SOME REMARKS CONCERNING THE DISTRIBUTION OF THE SMARANDACHE FUNCTION

Tomită Tiberiu Florin

The Smarandache function is a numerical function $S:N^* \to N^* S(k)$ representing the smallest natural number n such that n! is divisible by k. From the definition it results that S(1)=1.

I will refer for the beginning the following problem:

"Let k be a rational number, $0 < k \le 1$. Does the diophantine equation $\frac{S(n)}{n} = k$ has always solutions? Find all k such that the equation has an infinite number of solutions in N*" from "Smarandache Function Journal".

I intend to prove that equation hasn't always solutions and case that there are an infinite number of solutions is when $k = \frac{1}{r}$, $r \in N^*$, $k \in Q$ and $0 < k \le 1 \Rightarrow$ there are two relatively prime non negative integers p and q such that $k = \frac{q}{p}$, p,q $\in N^*$, $0 < q \le p$. Let n be a solution of the equation $\frac{S(n)}{n} = k$. Then $\frac{S(n)}{n} = \frac{p}{q}$, (1). Let d be a highest common divisor of n and S(n): d = (n, S(n)). The fact that p and q are relatively prime and (1) implies that S(n) = qd, $n = pd \Rightarrow S(pd) = qd$ (*).

This equality gives us the following result: (qd)! is divisible by $pd \Rightarrow [(qd - 1)! \cdot q]$ is divisible by p. But p and q are relatively prime integers, so (qd-1)! is divisible by p. Then $S(p) \leq qd - 1$.

I prove that $S(p) \ge (q - 1)d$.

If we suppose against all reason that S(p) < (q - 1)d, it means [(q - 1)d - 1]! is divisible by p. Then (pd)|[(q - 1)d]! because d | (q - 1)d, so $S(pd) \le (q - 1)d$. This is contradiction with the fact that S(pd) = qd > (q - 1)d. We have the following inequalities:

$$(q-1)d \le S(p) \le qd-1.$$

For $q \ge 2$ we have from the first inequality $d \le \frac{S(p)}{q-1}$ and from the second $\frac{S(p+1)}{q} \le d$, so $\frac{S(p+1)}{q} \le d \le \frac{S(p)}{q-1}$.

For $k = \frac{q}{p}$, $q \ge 2$, the equations has solutions if and only if there is a natural number between $\frac{S(p+1)}{q}$ and $\frac{S(p)}{q-1}$. If there isn't such a number, then the equation hasn't solutions. However, if there is a number d with $\frac{S(p+1)}{q} \le d \le \frac{S(p)}{q-1}$, this doesn't mean that the equation has solutions. This condition is necessary but not sufficient for the equation to have solutions.

For example:

a) $k = \frac{4}{5}$, q = 4, $p = 5 \Rightarrow \frac{S(p+1)}{q} = \frac{6}{4} = \frac{3}{2}$, $\frac{S(p)}{q-1} = \frac{5}{3}$. In this case the equation hasn't solutions.

b) $k = \frac{3}{10}$, q=3, p=10; S(10)=5, $\frac{6}{3} = 2 \le d \le \frac{5}{2}$. If the equation has solutions, then we must have d=2, n=dp=20, S(n)=dq=6. But S(20)=5.

This is a contradiction. So there are no solutions for $h = \frac{3}{10}$.

We can have more then natural numbers between $\frac{S(p+1)}{q}$ and $\frac{S(p)}{q-1}$. For example:

$$k = \frac{3}{29}$$
, q=3, p=29, $\frac{S(p+1)}{q} = 10$, $\frac{S(p)}{q-1} = 14.5$.

We prove that the equation $\frac{S(n)}{n} = k$ hasn't always solutions.

If $q \ge 2$ then the number of solutions is equal with the number of values of d that verify relation (*). But d can be a nonnegative integer between $\frac{S(p+1)}{q}$ and $\frac{S(p)}{q-1}$, so d can take only a finite set of values. This means that the equation has no solutions or it has only a finite number of solutions.

We study note case $k = \frac{1}{p}$, $p \in N^*$. In this case he equation has an infinite number of solutions. Let p_0 be a prime number such that $p < p_0$ and $n = pp_0$. We have $S(n) = S(pp_0) = p_0$, so $S(n) = p_0$. $\frac{S(n)}{n} = \frac{p_0}{pp_0} = \frac{1}{p}$, so the equation has an infinite number of solution.

I will refer now to another problem concerning the ratio $\frac{S(n)}{n}$ "Is there an infinity of natural numbers such that $0 < \left\{ \frac{x}{S(x)} \right\} < \left\{ \frac{S(x)}{x} \right\}$?" from the same journal.

I will prove that the only number x that verifies the inequalities is x=9: S(9)=6, $\frac{S(x)}{x} = \frac{6}{9} = \frac{2}{3}$, $\left\{\frac{x}{S(x)}\right\} = \left\{\frac{9}{6}\right\} = \frac{1}{2}$ and $0 < \frac{1}{2} < \frac{2}{3}$, so x=9 verifies $0 < \left\{\frac{x}{S(x)}\right\} < \left\{\frac{S(x)}{x}\right\}$.

Let $\mathbf{x} = p_1^{\alpha_1} \dots p_n^{\alpha_n}$ be the standard form of x.

 $S(x) = \max_{1 \le k \le n} S(p_k^{\alpha_k})$. We put $S(x) = S(p^{\alpha})$, where p^{α} is one of $p_1^{\alpha_1} \dots p_n^{\alpha_n}$ such that $S(p^{\alpha}) = \max_{1 \le k \le n} S(p_k^{\alpha_k})$.

 $\left\{\frac{x}{S(x)}\right\} \text{ can take one of the following values : } \frac{1}{S(x)}, \frac{2}{S(x)}, \dots, \frac{S(x)-1}{S(x)} \text{ because}$ $0 < \left\{\frac{x}{S(x)}\right\} < \left\{\frac{S(x)}{x}\right\} \text{ (We have } S(x) \le x \text{ , so } \frac{S(x)}{x} \le 1 \text{ and } \left\{\frac{S(x)}{x}\right\} \le \frac{S(x)}{x} \text{). This means}$ $\frac{S(x)}{x} \ge \frac{1}{S(x)} \Rightarrow S(p^{\alpha})^2 > x \ge p^{\alpha}. (2)$

But $(\alpha p)! = 1 \cdot 2 \cdot ... \cdot p(p+1)...(2p)...(\alpha p)$ is divisible by p^{α} , so $\alpha p \ge S(p^{\alpha})$. From this last inequality and (2) it follows that $\alpha^2 p^2 > p^2$. We have three cases:

I. $\alpha=1$. In this case S(x)=S(p)=p, x is divisible by p, so $\frac{x}{p} \in \mathbb{Z}$. This is a contradiction.

There are no solutions for $\alpha=1$.

II. $\alpha=2$. In this case $S(x)=S(p^2)=2p$, because p is a prime number and $(2p)!=1\cdot 2\cdot ...\cdot p(p-1)...(2p)$, so $S(p^2)=2p$.

But $\left\{\frac{px_1}{2}\right\} \in \left\{0, \frac{1}{2}\right\}$. This means $\left\{\frac{px_1}{2}\right\} = \frac{1}{2} \Rightarrow \frac{1}{2} < \frac{2}{px_1} < 4$; p is a prime number \Rightarrow p \in {2,3}.

If p=2 and px₁ < 4 \Rightarrow x₁ = 1, but x=4 isn't a solution of the equation: S(4)=4 and $\left\{\frac{4}{4}\right\} = 0$.

If p=3 and $px_1 < 4 \Rightarrow x_1 = 1$, so $x=p^2=9$ is a solution of equation.

III. $\alpha=3$. We have $\alpha^2p^2>p^{\alpha} \iff \alpha^2>p^{\alpha-1}$.

For $\alpha \ge 8$ we prove that we have $p^{\alpha-2} > p^2$, $(\forall) p \in N^*$, $p \ge 2$.

We prove by induction that $2^{n-1} > (n+1)^2$.

$$2^{n-1} = 2 \cdot 2^{n-2} \ge 2 \cdot n^2 = n^2 + n^2 \ge n^2 + 8n > n^2 + 2n + 1 = (n+1)^2$$
, because $n \ge 8$.

We proved that $p^{\alpha-2} \ge 2^{\alpha-1} \ge \alpha^2$, for any $\, \alpha \ge 8, \, p \in N^*, \, \, p \ge 2.$

We have to study the case $\alpha \in \{3,4,5,6,7\}$.

a) $\alpha=3 \Rightarrow p \in \{2,3,5,7\}$, because p is a prime number.

If p=2 then S(x)=S(2³)=4. But x is divisible by 8, so $\left\{\frac{x}{S(x)}\right\} = \left\{\frac{x}{4}\right\} = 0$, so x=4 cannot

be a solution of the inequation.

If p=3
$$\Rightarrow$$
 S(x)=S(3³)=9. But 1x 148 Universible by 271 so $\left\{\frac{x}{S(x)}\right\} = \left\{\frac{x}{9}\right\} = 0$, so x=9 cannot

be a solution of the inequation.

If p=5
$$\Rightarrow$$
 S(x)=S(5³)=15; $\left\{\frac{x}{S(x)}\right\} = \left\{\frac{S(x)}{x}\right\} = 0 \text{ x=5}^3 \cdot x_1, x_1 \in \mathbb{N}^+, (5,x_1)=1.$

We have $0 < \left\{ \frac{5^2 \cdot x_1}{3} \right\} < \left\{ \frac{3}{5^2 \cdot x_1} \right\}$. This first inequality implies $\left\{ \frac{5^2 \cdot x_1}{3} \right\} \in \left\{ \frac{1}{3}, \frac{2}{3} \right\}$, so $\frac{1}{3} < \frac{3}{5^2 \cdot x_1} \Rightarrow 5^2 \cdot x_1 < 9$, but this is impossible.

If p=7
$$\Rightarrow$$
 S(x)=S(7³)=21, x=7³· x₁, (7,x₁)=1, x1 \in N*.
We have $0 < \left\{\frac{x}{S(x)}\right\} < \left\{\frac{S(x)}{x}\right\} \Rightarrow 0 < \left\{\frac{7^2 \cdot x_1}{3}\right\} < \frac{3}{7^2 \cdot x_1}$. But $0 < \left\{\frac{7^2 \cdot x_1}{3}\right\}$ implies $\left\{\frac{7^2 \cdot x_1}{3}\right\} \in \left\{\frac{1}{3}, \frac{2}{3}\right\}$.

W have $\frac{1}{3} \le \left\{ \frac{7^2 \cdot x_1}{3} \right\} \implies 7^2 \cdot x_1 < 9$, but is impossible.

b)
$$\alpha = 4 : 16 \Rightarrow p \in \{2,3\}.$$

If p=2
$$\Rightarrow$$
 S(x)=S(x²)=6, x=16·x₁, x₁ \in N*, (2,x₁)=1, 0 $<$ $\left\{\frac{x}{S(x)}\right\}$ $<\frac{S(x)}{x}$ \Rightarrow 0 $<$ $\left\{\frac{8x_1}{3}\right\}$ $<\frac{3}{8x_1}$.

$$\left\{\frac{3}{3}\right\} \stackrel{8x_1}{\sim} x_1 = 1 \Rightarrow x = 16.$$

But
$$\frac{S(x)}{x} = \frac{6}{16} = \frac{3}{8}$$
; $\left\{ \frac{x}{S(x)} \right\} = \left\{ \frac{16}{6} \right\} = \left\{ \frac{8}{3} \right\} = \frac{2}{3} \cdot \frac{2}{3} > \frac{3}{8}$, so the inequality isn't verified.

If p=3 \Rightarrow S(x)=S(3⁴)=9, x=3⁴·x₁, (3,x₁)=1 \Rightarrow 9|x $\Rightarrow \frac{x}{S(x)}$ =0, so the inequality isn't

For $\alpha = \{5,6,7\}$, the only natural number p>1 that verifies the inequality $\alpha^2 > p^{\alpha-2}$ is 2:

$$\alpha = 5:25 > p^3 \Rightarrow p=2$$

$$\alpha = 6:36 > p^4 \Rightarrow p=2$$

$$\alpha = 7:49 > p$$

verified.

In every case $x=2^{\alpha}\cdot x_1$, $x_1\in N^*$, $(x_1,2)=1$, and $S(x_1)\leq S(2^{\alpha})$.

But $S(2^5) = S(2^6) = S(2^7)8$, so S(x) = 8 But x is divisible by 8, so $\left\{\frac{x}{S(x)}\right\} = 0$ so the inequality isn't verified because $0 = \left\{\frac{x}{S(x)}\right\}$. We found that there is only x=9 to verify the inequality $0 < \left\{\frac{x}{S(x)}\right\} < \left\{\frac{S(x)}{x}\right\}$

I try to study some diophantine equations proposed in "Smarandache Function Journal".

1) I study the equation S(mx)=mS(x), $m\ge 2$ and x is a natural number.

Let x be a solution of the equation.

We have S(x)! is divisible by x It is known that among m consecutive numbers, one is divisible by m, so (S(x)!) is divisible by m, so (S(x)+1)(S(x+2)...(S(x)+m) is divisible by (mx). We know that S(mx) is the smallest natural number such that S(mx)! is divisible by (mx) and this implies $S(mx) \le S(x) + m$. But S(mx) = mS(x), so $mS(x) \le S(x) + m \Leftrightarrow mS(x) - S(x) + m + 1 \le \Leftrightarrow (m-1)(S(x)-1) \le 1$. We have several cases:

If m=1 then the equation becomes S(X)=S(x), so any natural number is a solution of the equation.

If m=2, we have $S(x) \in \{1,2\}$ implies $x \in \{1,2\}$. We conclude that if m=1 then any natural number is a solution of the equation of the equation; if m=2 then x=1 and x=2 are only solution and if $m \ge 3$ the only solution of the equation is x=1.

2) Another equation is $S(x^y)=y^x$, x, y are natural numbers.

Let (x,y) be a solution of the equation.

(yx)!=1...x(x+1)...(2x)...(yx) implies $S(x^y) \le yx$, so $y^x \le yx_1$ because $S(x^y)=y^x$.

But $y \ge 1$, so $y^{x-1} \le x$.

If x=1 then equation becomes S(1) = y, so y=1, so x=y=1 is a solution of the equation. If $x \ge 2$ then $x \ge 2^{x-1}$. But the only natural numbers that verify this inequality are x=y=2:

x=y=2 verifies the equation, so x=y=2 is a solution of the equation.

For $x \ge 3$ we prove that $x < 2^{x-1}$. We make the proof by induction.

If $x=3: 3<2^{3-1}=4$.

We suppose that $k<2^{k-1}$ and we prove that $k+1<2^k$. We have $2^k=2\cdot2^k>2\cdot k=k+k>k+1$, so the inequality is established and there are no other solutions then x=y=1 and x=y=2.

3) I will prove that for any m,n natural numbers, if m>1 then the equation $S(x^n)=x^m$ has no solution or it has a finite number of solutions, and for m=1 the equation has a infinite number of solutions.

I prove that $S(x^n) \le nx$. But $x^m = S(x^n)$, so $x^m \le nx$.

For $m \ge 2$ we have $x^{m-1} \le n$. If m=2 then $x \le n$, and if $m \ge 3$ then $x \le \frac{m-\sqrt{n}}{n}$, so x can take only a finite number of values, so the equation can have only a finite number of solutions or it has no solutions.

We notice that x=1 is a solution of the equation for any m,n natural numbers.

If the equation has a solution different of 1, we must have $x^m = S(x^n) \le x^n$., so $m \le n$

If m=n, the equation becomes $x^{m=n}=S(x^n)$, so x^n is a prime number or $x^n=4$, so n=1 and any prime number as well as x=4 is a solution of the equation, or n=2 and the only solutions are x=1 and x=2.

For m=1 and $n \ge 1$, we prove that the equations $S(x^m)=x$, $x \in N^*$ has an infinite number of solutions. Let be a prime number, p>n. We prove that p>n is a solution of the equation, that is $S((np)^n)=np$.

n<p and p is a prime number, so n and p are relatively prime numbers.

n<p implies:

$$(np)! = 1 \cdot 2 \cdot \dots \cdot n(n+1) \cdot \dots \cdot (2n) \cdot \dots \cdot (pn)$$
 is divisible by n^n .

$$(np)! = 1 \cdot 2 \cdot \dots \cdot p(p+1) \cdot \dots \cdot (2p) \cdot \dots \cdot (pn)$$
 is divisible by p^n .

But p and n are relatively prime numbers, so (np)! is divisible by $(np)^n$.

If we suppose that $S((np)^n)$ <np, then we find that (np-1)! is a divisible by $(np)^n$, so(np-1)1 is divisible by $p^n(3)$. But the exponent of p in the standard form of (np-1)! is:

$$E = \left\lceil \frac{np-1}{p} \right\rceil + \left\lceil \frac{np-1}{p^2} \right\rceil + \dots$$

But p > n, so $p^2 > np > np-1$. This implies :

$$\left\lceil \frac{np-1}{p^k} \right\rceil = 0$$
, for any $k \ge 2$. We have:

$$E = \left[\frac{np-1}{p}\right] = n-1.$$

This means (np-1)! is divisible by p^{n-1} , but isn't divisible by p^n , so this is a contradiction with (3). We proved that S((np)n)=np, so the equation S(xn)=x has an infinite number of solutions for any natural number n.

REFERENCE

Smarandache Function Journal, Vol.1, 1990, Number Theory Publishing, Co,

R. Muller Editor, Phoenix, New York, Lyon.

Current address: CALEA BUCUREȘTI ST., BL.M9, SC.B, AP.15,

1100 CRAIOVA, DOLJ, ROMANIA