THE MONOTONY OF SMARANDACHE FUNCTIONS OF FIRST KIND

by Ion Bxalăcenoiu
Department of Mathematics, University of Craiova
Craiova (1100), Romania

Smarandache functions of first kind are defined in [1] thus:

$$
S_{n}: N^{*} \rightarrow N^{*}, S_{1}(k)=1 \text { and } S_{n}(k)=\max _{1 \leq j \leq r}\left\{S_{p_{j}}\left(i_{j} k\right)\right\}
$$

where $n=p_{1}^{i_{1}} \cdot p_{2}^{i_{2}} \cdots p_{r}^{i_{r}}$ and $S_{p_{j}}$ are functions defined in [4].
They Σ_{1}-standardise $\left(N^{*},+\right)$ in $\left(N^{*}, \leq,+\right)$ in the sense that

$$
\Sigma_{1}: \quad \max \left\{S_{n}(a), S_{n}(b)\right\} \leq S_{n}(a+b) \leq S_{n}(a)+S_{n}(b)
$$

for every $a, b \in N^{*}$ and Σ_{2}-standardise $\left(N^{*},+\right)$ in ($\left.N^{*}, \leq, \cdot\right)$ by

$$
\Sigma_{2}: \quad \max \left\{S_{n}(a), S_{n}(b)\right\} \leq S_{n}(a+b) \leq S_{n}(a) \cdot S_{n}(b), \text { for every } a, b \in N^{*}
$$

In [2] it is prooved that the functions S_{n} are increasing and the sequence $\left\{S_{p^{j}}\right\}_{i \in N^{*}}$ is also increasing. It is also proved that if p, q are prime numbers, then

$$
p \cdot i<q \Rightarrow S_{p^{j}}<S_{q} \text { and } i<q \Rightarrow S_{i}<S_{q}
$$

where $i \in N^{*}$.
It would be used in this paper the formula

$$
\begin{equation*}
S_{p}(k)=p\left(k-i_{k}\right) \text {, for same } i_{k} \text { satisfying } 0 \leq i_{k} \leq\left[\frac{k-1}{p}\right] \text {, (see [3]) } \tag{1}
\end{equation*}
$$

1. Proposition. Let p be a prime number and $k_{1}, k_{2} \in N^{*}$. If $k_{1}<k_{2}$ then $i_{k_{1}} \leq i_{k_{2}}$, where $i_{k_{1}}, i_{k_{2}}$ are defined by (1).

Proof. It is known that $S_{p}: \mathbf{N}^{\bullet} \rightarrow \mathbf{N}^{\bullet}$ and $S_{p}(k)=p k$ for $k \leq p$. If $S_{p}(k)=m p^{a}$ with $m, \alpha \in \mathbf{N}^{*},(m, p)=1$, there exist α consecutive numbers:

$$
\begin{aligned}
& n, n+1, \ldots, n+\alpha-1 \quad \text { so that } \\
& k \in\{n, n+1, \ldots, n+\alpha-1\} \quad \text { and } \\
& S_{p}(n)=S_{p}(n+1)=\cdots=S(n+\alpha-1)
\end{aligned}
$$

this means that S_{p} is stationed the $\alpha-1$ steps $(k \rightarrow k+1)$.
If $k_{1}<k_{2}$ and $S_{p}\left(k_{1}\right)=S_{p}\left(k_{2}\right)$, because $S_{p}\left(k_{1}\right)=p\left(k_{1}-i k_{1}\right), S_{p}\left(k_{2}\right)=p\left(k_{2}-i k_{2}\right)$ it results $i_{k_{1}}<i_{k_{2}}$.

If $k_{1}<k_{2}$ and $S_{p}\left(k_{1}\right)<S_{p}\left(k_{2}\right)$, it is easy to see that we can write:

$$
i_{k_{1}}=\beta_{1}+\sum_{a}(\alpha-1) \quad \text { where } \quad \beta_{1}=0 \text { for } S_{p}\left(k_{1}\right) \neq m p^{a}, \quad \text { if } S_{p}\left(k_{1}\right)=m p^{a}
$$

then $\beta_{1} \in\{0,1,2, \ldots, \alpha-1\}$
and

$$
\begin{aligned}
i_{k_{2}}=\beta_{2} & +\sum_{a}(\alpha-1) \\
m p^{a} & <S_{p}\left(k_{2}\right)
\end{aligned} \text { where } \quad \beta_{2}=0 \text { for } S_{p}\left(k_{2}\right) \neq m p^{a}, \text { if } S_{p}\left(k_{2}\right)=m p^{a} \text { then }
$$

$\beta_{2} \in\{0,1,2, \ldots, \alpha-1\}$.
Now is obviously that $k_{1}<k_{2}$ and $S_{p}\left(k_{1}\right)<S_{p}\left(k_{2}\right) \Rightarrow i_{k_{1}} \leq i_{k_{2}}$. We note that, for $k_{1}<k_{2}, i_{k_{1}}=i_{k_{2}} \quad$ iff $\quad S_{p}\left(k_{1}\right)<S_{p}\left(k_{2}\right) \quad$ and $\quad\left\{m p^{a} \mid \alpha>1\right.$ and $\left.m p^{a} \leq S_{p}\left(k_{1}\right)\right\}=$ $\left\{m p^{a} \mid \alpha>1\right.$ and $\left.m p^{\alpha}<S_{p}\left(k_{2}\right)\right\}$
2. Proposition. If p is a prime number and $p \geq 5$, then $S_{p}>S_{p-1}$ and $S_{p}>S_{p+1}$.

Proof. Because $p-1<p$ it resuits that $S_{p-1}<S_{p}$. Of course $p+1$ is even and so:
(i) if $p+1=2^{\prime}$, then $i>2$ and because $2 i<2^{i}-1=p$ we have $S_{p+1}<S_{p}$.
(ii) if $p+1 \neq 2^{i}$, let $p+1=p_{1}^{i_{1}} \cdot p_{2}^{i_{2}} \cdots p_{r}^{i_{r}}$, then $S_{p+1}(k)=\max _{1 \leq j \leq r}\left\{S_{p_{j}^{\prime j}}(k)\right\}=S_{p_{m}^{i m}}(k)=$ $=S_{p_{m}}\left(i_{m} \cdot k\right)$.

Because $p_{m} \cdot i_{m} \leq p_{m}^{j_{m}} \leq \frac{p+1}{2}<p$ it results that $S_{p_{m}^{\prime}}(k)<S_{p}(k)$ for $k \in N^{*}$, so that $S_{p+1}<S_{p}$.
3. Proposition. Let p, q be prime mumbers and the sequences of functions

$$
\left\{S_{p^{j}}\right\}_{i \in N^{*}},\left\{S_{q^{j}}\right\}_{j \in N^{*}}
$$

If $p<q$ and $i \leq j$, then $S_{p^{j}}<S_{q^{j}}$.
Proof. Evidently, if $p<q$ and $i \leq j$, then for every $k \in N^{*}$

$$
\begin{array}{ll}
& S_{p^{j}}(k) \leq S_{p^{j}}(k)<S_{q^{j}}(k) \\
\text { so, } & S_{p^{j}}<S_{q^{j}}
\end{array}
$$

4. Definition. Let p,q be prime mumbers. We consider a function S_{q}, a sequence of functions $\left\{S_{p^{i}}\right\}_{i \in N^{*}}$, and we note:

$$
i_{(j)}=\max _{i}\left\{i \mid S_{\phi}<S_{q^{\prime}}\right\}
$$

$$
i^{(j)}=\min _{i}\left\{i \mid S_{q^{\prime}}<S_{\beta^{\prime}}\right\}
$$

then $\left\{k \in N \mid i_{(j)}<k<i^{(j)}\right\}=\Delta_{p^{\prime}\left(q^{\prime}\right)}=\Delta_{(j)}$ defines the interference zone of the function S_{q} with the sequence $\left\{S_{p^{i}}\right\}_{t \in \mathcal{N}^{*}}$.

5. Remarque

a) If $S_{q^{\prime}}<S_{p^{\prime}}$ for $i \in N^{*}$, then nou exists $\dot{i f}^{\text {and }}$ and ${ }^{(j)}=1$, and we say that S_{q} is separately of the sequence of functions $\left\{S_{p^{\prime}}\right\}_{r \in N^{*}}$.
b) If there exist $k \in N^{*}$ so that $S_{p^{2}}<S_{q}<S_{p^{2+1}}$, then $\Delta_{p\left(q^{\prime}\right)}=\varnothing$ and say that the function $S_{q^{\prime}}$ does not interfere with the sequence of functions $\left\{S_{p^{j}}\right\}_{i e N^{*}}$.
6. Definition. The sequence $\left\{x_{n}\right\}_{n \in N^{*}}$. is generaly increasing if

$$
\forall n \in N^{*} \exists m_{0} \in N^{*} \text { so that } x_{m} \geq x_{n} \text { for } m \geq m_{0}
$$

7. Remarque. If the sequence $\left\{x_{n}\right\}_{n \in N^{*}}$ with $x_{n} \geq 0$ is generaly increasing and boundled, then every subsequence is generaly increasing and boundled.
8. Proposition. The sequence $\left\{S_{n}(k)\right\}_{n \in N^{*}}$, where $k \in N^{*}$, is in generaly increasing and boundled.

Proof. Because $S_{n}(k)=S_{n^{k}}(1)$, it results that $\left\{S_{n}(k)\right\}_{n \in N^{*}}$ is a subsequence of $\left\{S_{m}(1)\right\}_{\text {meN }}$.

The sequence $\left\{S_{m}(1)\right\}_{m e N^{*}}$. is generaly increasing and boundled because:

$$
\forall m \in N^{*} \quad \exists t_{0}=m!\text { so that } \forall t \geq t_{0} S_{t}(1) \geq S_{t_{0}}(1)=m \geq S_{m}(1)
$$

From the remarque 7 it results that the sequence $\left\{S_{n}(k)\right\}_{n \in N^{*}}$. is generaly increasing boundled.
9. Proposition. The sequence of functions $\left\{S_{n}\right\}_{n \in N^{*}}$. is generaly increasing boundled. Proof. Obviously, the zone of interference of the function S_{m} with $\left\{S_{n}\right\}_{n \in N^{*}}$ is the set

$$
\begin{aligned}
& \Delta_{m(m)}=\left\{k \in N^{0} \mid n_{(m)}<k<n^{(m)}\right\} \text { where } \\
& n_{(m)}=\max \left\{n \in N^{0} \mid S_{n}<S_{m}\right\} \\
& n^{(m)}=\min \left\{n \in N^{*} \mid S_{m}<S_{n}\right\}
\end{aligned}
$$

The interference zone $\Delta_{m(m)}$ is nonemty because $S_{m} \in \Delta_{m(m)}$ and finite for $S_{1} \leq S_{m} \leq S_{p}$, where p is one prime number greater than m.

Because $\left\{S_{n}(1)\right\}$ is generaly increasing it results:

$$
\forall m \in N^{*} \exists r_{0} \in N^{*} \text { so that } S_{t}(1) \geq S_{m}(1) \text { for } \forall t \geq t_{0} .
$$

For $r_{0}=t_{0}+n^{(m)}$ we have

$$
S_{r} \geq S_{m} \geq S_{m} \text { (1) for } \forall r \geq r_{0}
$$

so that $\left\{S_{n}\right\}_{n \in \mathcal{N}^{-}}$is generaly increasing boundled.

10. Remarque

a) For $n=p_{1}^{i_{1}} \cdot p_{2}^{i_{2}} \cdots p_{r}^{i_{r}}$ are posible the following cases:

1) $\exists k \in\{1,2, \ldots, r\}$ so that

$$
S_{p_{j}^{\prime}} \leq S_{p_{i k}^{\prime \prime}} \text { for } j \in\{1,2, \ldots, r\},
$$

then $S_{n}=S_{p_{k}^{i k}}$ and $p_{k}^{i_{k}}$ is named the dominant factor for n.
2) $\exists k_{1}, k_{2}, \ldots, k_{m} \in\{1,2, \ldots, r\}$ so that :
$\forall t \in \overline{1, m} \quad \exists q_{t} \in N^{*}$ so that $S_{n}\left(q_{t}\right)=S_{p_{p_{t}}^{i_{k}}}\left(q_{t}\right)$ and
$\forall l \in N^{*} \quad S_{n}(l)=\max _{l \leq \leq m}\left\{S_{p_{p_{k_{t}}}}(l)\right\}$.
We shall name $\left\{p_{k_{t}}^{k_{t}} \mid t \in \overline{1, m}\right\}$ the active factors, the others woid be name passive factors for n.
b) We consider

$$
N_{P p_{2}}=\left\{n=\left.p_{1}^{i_{1}} \cdot p_{2}^{i_{2}}\right|_{i_{1}, i_{2}} \in N^{*}\right\} \text {, where } p_{1}<p_{2} \text { are prime numbers. }
$$

For $n \in N_{p_{1} p_{2}}$ appear the following situations:

1) $i_{1} \in\left(0, i_{1}^{\left(i_{2}\right)}\right]$, this means that $p_{1}^{i_{1}}$ is a pasive factor and $p_{2}^{i_{2}}$ is an active factor.
2) $i_{1} \in\left(i_{1\left(i_{2}\right)}, i_{1}^{\left(i_{2}\right)}\right)$ this means that $p_{1}^{i_{1}}$ and $p_{2}^{i_{2}}$ are active factors.
3) $i_{1} \in\left[i_{1}^{\left(i_{2}\right)}, \infty\right)$ this means that $p_{1}^{i_{1}}$ is a active factor and $p_{2}^{k_{2}}$ is a pasive factor.

For $p_{1}<p_{2}$ the repartion of exponents is represently in following scheme:

For numbers of type 2) $i_{1} \in\left(i_{1\left(i_{2}\right)}, i_{1}^{\left(i_{2}\right)}\right)$ and $i_{2} \in\left(i_{2\left(i_{1}\right)}, \cdot\left(i_{2}^{\left(i_{1}\right)}\right)\right.$
c) I consider that

$$
N_{P_{1} P_{2} P_{3}}=\left\{n=p_{1}^{i_{1}} \cdot p_{2}^{i_{2}} \cdot p_{3}^{i_{3}} \mid i_{1}, i_{2}, i_{3} \in N^{*}\right\},
$$

where $p_{1}<p_{2}<p_{3}$ are prime numbers.

Exist the following situations:

1) $n \in N^{p_{j}}, j=1,2,3$ this means that $p_{j}^{i_{j}}$ is active factor.
2) $n \in N^{p_{f} p_{k}}, j \neq k ; j, k \in\{1,2,3\}$, this means that $p_{j}^{i_{j}}, p_{k}^{i_{k}}$ are active factors.
3) $n \in N^{P_{1} P_{2} P_{3}}$, this means that $p_{1}^{i_{1}}, p_{2}^{i_{2}}, p_{3}^{i_{3}}$ are active factors. $N^{P_{1} P_{2} P_{3}}$ is named the S active cone for $N_{p_{1} p_{2} p_{3}}$.

Obviously

$$
N^{P_{1} P_{2} P_{3}}=\left\{n=p_{1}^{i_{1}} p_{2}^{i_{2}} p_{3}^{j_{3}} \mid i_{1}, i_{2}, i_{3} \in N^{*} \text { and } i_{k} \in\left(i_{k\left(i_{j}\right)}, i_{k}^{(i)}\right) \text { where } j \neq k ; j, k \in\{1,2,3\}\right\} .
$$

The repartision of exponents is represented in the following scheme:

For $p_{1}<p_{2}$ the repartion of exponents is represently in following scheme:

For numbers of type 2) $i_{1} \in\left(i_{1\left(i_{2}\right)}, i_{1}^{\left(i_{2}\right)}\right)$ and $i_{2} \in\left(i_{2\left(i_{1}\right)}, \cdot\left(i_{2}^{\left(i_{1}\right)}\right)\right.$
c) I consider that

$$
N_{P_{1} P_{2} P_{3}}=\left\{n=p_{1}^{i_{1}} \cdot p_{2}^{i_{2}} \cdot p_{3}^{i_{3}} \mid i_{1}, i_{2}, i_{3} \in N^{*}\right\},
$$

where $p_{1}<p_{2}<p_{3}$ are prime numbers.

Exist the following situations:

1) $n \in N^{p_{j}}, j=1,2,3$ this means that $p_{j}^{i_{j}}$ is active factor.
2) $n \in N^{p_{f} p_{k}}, j \neq k ; j, k \in\{1,2,3\}$, this means that $p_{j}^{i_{j}}, p_{k}^{i_{k}}$ are active factors.
3) $n \in N^{P_{1} P_{2} P_{3}}$, this means that $p_{1}^{i_{1}}, p_{2}^{i_{2}}, p_{3}^{i_{3}}$ are active factors. $N^{P_{1} P_{2} P_{3}}$ is named the S active cone for $N_{p_{1} p_{2} p_{3}}$.

Obviously

$$
N^{P_{1} P_{2} P_{3}}=\left\{n=p_{1}^{i_{1}} p_{2}^{i_{2}} p_{3}^{j_{3}} \mid i_{1}, i_{2}, i_{3} \in N^{*} \text { and } i_{k} \in\left(i_{k\left(i_{j}\right)}, i_{k}^{(i)}\right) \text { where } j \neq k ; j, k \in\{1,2,3\}\right\} .
$$

The repartision of exponents is represented in the following scheme:

d) Generaly, I consider $N_{p_{1} p_{2} \ldots p_{r}}=\left\{n=p_{1}^{j_{1}} \cdot p_{2}^{\prime 2} \cdot \cdots \cdot p_{r}^{i_{r}} \mid i_{1}, i_{2}, \ldots, i_{r} \in N^{*}\right\}$, where $p_{1}<p_{2}<\cdots<p_{r}$ are prime numbers.

On $N_{p_{1} p_{2} \ldots p_{r}}$ exist the following relation of equivalence:

$$
n \rho m \Leftrightarrow n \text { and } m \text { have the same active factors. }
$$

This have the following clases:

- $N^{P_{n}}$, where $j_{1} \in\{1,2, \ldots, r\}$.
$n \in N^{P_{n}} \otimes n$ hase only $p_{n_{1}}^{i_{n}}$ active factor
$-N^{P_{1} p_{j_{2}}}$, where $j_{1} \neq j_{2}$ and $j_{1}, j_{2} \in\{1,2, \ldots, r\}$.
$n \in N^{p_{j} p_{j 2}} \Leftrightarrow n$ has only $p_{j_{1}}^{i_{\lambda}}, p_{j_{2}}^{i n}$ active factors.
$N^{P_{1} P_{2} \ldots P_{r}}$ wich is named S-active cone.
$N^{p_{1} p_{2} \ldots p_{r}}=\left\{n \in N_{p_{1} p_{2} \ldots p_{r}} \mid n\right.$ has $p_{1}^{i_{1}}, p_{2}^{i_{2}}, \ldots, p_{r}^{j_{r}}$ active factors $\}$.
Obviousiy, if $n \in N^{P_{1} P_{2}-P_{r}}$, then $i_{k} \in\left(i_{k\left(i_{j}\right)}, i_{k}^{\left(i_{j}\right)}\right)$ with $k \neq j$ and $k, j \in\{1,2, \ldots, r\}$.

REFERENCES

[1] I. Bālăcenoiu,
Smarrandache Numerical Functions, Smarandache Function Journal, Vol. 4-5, No.1, (1994), p.6-13.
[2] I. Băläcenoiu, V. Seleacu Some proprieties of Smarandache functions of the type I Smarandache Function Journal, Vol. 6, (1995).
[3] P. Gronas
[4] F. Smarandache
A proof of the non-existence of "Samma". Smarandache Function Journal, Vol. 4-5, No.1, (1994), p.22-23.

A function in the Number Theory. An.Univ.Timiṣoara, seria st.mat. Vol.XVIII, fasc. 1, p.79-88, 1980.

