every integer value infinitely often; and that the series $\sum_{n} 1 / Z(n)^{\alpha}$ is convergent for any $\alpha>1$.

1. Introduction

We define the m-th triangular number $T(m)=\frac{m(m+1)}{2}$. Kashihara [2] has defined the pseudo-Smarandache function $Z(n)$ by

$$
Z(n)=\min \{m: n \mid T(m)\} .
$$

Charles Ashbacher [1] has posed a number of questions relating to the pseudoSmarandache function $Z(n)$. In this note we show that the ratio of consecutive values $Z(n) / Z(n-1)$ and $Z(n) / Z(n+1)$ are unbounded; that $Z(2 n) / Z(n)$ is unbounded; and that $n / Z(n)$ takes every integer value infinitely often. He notes that the series $\sum_{n} 1 / Z(n)^{\alpha}$ is divergent for $\alpha=1$ and asks whether it is convergent for $\alpha=2$. He further suggests that the least value of α for which the series converges "may never be known". We resolve this problem by showing that the series converges for all $\alpha>1$.

2. Some properties of the pseudo-Smarandache function

We record some elementary properties of the function Z.
Lemma 1. (1) If $n \geq T(m)$ then $Z(n) \geq m . Z(T(m))=m$.
(2) For all n we have $\sqrt{n}<Z(n)$.
(3) $Z(n) \leq 2 n-1$, and if n is odd then $Z(n) \leq n-1$.
(4) If p is an odd prime dividing n then $Z(n) \geq p-1$.
(5) $Z\left(2^{k}\right)=2^{k+1}-1$.
(6) If p is an odd prime then $Z\left(p^{k}\right)=p^{k}-1$ and $Z\left(2 p^{k}\right)=p^{k}-1$ or p^{k} according as $p^{k} \equiv 1$ or $3 \bmod 4$.
We shall make use of Dirichlet's Theorem on primes in arithmetic progression in the following form.
Lemma 2. Let a, b be coprime integers. Then the arithmetic progression $a+b t$ is prime for infinitely many values of t.

[^0]
3. Successive values of the pseudo-Smarandache function

Using properties (3) and (5), Ashbacher observed that $\left|Z\left(2^{k}\right)-Z\left(2^{k}-1\right)\right|>$ 2^{k} and so the difference between the conecutive values of Z is unbounded. He asks about the ratio of consecutive values.

Theorem 1. For any given $L>0$ there are infinitely many values of n such that $Z(n+1) / Z(n)>L$, and there are infinitely many values of n such that $Z(n-1) / Z(n)>L$.

Proof. Choose $k \equiv 3 \bmod 4$, so that $T(k)$ is even and k divides $T(k)$. We consider the conditions $k \mid m$ and $(k+1) \mid(m+1)$. These are satisfied if $m \equiv k \bmod k(k+1)$, that is, $m=k+k(k+1) t$ for some t. We have $m(m+1)=$ $k(1+(k+1) t) \cdot(k+1)(1+k t)$, so that if $n=k(k+1)(1+k t) / 2$ we have $n \mid T(m)$. Now consider $n+1=T(k)+1+k T(k) t$. We have $k \mid T(k)$, so $T(k)+1$ is coprime to both k and $T(k)$. Thus the arithmetic progression $T(k)+1+k T(k) t$ has initial term coprime to its increment and by Dirichlet's Theorem contains infinitely many primes. We find that there are thus infinitely many values of t for which $n+1$ is prime and so $Z(n) \leq m=k+k(k+1) t$ and $Z(n+1)=n=T(k)(1+k t)$. Hence

$$
\frac{Z(n+1)}{Z(n)} \geq \frac{n}{m}=\frac{T(k)+k T(k) t}{k+2 T(k) t}>\frac{k}{3} .
$$

A similar argument holds if we consider the arithmetic progression $T(k)-1+$ $k T(k) t$. We then find infinitely many values of t for which $n-1$ is prime and

$$
\frac{Z(n-1)}{Z(n)} \geq \frac{n-2}{m}=\frac{T(k)-2+k T(k) t}{k+2 T(k) t}>\frac{k}{4} .
$$

The Theorem follows by taking $k>4 L$.
We note that this Theorem, combined with Lemma 1(2), gives another proof of the result that the difference of consecutive values is unbounded.

4. Divisibility of the pseudo-Smarandache function

Theorem 2. For any integer $k \geq 2$, the equation $n / Z(n)=k$ has infinitely many solutions n.

Proof. Fix an integer $k \geq 2$. Let p be a prime $\equiv-1 \bmod 2 k$ and put $p+1=2 k t$. Put $n=T(p) / t=p(p+1) / 2 t=p k$. Then $n \mid T(p)$ so that $Z(n) \leq p$. We have $p \mid n$, so $Z(n) \geq p-1$: that is, $Z(n)$ must be either p or $p-1$. Suppose, if possible, that it is the latter. In this case we have $2 n \mid p(p+1)$ and $2 n \mid(p-1) p$, so $2 n$ divides $p(p+1)-(p-1) p=2 p$: but this is impossible since $k>1$ and so $n>p$. We conclude that $Z(n)=p$ and $n / Z(n)=k$ as required. Further, for any given value of k there are infinitely many prime values of p satisfying the congruence condition and hence infinitely many values of $n=T(p)$ such $z / Z(n)=k$.

5. Another divisibility question

Theorem 3. The ratio $Z(2 n) / Z(n)$ is not bounded above.
Proof. Fix an integer k. Let $p \equiv-1 \bmod 2^{k}$ be prime and put $n=T(p)$. Then $Z(n)=p$. Consider $Z(2 n)=m$. We have $2^{k} p \mid p(p+1)=2 n$ and this divides $m(m+1) / 2$. We have $m \equiv \epsilon \bmod p$ and $m \equiv \delta \bmod 2^{k+1}$ where each of ϵ, δ can be either 0 or -1 .

Let $m=p t+\epsilon$. Then $m \equiv \epsilon-t \equiv \delta \bmod 2^{k}$: that is, $t \equiv \epsilon-\delta \bmod 2^{k}$. This implies that either $t=1$ or $t \geq 2^{k}-1$. Now if $t=1$ then $m \leq p$ and $T(m) \leq T(p)=n$, which is impossible since $2 n \leq T(m)$. Hence $t \geq 2^{k}-1$. Since $Z(2 n) / Z(n)=m / p>t / 2$, we see that the ratio $Z(2 n) / Z(n)$ can be made as large as desired.

6. Convergence of a series

Ashbacher observes that the series $\sum_{n} 1 / Z(n)^{\alpha}$ diverges for $\alpha=1$ and asks whether it converges for $\alpha=2$.

In this section we prove convergence for all $\alpha>1$.

Lemma 3.

$$
\begin{gathered}
\log n \leq \sum_{m=1}^{n} \frac{1}{m} \leq 1+\log n \\
\frac{1}{2}(\log n)^{2}-0.257 \leq \sum_{m=1}^{n} \frac{\log m}{m} \leq \frac{1}{2}(\log n)^{2}+0.110 \text { for } n \geq 4 .
\end{gathered}
$$

Proof. For the first part, we have $1 / m \leq 1 / t \leq 1 /(m-1)$ for $t \in[m-1, m]$. Integrating,

$$
\frac{1}{m} \leq \int_{m-1}^{m} \frac{1}{t} \mathrm{~d} t \leq \frac{1}{m-1}
$$

Summing,

$$
\sum_{2}^{n} \frac{1}{m} \leq \int_{1}^{n} \frac{1}{t} \mathrm{~d} t \leq \sum_{2}^{n} \frac{1}{m-1}
$$

that is,

$$
\sum_{1}^{n} \frac{1}{m} \leq 1+\log n \text { and } \log n \leq \sum_{1}^{n-1} \frac{1}{m}
$$

The result follows.
For the second part, we similarly have $\log m / m \leq \log t / t \leq \log (m-1) /(m-1)$ for $t \in[m-1, m]$ when $m \geq 4$, since $\log x / x$ is monotonic decreasing for $x>\mathrm{e}$. Integrating,

$$
\frac{\log m}{m} \leq \int_{m-1}^{m} \frac{\log t}{t} \mathrm{~d} t \leq \frac{\log (m-1)}{m-1}
$$

Summing,

$$
\sum_{4}^{n} \frac{\log m}{m} \leq \int_{3}^{n} \frac{\log t}{t} \mathrm{~d} t \leq \sum_{4}^{n} \frac{\log (m-1)}{m-1}
$$

that is,

$$
\begin{aligned}
& \sum_{1}^{n} \frac{\log m}{m}-\frac{\log 2}{2}-\frac{\log 3}{3} \\
\leq & \frac{1}{2}(\log n)^{2}-\frac{1}{2}(\log 3)^{2} \\
\leq & \sum_{1}^{n} \frac{\log m}{m}-\frac{\log n}{n}-\frac{\log 2}{2}
\end{aligned}
$$

We approximate the numerical values

$$
\frac{\log 2}{2}+\frac{\log 3}{3}-\frac{1}{2}(\log 3)^{2}<0.110
$$

and

$$
\frac{\log 2}{2}-\frac{1}{2}(\log 3)^{2}>-0.257
$$

to obtain the result.
Lemma 4. Let $d(m)$ be the function which counts the divisors of m. For $n \geq 2$ we have

$$
\sum_{m=1}^{n} d(m) / m<7(\log n)^{2}
$$

Proof. We verify the assertion numerically for $n \leq 6$. Now assume that $n \geq$ $8>\mathrm{e}^{2}$. We have

$$
\begin{aligned}
\sum_{m=1}^{n} \frac{d(m)}{m} & =\sum_{m=1}^{n} \sum_{d e=m} \frac{1}{m}=\sum_{d \leq n} \sum_{d e \leq n} \frac{1}{d e} \\
& =\sum_{d \leq n} \frac{1}{d} \sum_{e<n / d} \frac{1}{e} \leq \sum_{d \leq n} \frac{1}{d}(1+\log (n / d)) \\
& \leq(1+\log n)^{2}-\frac{1}{2}(\log n)^{2}+0.257 \\
& =1.257+2 \log n+\frac{1}{2}(\log n)^{2} \\
& <\frac{4}{3}\left(\frac{\log n}{2}\right)^{2}+2 \log n\left(\frac{\log n}{2}\right)+\frac{1}{2}(\log n)^{2} \\
& <2(\log n)^{2}
\end{aligned}
$$

Lemma 5. Fix an integer $t \geq 5$. Let $e^{t}>Y>e^{(t-1) / 2}$. The number of integers n with $e^{t-1}<n \leq e^{t}$ such that $Z(n) \leq Y$ is at most $196 Y t^{2}$.

Proof. Consider such an n with $m=Z(n) \leq Y$. Now $n \mid m(m+1)$, say $k_{1} n_{1}=m$ and $k_{2} n_{2}=m+1$, with $n=n_{1} n_{2}$. Thus $k=k_{1} k_{2}=m(m+$ $1) / n$ and $k_{1} n_{1} \leq Y$. The value of k is bounded below by 2 and above by $m(m+1) / n \leq 2 Y^{2} / \mathrm{e}^{t-1}=K$, say. Given a pair $\left(k_{1}, k_{2}\right)$, the possible values of n_{1} are bounded above by Y / k_{1} and must satisfy the congruence condition $k_{1} n_{1}+1 \equiv 0$ modulo k_{2} : there are therefore at most $Y / k_{1} k_{2}+1$ such values.

Since $Y / k \geq Y / K=\mathrm{e}^{t-1} / 2 Y>1 / 2 \mathrm{e}$, we have $Y / k+1<(2 \mathrm{e}+1) Y / k<7 Y / k$. Given values for k_{1}, k_{2} and n_{1}, the value of n_{2} is fixed as $n_{2}=\left(k_{1} n_{1}+1\right) / k_{2}$. There are thus at most $\sum_{k \leq K} d(k)$ possible pairs $\left(k_{1}, k_{2}\right)$ and hence at most $\sum_{k \leq K} 7 Y d(k) / k$ possible quadruples $\left(k_{1}, k_{2}, n_{1}, n_{2}\right)$. We have $K>2$ so that the previous Lemma applies and we can deduce that the number of values of n satisfying the given conditions is at most $49 Y(\log K)^{2}$. Now $K=2 Y^{2} / \mathrm{e}^{t-1}<$ $2 \mathrm{e}^{t+1}$ so $\log K<t+1+\log 2<2 t$. This establishes the claimed upper bound of $196 Y t^{2}$.

Theorem 4. Fix $\frac{1}{2}<\beta<1$ and an integer $t \geq 5$. The number of integers n with $e^{t-1}<n \leq e^{t}$ such that $Z(n)<n^{\beta}$ is at most $196 t^{2} e^{\beta t}$.
Proof. We apply the previous result with $Y=\mathrm{e}^{\beta t}$. The conditions of β ensure that the previous lemma is applicable and the upper bound on the number of such n is $196 \mathrm{e}^{\beta t} t^{2}$ as claimed.

Theorem 5. The series

$$
\sum_{n=1}^{\infty} \frac{1}{Z(n)^{\alpha}}
$$

is convergent for any $\alpha>\sqrt{2}$.
Proof. We note that if $\alpha>2$ then $1 / Z(n)^{\alpha}<1 / n^{\alpha / 2}$ and the series is convergent. So we may assume $\sqrt{2}<\alpha \leq 2$. Fix β with $1 / \alpha<\beta<\alpha / 2$. We have $\frac{1}{2}<\beta<\sqrt{\frac{1}{2}}<\alpha / 2$.

We split the positive integers $n>\mathrm{e}^{4}$ into two classes A and B. We let class A be the union of the A_{t} where, for positive integer $t \geq 5$ we put into class A_{t} those integers n such that $\mathrm{e}^{t-1}<n \leq \mathrm{e}^{t}$ for integer t and $Z(n) \leq n^{\beta}$. All values of n with $Z(n)>n^{\beta}$ we put into class B. We consider the sum of $1 / Z(n)^{\alpha}$ over each of the two classes. Since all terms are positive, it is sufficient to prove that each series separately is convergent.

Firstly we observe that for $n \in B$, we have $1 / Z(n)^{\alpha}<1 / n^{\alpha \beta}$ and since $\alpha \beta>1$ the series summed over the class B is convergent.

Consider the elements n of A_{t} : so for such n we have $\mathrm{e}^{t-1}<n \leq \mathrm{e}^{t}$ and $Z(n)<n^{\beta}$. By the previous result, the number of values of n satisfying these conditions is at most $196 t^{2} \mathrm{e}^{\beta t}$. For $n \in A_{t}$, we have $Z(n) \geq \sqrt{n}$, so $1 / Z(n)^{\alpha} \leq$ $1 / n^{\alpha / 2}<1 / \mathrm{e}^{\alpha(t-1) / 2}$. Hence the sum of the subseries $\sum_{n \in A_{t}} 1 / Z(n)^{\alpha}$ is at most $196 \mathrm{e}^{\alpha / 2} t^{2} \mathrm{e}^{(\beta-\alpha / 2) t}$. Since $\beta<\alpha / 2$ for $\alpha>\sqrt{2}$, the sum over all t of these terms is finite.

We conclude that $\sum_{n=1}^{\infty} 1 / Z(n)^{\alpha}$ is convergent for $\alpha>\sqrt{2}$
Theorem 6. The series

$$
\sum_{n=1}^{\infty} \frac{1}{Z(n)^{\alpha}}
$$

is convergent for any $\alpha>1$.
Proof. We fix $\beta_{0}=1>\beta_{1}>\cdots>\beta_{r}=\frac{1}{2}$ with $\beta_{j}<\alpha \beta_{j+1}$ for $0 \leq j \leq r-1$. We define a partition of the integers $\mathrm{e}^{t-1}<n<\mathrm{e}^{t}$ into classes B_{t} and $C_{t}(j)$, $1 \leq j \leq r-1$. Into B_{t} place those n with $Z(n)>n^{\beta_{1}}$. Into $C_{t}(j)$ place those n
with $n^{\beta_{j+1}}<Z(n)<n^{\beta_{j}}$. Since $\beta_{r}=\frac{1}{2}$ we see that every n with $\mathrm{e}^{t-1}<n<\mathrm{e}^{t}$ is placed into one of the classes.

The number of elements in $C_{t}(j)$ is at most $196 t^{2} \mathrm{e}^{\beta_{j} t}$ and so

$$
\sum_{n \in C_{t}(j)} \frac{1}{Z(n)^{\alpha}}<196 t^{2} \mathrm{e}^{\beta_{j} t} \mathrm{e}^{-\beta_{j+1} \alpha(t-1)}=196 \mathrm{e}^{\beta_{j+1} \alpha} t^{2} \mathrm{e}^{\left(\beta_{j}-\alpha \beta_{j+1}\right) t} .
$$

For each j we have $\beta_{j}<\alpha \beta_{j+1}$ so each sum over t converges.
The sum over the union of the B_{t} is bounded above by

$$
\sum_{n} \frac{1}{n^{\alpha \beta_{1}}}
$$

which is convergent since $\alpha \beta_{1}>\beta_{0}=1$.
We conclude that $\sum_{n=1}^{\infty} 1 / Z(n)^{\alpha}$ is convergent.

References

[1] Charles Ashbacher, Pluckings from the tree of Smarandache sequences and functions, American Research Press, 1998, http://www.gallup.unm.edu/~smarandache/Ashbacher-pluckings.pdf
[2] K. Kashihara, Comments and topics on Smarandache notions and problems, Erhus University Press, Vail, AZ, USA, 1996.

2 Eldon Road, Cheltenham, Glos GL52 6TU, U.K.
E-mail address: rgep@chalcedon.demon.co.uk

[^0]: Date: 2 April 2005.
 1991 Mathematics Subject Classification. Primary 11A25; Secondary 11B83.

