SOME REMARKS CONCERNING THE DISTRIBUTION OF THE SMARANDACHE FUNCTION Tomită Tiberiu Florin

The Smarandache function is a numerical function $S: N^{*} \rightarrow N^{*} S(k)$ representing the smallest natural number n such that n ! is divisible by k. From the definition it results that $S(1)=1$.

I will refer for the beginning the following problem:
"Let k be a rational number, $0<\mathrm{k} \leq 1$. Does the diophantine equation $\frac{S(n)}{n}=k$ has always solutions? Find all k such that the equation has an infinite number of solutions in N^{*} " from "Smarandache Function Journal".

I intend to prove that equation hasn't always solutions and case that there are an infinite number of solutions is when $k=\frac{1}{r}, \mathrm{r} \in \mathrm{N}^{*}, \mathrm{k} \in \mathrm{Q}$ and $0<\mathrm{k} \leq 1 \Rightarrow$ there are two relatively prime non negative integers p and q such that $k=\frac{q}{p}, \mathrm{p}, \mathrm{q} \in \mathrm{N}^{*}, 0<\mathrm{q} \leq \mathrm{p}$. Let n be a solution of the equation $\frac{S(n)}{n}=k$. Then $\frac{S(n)}{n}=\frac{p}{q}$, (1). Let d be a highest common divisor of n and $S(n): d=(n, S(n))$. The fact that p and q are relatively prime and (1) implies that $\mathrm{S}(\mathrm{n})=\mathrm{qd}, \mathrm{n}=\mathrm{pd} \Rightarrow \mathrm{S}(\mathrm{pd})=\mathrm{qd}\left(^{*}\right)$.

This equality gives us the following result: (qd)! is divisible by $\mathrm{pd} \Rightarrow[(\mathrm{qd}-1)!\cdot \mathrm{q}]$ is divisible by p. But p and q are relatively prime integers, so ($q d-1$)! is divisible by p. Then $S(p) \leq q d-1$.

I prove that $S(p) \geq(q-1) d$.
If we suppose against all reason that $S(p)<(q-1) d$, it means $[(q-1) d-1]$! is divisible by p. Then $(p d) \mid[(q-1) d]$ because $d \mid(q-1) d$, so $S(p d) \leq(q-1) d$. This is contradiction with the fact that $\mathrm{S}(\mathrm{pd})=\mathrm{qd}>(\mathrm{q}-1) \mathrm{d}$. We have the following inequalities:
$(\mathrm{q}-1) \mathrm{d} \leq \mathrm{S}(\mathrm{p}) \leq \mathrm{qd}-1$.
For $\mathrm{q} \geq 2$ we have from the first inequality $\mathrm{d} \leq \frac{S(p)}{q-1}$ and from the second $\frac{S(p+1)}{q} \leq d$, so $\frac{S(p+1)}{q} \leq d \leq \frac{S(p)}{q-1}$.

For $k=\frac{q}{p}, \mathrm{q} \geq 2$, the equations has solutions if and only if there is a natural number between $\frac{S(p+1)}{q}$ and $\frac{S(p)}{q-1}$. If there isn't such a number, then the equation hasn't solutions. However, if there i a number d with $\frac{S(p+1)}{q} \leq d \leq \frac{S(p)}{q-1}$, this doesn't mean that the equation has solutions. This condition is necessary but not sufficient for the equation to have solutions.

For example:
a) $k=\frac{4}{5}, \mathrm{q}=4, \mathrm{p}=5 \Rightarrow \frac{S(p+1)}{q}=\frac{6}{4}=\frac{3}{2}, \frac{S(p)}{q-1}=\frac{5}{3}$. In this case the equation hasn't solutions.
b) $k=\frac{3}{10}, \mathrm{q}=3, \mathrm{p}=10 ; \mathrm{S}(10)=5, \frac{6}{3}=2 \leq d \leq \frac{5}{2}$. If the equation has solutions, then we must have $\mathrm{d}=2, \mathrm{n}=\mathrm{dp}=20, \mathrm{~S}(\mathrm{n})=\mathrm{dq}=6$. But $\mathrm{S}(20)=5$.

This is a contradiction. So there are no solutions for $h=\frac{3}{10}$.
We can ha.e more then natural numbers between $\frac{S(p+1)}{q}$ and $\frac{S(p)}{q-1}$. For example:
$k=\frac{3}{29}, \mathrm{q}=3, \mathrm{p}=29, \frac{S(p+1)}{q}=10, \frac{S(p)}{q-1}=14,5$.
We prove that the equation $\frac{S(n)}{n}=k$ hasn't always solutions.
If $q \geq 2$ then the number of solutions is equal with the number of values of d that verify relation (*). But d can be a nonnegative integer between $\frac{S(p+1)}{q}$ and $\frac{S(p)}{q-1}$, so d can take only a finite set of values. This means that the equation has no solutions or it has only a finite number of solutions.

We study note case $k=\frac{1}{p}, \mathrm{p} \in \mathrm{N}^{*}$. In this case he equation has an infinite number of solutions. Let p_{0} be a prime number such that $\mathrm{p}<\mathrm{p}_{0}$ and $\mathrm{n}=\mathrm{pp}_{0}$. We have $\mathrm{S}(\mathrm{n})=\mathrm{S}\left(\mathrm{pp}_{0}\right)=\mathrm{p}$, so $\mathrm{S}(\mathrm{n})=\mathrm{p}_{0} \cdot \frac{S(n)}{n}=\frac{p_{0}}{p p_{0}}=\frac{1}{p}$, so the equation has an infinite number of solution.

I will refer now to another problem concerning the ratio $\frac{S(n)}{n}$ "Is there an infinity of natural numbers such that $0<\left\{\frac{x}{S(x)}\right\}<\left\{\frac{S(x)}{x}\right\}$?" from the same journal.

I will prove that the only number x that verifies the inequalities is $\mathrm{x}=9: \mathrm{S}(9)=6$, $\frac{S(x)}{x}=\frac{6}{9}=\frac{2}{3},\left\{\frac{x}{S(x)}\right\}=\left\{\frac{9}{6}\right\}=\frac{1}{2}$ and $0<\frac{1}{2}<\frac{2}{3}$, so $\mathrm{x}=9$ verifies $0<\left\{\frac{x}{S(x)}\right\}<\left\{\frac{S(x)}{x}\right\}$.

Let $\mathrm{x}=p_{1}^{\alpha_{1}} \ldots p_{n}^{\alpha_{n}}$, be the standard form of x .
$S(x)=\max _{1 \leq k \leq n} S\left(p_{k}^{\alpha_{k}}\right)$. We put $\mathrm{S}(\mathrm{x})=\mathrm{S}\left(p^{\alpha}\right)$, where p^{α} is one of $p_{1}^{\alpha_{1} \ldots p_{n}^{\alpha}}$ such that $S\left(p^{\alpha}\right)=\max _{1 \leq k \leq n} S\left(p_{k}^{\alpha_{k}}\right)$.
$\left\{\frac{x}{S(x)}\right\}$ can take one of the following values : $\frac{1}{S(x)}, \frac{2}{S(x)}, \ldots, \frac{S(x)-1}{S(x)}$ because $0<\left\{\frac{x}{S(x)}\right\}<\left\{\frac{S(x)}{x}\right\}$ (We have $S(\mathrm{x}) \leq \mathrm{x}$, so $\frac{S(x)}{x} \leq 1$ and $\left\{\frac{S(x)}{x}\right\} \leq \frac{S(x)}{x}$). This means $\frac{S(x)}{x} \geq \frac{1}{S(x)} \Rightarrow S\left(p^{\alpha}\right)^{2}>\mathrm{x} \geq \mathrm{p}^{\alpha}$.

But $(\alpha p)!=1 \cdot 2 \cdot \ldots \cdot p\left(p^{+1}\right) \ldots(2 p) \ldots(\alpha p)$ is divisible by p^{α}, so $\alpha p \geq S\left(p^{\alpha}\right)$. From this last inequality and (2) it follows that $\alpha^{2} p^{2}>p^{2}$. We have three cases:
I. $\alpha=1$. In this case $S(x)=S(p)=p, x$ is divisible by p, so $\frac{x}{p} \in Z$. This is a contradiction. There are no solutions for $\alpha=1$.
II. $\alpha=2$. In this case $S(x)=S\left(p^{2}\right)=2 p$, because p is a prime number and ($\left.2 p\right)!=1 \cdot 2 \cdot \ldots \cdot$ $p(p-1) \ldots(2 p)$, so $S\left(p^{2}\right)=2 p$.

But $\left\{\frac{p x_{1}}{2}\right\} \in\left\{0, \frac{1}{2}\right\}$. This means $\left\{\frac{p x_{1}}{2}\right\}=\frac{1}{2} \Rightarrow \frac{1}{2}<\frac{2}{p x_{1}}<4$; p is a prime number $\Rightarrow \mathrm{p} \in$ $\{2,3\}$.

If $p=2$ and $p x_{1}<4 \Rightarrow x_{1}=1$, but $x=4$ isn't a solution of the equation: $S(4)=4$ and $\left\{\frac{4}{4}\right\}=0$.

If $p=3$ and $p x_{1}<4 \Rightarrow x_{1}=1$. so $x=p^{2}=9$ is a solution of equation.
III. $\alpha=3$. We have $\alpha^{2} p^{2}>p^{\alpha} \Leftrightarrow \alpha^{2}>p^{\alpha-1}$.

For $\alpha \geq 8$ we prove that we have $p^{\alpha-2}>p^{2},(\forall) p \in N^{*}, p \geq 2$.
We prove by induction that $2^{\mathrm{n}-1}>(\mathrm{n}+1)^{2}$.

$$
2^{n-1}=2 \cdot 2^{n-2} \geq 2 \cdot n^{2}-n^{2}+n^{2} \geq n^{2}+8 n>n^{2}+2 n+1=(n+1)^{2}, \text { because } n \geq 8
$$

We proved that $p^{\alpha-2} \geq 2^{\alpha-1} \geq \alpha^{2}$, for any $\alpha \geq 8, p \in N^{*}, p \geq 2$.
We have to study the case $\alpha \in\{3,4,5,6,7\}$.
a) $\alpha=3 \Rightarrow p \in\{2,3,5,7\}$, because p is a prime number.

If $p=2$ then $S(x)=S\left(2^{3}\right)=4$. But x is divisible by 8 , so $\left\{\frac{x}{S(x)}\right\}=\left\{\frac{x}{4}\right\}=0$, so $x=4$ cannot be a solution of the inequation.

$$
\text { If } \mathrm{p}=3 \Rightarrow \mathrm{~S}(\mathrm{x})=\mathrm{S}\left(3^{3}\right)=9 \text {. But } \mathrm{x}^{2} \mathrm{~S}^{2} \text { untrishle ty } 2 \text {, so }\left\{\frac{x}{S(x)}\right\}=\left\{\frac{x}{9}\right\}=0 \text {, so } \mathrm{x}=9 \text { cannot }
$$

be a solution of the inequation.

$$
\text { If } \mathrm{p}=5 \Rightarrow \mathrm{~S}(\mathrm{x})=\mathrm{S}\left(5^{3}\right)=15 ;\left\{\frac{x}{S(x)}\right\}=\left\{\frac{S(x)}{x}\right\}=0 \mathrm{x}=5^{3} \cdot \mathrm{x}_{1}, \mathrm{x}_{1} \in \mathrm{~N}^{*},\left(5, \mathrm{x}_{1}\right)=1
$$

We have $0<\left\{\frac{5^{2} \cdot x_{i}}{3}\right\}<\left\{\frac{3}{5^{2} \cdot x_{1}}\right\}$. This first inequality implies $\left\{\frac{5^{2} \cdot x}{3}\right\} \in\left\{\frac{1}{3}, \frac{2}{3}\right\}$, so $\frac{1}{3}<$ $\frac{3}{5^{2} \cdot x_{1}} \Rightarrow 5^{2} \cdot x_{1}<9$, but this is impossible.

If $\mathrm{p}=7 \Rightarrow \mathrm{~S}(\mathrm{x})=\mathrm{S}\left(7^{3}\right)=21, \mathrm{x}^{2}=7^{3} \cdot \mathrm{x}_{1},\left(7, \mathrm{x}_{1}\right)=1, \mathrm{x} 1 \in \mathrm{~N}^{*}$.
We have $0<\left\{\frac{x}{S(x)}\right\}<\left\{\frac{S(x)}{x}\right\} \Rightarrow 0<\left\{\frac{7^{2} \cdot x_{1}}{3}\right\}<\frac{3}{7^{2} \cdot x_{1}}$. But $0<\left\{\frac{7^{2} \cdot x_{1}}{3}\right\}$ implies $\left\{\frac{7^{2} \cdot x_{1}}{3}\right\} \in\left\{\frac{1}{3}, \frac{2}{3}\right\}$.

W have $\frac{1}{3} \leq\left\{\frac{7^{2} \cdot x_{1}}{3}\right\} \Rightarrow 7^{2} \cdot x_{1}<9$, but is impossible.
b) $\alpha=4: 16 \Rightarrow p \in\{2,3\}$.

If $\mathrm{p}=2 \Rightarrow \mathrm{~S}(\mathrm{x})=\mathrm{S}\left(\mathrm{x}^{2}\right)=6, \mathrm{x}=16 \cdot \mathrm{x}_{1}, \mathrm{x}_{1} \in \mathrm{~N}^{*},\left(2, \mathrm{x}_{1}\right)=1,0<\left\{\frac{x}{S(x)}\right\}<\frac{S(x)}{x} \Rightarrow 0<$ $\left\{\frac{8 x_{1}}{3}\right\}<\frac{3}{8 x_{1}}$.
$0<\left\{\frac{8 x_{1}}{3}\right\} \Rightarrow x_{1}=1 \Rightarrow x=16$.
But $\frac{S(x)}{x}=\frac{6}{16}=\frac{3}{8} ;\left\{\frac{x}{S(x)}\right\}=\left\{\frac{16}{6}\right\}=\left\{\frac{8}{3}\right\}=\frac{2}{3} \cdot \frac{2}{3}>\frac{3}{8}$, so the inequality isn't verified.
If $\mathrm{p}=3 \Rightarrow \mathrm{~S}(\mathrm{x})=\mathrm{S}\left(3^{4}\right)=9, \mathrm{x}=3^{4} \cdot \mathrm{x}_{1},\left(3, \mathrm{x}_{1}\right)=1 \Rightarrow 9 \left\lvert\, \mathrm{x} \Rightarrow \frac{x}{S(x)}=0\right.$, so the inequality isn't verified.

For $\alpha=\{5,6,7\}$, the only natural number $p>1$ that verifies the inequality $\alpha^{2}>p^{\alpha-2}$ is 2 :
$\alpha=5: 25>p^{3} \Rightarrow p=2$
$\alpha=6: 36>p^{4} \Rightarrow p=2$
$\alpha=7: 49>p$
In every case $x=2^{\alpha} \cdot x_{1}, x_{1} \in N^{*},\left(x_{1}, 2\right)=1$, and $S\left(x_{1}\right) \leq S\left(2^{\alpha}\right)$.
But $S\left(2^{5}\right)=S\left(2^{6}\right)=S\left(2^{7}\right) 8$, so $S(x)=8$ But x is divisible by 8 , so $\left\{\frac{x}{S(x)}\right\}=0$ so the inequality isn't verified because $0=\left\{\frac{x}{S(x)}\right\}$. We found that there is only $\mathrm{x}=9$ to verify the inequality $0<\left\{\frac{x}{S(x)}\right\}<\left\{\frac{S(x)}{x}\right\}$

I try to study some diophantine equations proposed in "Smarandache Function Journal".

1) I study the equation $S(m x)=m S(x), m \geq 2$ and x is a natural number.

Let x be a solution of the equation.
We have $S(x)$! is divisible by x It is known that among m consecutive numbers, one is divisible by m, so ($S(x)!$) is divisible by m, so $(S(x)+1)(S(x+2) \ldots(S(x)+m)$ is divisible by (mx). We know that $\mathrm{S}(\mathrm{mx})$ is the smallest natural number such that $\mathrm{S}(\mathrm{mx})$! is divisible by $(m x)$ and this implies $S(m x) \leq S(x) \div m$. But $S(m x)=m S(x)$, so $m S(x) \leq S(x)+m \Leftrightarrow m S(x)-S(x)$ $\mathrm{m}+1 \leq \Leftrightarrow(\mathrm{m}-1)(\mathrm{S}(\mathrm{x})-1) \leq 1$. We have several cases:

If $m=1$ then the equation becomes $S(X)=S(x)$, so any natural number is a solution of the equation.

If $m=2$, we have $S(x) \in\{1,2\}$ implies $x \in\{1,2\}$. We conclude that if $m=1$ then any natural number is a solution of the equation of the equation; if $m=2$ then $x=1$ and $x=2$ are only solution and if $m \geq 3$ the only solution of the equation is $x=1$.
2) Another equation is $S\left(x^{y}\right)=y^{x}$, x, y are natural numbers.

Let (x, y) be a solution of the equation.
$(y x)!=1 \ldots x(x+1) \ldots(2 x) \ldots(y x)$ implies $S\left(x^{y}\right) \leq y x$, so $y^{x} \leq y x_{1}$ because $S\left(x^{y}\right)=y^{x}$.
But $\mathrm{y} \geq 1$, so $\mathrm{y}^{\mathrm{x}-1} \leq \mathrm{x}$.
If $x=1$ then equation becomes $S(1)=y$, so $y=1$, so $x=y=1$ is a solution of the equation. If $x \geq 2$ then $x \geq 2^{x-1}$. But the only natural numbers that verify this inequality are $x=y=2$:
$x=y=2$ verifies the equation, so $x=y=2$ is a solution of the equation.
For $x \geq 3$ we prove that $x<2^{x-1}$. We make the proof by induction.
If $x=3: 3<2^{3-1}=4$.
We suppose that $k<2^{k-1}$ and we prove that $k+1<2 k$. We have $2^{k=2 \cdot 2 k}>2 \cdot k=k+k>k+1$, so the inequality is established and there are no other solutions then $x=y=1$ and $x=y=2$.
3) I will prove that for any m, n natural numbers, if $m>1$ then the equation $S\left(x^{n}\right)=x^{m}$ has no solution or it has a finite number of solutions, and for $m=1$ the equation has a infinite number of solutions.

I prove that $S\left(x^{n}\right) \leq n x$. But $x^{m}-S\left(x^{n}\right)$, so $x^{m} \leq n x$.
For $m \geq 2$ we have $x^{m-1} \leq n$. If $m=2$ then $x \leq n$, and if $m \geq 3$ then $x \leq m-\sqrt{n}$, so x can take only a finite number of values, so the equation can have only a finite number of solutions or it has no solutions.

We notice that $x=1$ is a solution of the equation for any m, n natural numbers.

If the equation has a solution different of 1 , we must have $x^{m}=S\left(x^{n}\right) \leq x^{n}$., so $m \leq n$ If $\mathrm{m}=\mathrm{n}$, the equation becomes $\mathrm{x}^{\mathrm{m}=\mathrm{n}}=\mathrm{S}\left(\mathrm{x}^{\mathrm{n}}\right)$, so x^{n} is a prime number or $\mathrm{x}^{\mathrm{n}}=4$, so $\mathrm{n}=1$ and any prime number as well as $x=4$ is a solution of the equation, or $n=2$ and the only solutions are $\mathrm{x}=1$ and $\mathrm{x}=2$.

For $\mathrm{m}=1$ and $\mathrm{n} \geq 1$, we prove that the equations $\mathrm{S}\left(\mathrm{x}^{\mathrm{m}}\right)=\mathrm{x}, \mathrm{x} \in \mathrm{N}^{*}$ has an infinite number of solutions. Let be a prime number, $\mathrm{p}>\mathrm{n}$. We prove that np) is a solution of the equation, that is $\mathrm{S}\left((\mathrm{np})^{\mathrm{n}}\right)=\mathrm{np}$.
$\mathrm{n}<\mathrm{p}$ and p is a prime number, so n and p are relatively prime numbers.
$\mathrm{n}<\mathrm{p}$ implies:
$(\mathrm{np})!=1 \cdot 2 \cdot \ldots \cdot \mathrm{n}(\mathrm{n}+1) \cdot \ldots \cdot(2 \mathrm{n}) \cdot \ldots \cdot(\mathrm{pn})$ is divisible by n^{n}.
$(\mathrm{np})!=1 \cdot 2 \cdot \ldots \cdot \mathrm{p}(\mathrm{p}+1) \cdot \ldots \cdot(2 \mathrm{p}) \cdot \ldots \cdot(\mathrm{pn})$ is divisible by p^{n}.
But p and n are relatively prime numbers, so (np)! is divisible by (np$)^{\mathrm{n}}$.
If we suppose that $\mathrm{S}\left((\mathrm{np})^{\mathrm{n}}\right)<\mathrm{np}$, then we find that ($\left.\mathrm{np}-1\right)$! is a divisible by $(\mathrm{np})^{\mathrm{n}}$, so(np$1) 1$ is divisible by $p^{n}(3)$. But the exponent of p in the standard form of p in the standard form of (np-1)! is:
$E=\left[\frac{n p-1}{p}\right]+\left[\frac{n p-1}{p^{2}}\right]+\ldots$
But $\mathrm{p}>\mathrm{n}$, so $\mathrm{p}^{2}>\mathrm{np}>\mathrm{np}-1$. This implies :
$\left[\frac{n p-1}{p^{k}}\right]=0$, for any $\mathrm{k} \geq 2$. We have:
$E=\left[\frac{n p-1}{p}\right]=n-1$.
This means ($\mathrm{np}-1$)! is divisible by $\mathrm{p}^{\mathrm{n}-1}$, but isn't divisible by p^{n}, so this is a contradiction with (3). We proved that $S((n p) n)=n p$, so the equation $S(x n)=x$ has an infinite number of solutions for any natural number n.

REFERENCE

Smarandache Function Journal, Vol.1, 1990, Number Theory Publishing, Co,
R. Muller Editor, Phoenix, New York, Lyon.

Current address : CALEA BUCUREȘTI ST., BL.M9, SC.B, AP.15,
1100 CRAIOVA , DOLJ, ROMANIA

