# THE NORMAL BEHAVIOR OF THE SMARANDACHE FUNCTION 

## Kevin Ford

Let $S(n)$ be the smallest integer $k$ so that $n \mid k!$. This is known as the Smarandache function and has been studied by many authors. If $P(n)$ denotes the largest prime factor of $n$, it is clear that $S(n) \geqslant P(n)$. In fact, $S(n)=P(n)$ for most $n$, as noted by Erdös [E]. This means that the number, $N(x)$, of $n \leqslant x$ for which $S(n) \neq P(n)$ is $o(x)$. In this note we prove an asymptotic formula for $N(x)$.

First, denote by $\rho(u)$ the Dickman function, defined by

$$
\rho(u)=1 \quad(0 \leqslant u \leqslant 1), \quad \rho(u)=1-\int_{1}^{u} \frac{\rho(v-1)}{v} d v \quad(u>1) .
$$

For $u>1$ let $\xi=\xi(u)$ be defined by

$$
u=\frac{e^{\xi}-1}{\xi}
$$

It can be easily shown that

$$
\xi(u)=\log u+\log _{2} u+O\left(\frac{\log _{2} u}{\log u}\right)
$$

where $\log _{k} x$ denotes the $k$ th iterate of the logarithm function. Finally, let $u_{0}=$ $u_{0}(x)$ be defined by the equation

$$
\log x=u_{0}^{2} \xi\left(u_{0}\right)
$$

The function $u_{0}(x)$ may also be defined directly by

$$
\log x=u_{0}\left(x^{1 / u_{0}^{2}}-1\right)
$$

It is straightforward to show that

$$
\begin{equation*}
u_{0}=\left(\frac{2 \log x}{\log _{2} x}\right)^{\frac{1}{2}}\left(1-\frac{\log _{3} x}{2 \log _{2} x}+\frac{\log 2}{2 \log _{2} x}+O\left(\left(\frac{\log _{3} x}{\log _{2} x}\right)^{2}\right)\right) \tag{1}
\end{equation*}
$$

We can now state our main result.

## Theorem 1. We have

$$
N(x) \sim \frac{\sqrt{\pi}(1+\log 2)}{2^{3 / 4}}\left(\log x \log _{2} x\right)^{3 / 4} x^{1} \quad{ }^{1 / u_{0}} \rho\left(u_{0}\right) .
$$

There is no way to write the asymptotic formula in terms of "simple" functions, but we can get a rough approximation.

Corollary 2. We have

$$
N(x)=x \exp \left\{-(\sqrt{2}+o(1)) \sqrt{\log x \log _{2} x}\right\}
$$

The asymptotic formula can be made a bit simpler, without reference to the function $\rho$ as follows.

Corollary 3. We have

$$
N(x) \sim \frac{e^{\gamma}(1+\log 2)}{2 \sqrt{2}}(\log x)^{\frac{1}{2}}\left(\log _{2} x\right) x^{1} 2 / u_{0} \exp \left\{\int_{0}^{\frac{\log x}{u_{0}^{2}}} \frac{e^{v}-1}{v} d v\right\}
$$

where $\gamma=0.5772 \ldots$ is the Euler-Mascheroni constant.
This will follow from Theorem 1 using the formula in Lemma 2 which relates $\rho(u)$ and $\xi(u)$.

The distribution of $S(n)$ is very closely related to the distribution of the function $P(n)$. We begin with some standard estimates of the function $\Psi(x, y)$, which denotes the number of integers $n \leqslant x$ with $P(n) \leqslant y$.

Lemma 1 [HT, Theorem 1.1]. For every $\epsilon>0$,

$$
\Psi(x, y)=x \rho(u)\left(1+O\left(\frac{\log (u+1)}{\log y}\right)\right), \quad u=\frac{\log x}{\log y}
$$

uniformly in $1 \leqslant u \leqslant \exp \left\{(\log y)^{3 / 5} \epsilon\right\}$.
Lemma 2 [HT, Theorem 2.1]. For $u \geqslant 1$,

$$
\begin{aligned}
\rho(u) & =\left(1+O\left(\frac{1}{u}\right)\right) \sqrt{\frac{\xi^{\prime}(u)}{2 \pi}} \exp \left\{\gamma-\int_{1}^{u} \xi(t) d t\right\} \\
& =\exp \left\{-u\left(\log u+\log _{2} u-1+O\left(\frac{\log _{2} u}{\log u}\right)\right)\right\}
\end{aligned}
$$

Lemma 3 [HT, Corollary 2.4]. If $u>2,|v| \leqslant u / 2$, then

$$
\rho(u-v)=\rho(u) \exp \left\{v \xi(u)+O\left(\left(1+v^{2}\right) / u\right)\right\}
$$

Further, if $u>1$ and $0 \leqslant v \leqslant u$ then

$$
\rho(u-v) \ll \rho(u) e^{v \xi(u)}
$$

We will show that most of the numbers counted in $N(x)$ have

$$
P(n) \approx \exp \left\{\sqrt{\frac{1}{2} \log x \log _{2} x}\right\}
$$

Let

$$
Y_{1}=\exp \left\{\frac{1}{3} \sqrt{\log x \log _{2} x}\right\}, \quad Y_{2}=Y_{1}^{6}=\exp \left\{2 \sqrt{\log x \log _{2}}\right\}
$$

Let $N_{1}$ be the number of $n$ counted by $N(x)$ with $P(n) \leqslant Y_{1}$, let $N_{2}$ be the number of $n$ with $P(n) \geqslant Y_{2}$, and let $N_{3}=N(x)-N_{1}-N_{2}$. By Lemmas 1 and 2,

$$
N_{1} \leqslant \Psi\left(x, Y_{1}\right)=x \exp \left\{-(1.5+o(1)) \sqrt{\log x \log _{2} x}\right\}
$$

For the remaining $n \leqslant x$ counted by $N(x)$, let $p=P(n)$. Then either $p^{2} \mid n$ or for some prime $q<p$ and $b \geqslant 2$ we have $q^{b} \| n, q^{b} \nmid p$ !. Since $p$ ! is divisible by $q^{[p / q]}$ and $b \leqslant 2 \log x$, it follows that $q>p /(3 \log x)>p^{1 / 2}$. In all cases $n$ is divisible by the square of a prime $\geqslant Y_{2} /(3 \log x)$ and therefore

$$
N_{2} \leqslant \sum_{p \geqslant \frac{Y_{2}}{3 \log x}} \frac{x}{p^{2}} \leqslant \frac{6 x \log x}{Y_{2}} \ll x \exp \left\{-1.9 \sqrt{\log x \log _{2} x}\right\}
$$

Since $q>p^{1 / 2}$ it follows that $q^{[p / q]} \| p$. If $n$ is counted by $N_{3}$, there is a number $b \geqslant 2$ and prime $q \in[p / b, p]$ so that $q^{b} \mid n$. For each $b \geqslant 2$, let $N_{3, b}(x)$ be the number of $n$ counted in $N_{3}$ such that $q^{b} \| n$ for some prime $q \geqslant p / b$. We have

$$
\sum_{b \geqslant 6} N_{3, b} \ll x\left(\frac{3 \log x}{Y_{1}}\right)^{5} \ll x \exp \left\{-(5 / 3+o(1)) \sqrt{\log x \log _{2} x}\right\}
$$

Next, using Lemma 1 and the fact that $\rho$ is decreasing, for $3 \leqslant b \leqslant 5$ we have

$$
\begin{aligned}
N_{3, b} & =\sum_{Y_{1}<p<Y_{2}}\left(\Psi\left(\frac{x}{p^{b}}, p\right)+\sum_{p / b \leqslant q<p} \Psi\left(\frac{x}{p q^{b}}, q\right)\right) \\
& \ll x \sum_{Y_{1}<p<Y_{2}}\left(\frac{1}{p^{b}} \rho\left(\frac{\log x}{\log p}-b\right)+\sum_{p / 2<q<p} \frac{1}{p q^{b}} \rho\left(\frac{\log x-\log p-b \log q}{\log p}\right)\right) \\
& \ll x \sum_{Y_{1}<p<Y_{2}} p^{b} \rho\left(\frac{\log x}{\log p}-(b+1)\right) .
\end{aligned}
$$

By partial summation, the Prime Number Theorem, Lemma 2 and some algebra,

$$
N_{3, b} \ll \exp \left\{-(1.5+o(1)) \sqrt{\log x \log _{2} x}\right\}
$$

The bulk of the contribution to $N(x)$ will come from $N_{3,2}$. Using Lemma 1 we obtain

$$
\begin{align*}
& N_{3,2}=\sum_{Y_{1}<p<Y_{2}}\left(\Psi\left(\frac{x}{p^{2}}, p\right)+\sum_{\frac{p}{2}<q<p} \Psi\left(\frac{x}{p q^{2}}, q\right)\right)  \tag{2}\\
& \quad=\left(1+O\left(\sqrt{\frac{\log x}{\log x}}\right)\right) x \sum_{Y_{1}<p<Y_{2}}\left(\frac{\rho\left(\frac{\log x}{\log p}-2\right)}{p^{2}}+\sum_{p / 2<q<p} \frac{\rho\left(\frac{\log x \log p}{\log q}-2\right)}{p q^{2}}\right)
\end{align*}
$$

By Lemma 3, we can write

$$
\rho\left(\frac{\log x-\log p}{\log q}-2\right)=\rho\left(\frac{\log x}{\log q}-3\right)\left(1+O\left(\sqrt{\frac{\log _{2} x}{\log x}}\right)\right)
$$

The contribution in (2) from $p$ near $Y_{1}$ or $Y_{2}$ is negligible by previous analysis, and for fixed $q \in\left[Y_{1}, Y_{2} / 2\right]$ the Prime Number Theorem implies

$$
\sum_{q<p<2 q} \frac{1}{p}=\frac{\log 2}{\log q}+O\left((\log q)^{2}\right)=\frac{\log 2}{\log p}+O\left(\frac{1}{\log ^{2} Y_{1}}\right)
$$

Reversing the roles of $p, q$ in the second sum in (2), we obtain

$$
N_{3,2}=\left(1+O\left(\sqrt{\frac{\log _{2} x}{\log x}}\right)\right) x \sum_{Y_{1}<p<Y_{2}} \frac{1}{p^{2}}\left(\rho\left(\frac{\log x}{\log p}-2\right)+\frac{\log 2}{\log p} \rho\left(\frac{\log x}{\log p}-3\right)\right)
$$

By partial summation, the Prime Number Theorem with error term, and the change of variable $u=\log x / \log p$,

$$
\begin{equation*}
N_{3,2}=\left(1+O\left(\sqrt{\frac{\log 2 x}{\log x}}\right)\right) x \int_{u_{1}}^{u_{2}}\left(\frac{\rho(u-2)}{u}+\frac{\log 2}{\log x} \rho(u-3)\right) x^{1 / u} d u \tag{3}
\end{equation*}
$$

where

$$
u_{1}=\frac{1}{2} \sqrt{\frac{\log x}{\log _{2} x}}, \quad u_{2}=6 u_{1}
$$

The integrand attains its maximum value near $u=u_{0}$ and we next show that the most of the contribution of the integral comes from $u$ close to $u_{0}$. Let

$$
w_{0}=\frac{u_{0}}{100}, \quad w_{1}=K \sqrt{u_{0}}, \quad w_{2}=w_{1}\left(\frac{\log _{3} x}{\log _{2} x}\right)^{1 / 2}
$$

where $K$ is a large absolute constant. Let $I_{1}$ be the contribution to the integral in (3) with $\left|u-u_{0}\right|>w_{0}$, let $I_{2}$ be the contribution from $w_{1}<\left|u-u_{0}\right| \leqslant w_{0}$, let $I_{3}$ be the contribution from $w_{2}<\left|u-u_{0}\right| \leqslant w_{1}$, and let $I_{4}$ be the contribution from $\left|u-u_{0}\right| \leqslant w_{2}$. First, by Lemma 2, the integrand in (3) is

$$
\exp \left\{-\left(\frac{1}{c}-\frac{c}{2}+o(1)\right) \sqrt{\log x \log _{2} x}\right\}, \quad c=\left(\frac{\log _{2} x}{\log x}\right) u
$$

The function $1 / c+c / 2$ has a minimum of $\sqrt{2}$ at $c=\sqrt{2}$, so it follows that

$$
I_{1} \ll \exp \left\{-\left(\sqrt{2}+10^{5}\right) \sqrt{\log x \log _{2} x}\right\}
$$

Let $u=u_{0}-v$. For $w_{1} \leqslant|v| \leqslant w_{0}$, Lemma 2 and the definition (1) of $u_{0}$ imply that the integrand in (3) is

$$
\begin{aligned}
& \leqslant \rho\left(u_{0}\right) \exp \left\{v \xi\left(u_{0}\right)-\frac{\log x}{u_{0}}\left(1+\frac{v}{u_{0}}+\frac{v^{2}}{u_{0}^{2}}+\frac{v^{3}}{u_{0}^{3}}\right)+O\left(\frac{v^{2}}{u_{0}}+\log u_{0}\right)\right\} \\
& \leftrightarrow \rho\left(u_{0}\right) x^{1 / u_{0}} \exp \left\{-\frac{v^{2}}{u_{0}^{3}} \log x+O\left(\frac{v^{2}}{u_{0}}+\log u_{0}\right)\right\} \\
& \leftrightarrow \rho\left(u_{0}\right) x^{1 / u_{0}} \exp \left\{-0.9 \frac{v^{2}}{u_{0}^{3}} \log x\right\}
\end{aligned}
$$

for $K$ large enough. It follows that

$$
I_{2} \ll u_{0} \rho\left(u_{0}\right) x^{1 / u_{0}} \exp \left\{-20 \log _{2} x\right\} \ll(\log x)^{10} \rho\left(u_{0}\right) x^{1 / u_{0}}
$$

For the remaining $u$, we first apply Lemma 3 with $v=2$ and $v=3$ to obtain

$$
I_{3}+I_{4}=\left(1+O\left(\sqrt{\frac{\log 2 x}{\log x}}\right)\right) \int_{u_{0} w_{1}}^{u_{0}+w_{1}} \rho(u) x^{1 / u}\left(\frac{e^{2 \xi(u)}}{u}+\frac{\log 2}{\log x} e^{3 \xi(u)}\right) d u
$$

We will show that $I_{3}+I_{4} \gg \rho\left(u_{0}\right) x^{1 / u_{0}}(\log x)^{3 / 2}$, which implies

$$
\begin{equation*}
N(x)=\left(1+O\left(\sqrt{\frac{\log _{2} x}{\log x}}\right)\right) \int_{u_{0} w_{1}}^{u_{0}+w_{1}} \rho(u) x^{1 / u}\left(\frac{e^{2 \xi(u)}}{u}+\frac{\log 2}{\log x} e^{3 \xi(u)}\right) d u \tag{4}
\end{equation*}
$$

This provides an asymptotic formula for $N(x)$, but we can simplify the expression somewhat at the expense of weakening the error term. First, we use the formula

$$
\xi(u)=\log u+\log _{2} u+O\left(\frac{\log _{2} u}{\log u}\right)
$$

and then use $u=u_{0}+O\left(u_{0}^{1 / 2}\right)$ and (1) to obtain

$$
I_{3}+I_{4}=\left(1+O\left(\frac{\log _{3} x}{\log _{2} x}\right)\right) \frac{\sqrt{2}}{4}(1+\log 2) x(\log x)^{\frac{1}{2}}\left(\log _{2} x\right)^{\frac{3}{2}} \int_{u_{0} w_{1}}^{u_{0}+w_{1}} \rho(u) x^{1 / u} d u
$$

By Lemma 3, when $w_{2} \leqslant|v| \leqslant w_{1}$, where $u=u_{0}-v$, we have

$$
\begin{aligned}
\rho\left(u_{0}-v\right) x^{\frac{1}{u_{0}} v} & \ll \rho\left(u_{0}\right) x^{\frac{1}{u_{0}}} \exp \left\{v \xi\left(u_{0}\right)-\frac{\log x}{u_{0}}\left(\frac{v}{u_{0}}+\frac{v^{2}}{u_{0}^{2}}+\frac{v^{3}}{u_{0}^{3}}\right)\right\} \\
& \ll \rho\left(u_{0}\right) x^{\frac{1}{u_{0}}} \exp \left\{-\frac{v^{2}}{u_{0}^{3}} \log x\right\} \\
& \ll \rho\left(u_{0}\right) x^{\frac{1}{u_{0}}} \exp \left\{-\frac{w_{2}^{2}}{u_{0}^{3}} \log x\right\} \\
& \ll \rho\left(u_{0}\right) x^{\frac{1}{u_{0}}}\left(\log _{2} x\right)^{3}
\end{aligned}
$$

provided $K$ is large enough. This gives

$$
\int_{w_{2} \leqslant\left|u u_{0}\right| \leqslant w_{1}} \rho(u) x^{1 / u} d u \ll \rho\left(u_{0}\right) x^{1 / u_{0}}(\log x)^{1 / 4}\left(\log _{2} x\right)^{3.5}
$$

For the remaining $v$, Lemma 3 gives

$$
\rho\left(u_{0}-v\right) x^{1 /\left(u_{0} v\right)}=\left(1+O\left(\frac{\log _{3} x}{\log _{2} x}\right)\right) \rho\left(u_{0}\right) x^{1 / u_{0}} \exp \left\{-\frac{v^{2}}{u_{0}^{3}} \log x\right\}
$$

Therefore,

$$
\rho\left(u_{0}\right)^{1} x^{\frac{1}{u_{0}}} \int_{u_{0} w_{2}}^{u_{0}+w_{2}} \rho(u) x^{1 / u} d u=\left(1+O\left(\frac{\log _{3} x}{\log _{2} x}\right)\right) \int_{w_{2}}^{w_{2}} \exp \left\{-v^{2} \frac{\log x}{u_{0}^{3}}\right\} d v
$$

The extension of the limits of integration to ( $-\infty, \infty$ ) introduces another factor $1+O\left(\left(\log _{2} x\right)^{1}\right)$, so we obtain

$$
I_{3}+I_{4}=\left(1+O\left(\frac{\log _{3} x}{\log _{2} x}\right)\right) \frac{\sqrt{\pi}(1+\log 2)}{2^{3 / 4}}\left(\log x \log _{2} x\right)^{3 / 4} \rho\left(u_{0}\right) x^{\frac{1}{u_{0}}}
$$

and Theorem 1 follows. Corollary 2 follows immediately from Theorem 1 and (1). To obtain Corollary 3, we first observe that $\xi^{\prime}(u) \sim u^{1}$ and next use Lemma 2 to write

$$
\rho\left(u_{0}\right) \sim \frac{e^{\gamma}}{\sqrt{2 \pi u_{0}}} \exp \left\{-\int_{1}^{u_{0}} \xi(t) d t\right\}
$$

By the definitions of $\xi$ and $u_{0}$ we then obtain

$$
\begin{aligned}
\int_{1}^{u_{0}} \xi(t) d t & =\int_{0}^{\xi\left(u_{0}\right)} e^{v}-\frac{e^{v}-1}{v} d v \\
& =e^{\xi\left(u_{0}\right)}-1-\int_{0}^{\xi\left(u_{0}\right)} \frac{e^{v}-1}{v} d v \\
& =\frac{\log x}{u_{0}}-\int_{0}^{\frac{\log x}{u_{0}^{2}}} \frac{e^{v}-1}{v} d v
\end{aligned}
$$

Corollary 3 now follows from (1).

## References

[E] P. Erdös, Problem 6674, Amer. Math. Monthly 98 (1991), 965.
[HT] A. Hildebrandt and G. Tenenbaum, Integers without large prime factors, J. Théor. Nombres Bordeaux 5 (1993), 411-484.

