<u>THE SOLUTION OF THE DIOPHANTINE EQUATION</u> $\sigma_{\eta}(n) = n \quad (\Omega)$

by Pål Grønås

This problem is closely connected to Problem 29916 in the first issue of the "Smarandache Function Journal" (see page 47 in [1]). The question is: "Are there an infinity of nonprimes n such that $\sigma_{\eta}(n) = n$?". My calculations will show that the answer is negative.

Let us move on to the first step in deriving the solution of (Ω) . As the wording of Problem 29916 indicates, (Ω) is satisfied if n is a prime. This is not the case for n = 1 because $\sigma_n(1) = 0$.

Suppose $\prod_{i=1}^{k} p_i^{r_i}$ is the prime factorization of a composite number $n \ge 4$, where p_1, \ldots, p_k are distinct primes, $r_i \in \mathbb{N}$ and $p_1 r_1 \ge p_i r_i$ for all $i \in \{1, \ldots, k\}$ and $p_i < p_{i+1}$ for all $i \in \{2, \ldots, k-1\}$ whenever $k \ge 3$.

First of all we consider the case where k = 1 and $r_1 \ge 2$. Using the fact that $\eta(p_1^{s_1}) \le p_1 s_1$ we see that $p_1^{r_1} = n = \sigma_\eta(n) = \sigma_\eta(p_1^{r_1}) = \sum_{s_1=0}^{r_1} \eta(p_1^{s_1}) \le \sum_{s_1=0}^{r_1} p_1 s_1 = \frac{p_1 r_1(r_1+1)}{2}$. Therefore $2p_1^{r_1-1} \le r_1(r_1+1)$ (Ω_1) for some $r_1 \ge 2$. For $p_1 \ge 5$ this inequality (Ω_1) is not satisfied for any $r_1 \ge 2$. So $p_1 < 5$, which means that $p_1 \in \{2,3\}$. By the help of (Ω_1) we can find a supremum for r_1 depending on the value of p_1 . For $p_1 = 2$ the actual candidates for r_1 are 2, 3, 4 and for $p_1 = 3$ the only possible choice is $r_1 = 2$. Hence there are maximum 4 possible solution of (Ω) in this case, namely n = 4, 8, 9 and 16. Calculating $\sigma_\eta(n)$ for each of these 4 values, we get $\sigma_\eta(4) = 6$, $\sigma_\eta(8) = 10$, $\sigma_\eta(9) = 9$ and $\sigma_\eta(16) = 16$. Consequently the only solutions of (Ω) are n = 9 and n = 16.

Next we look at the case when $k \geq 2$:

$$n = \sigma_{\eta}(n)$$

Substituting n with it's prime factorization we get

$$\begin{split} \prod_{i=1}^{k} p_{i}^{r_{i}} &= \sigma_{\eta} (\prod_{i=1}^{k} p_{i}^{r_{i}}) = \sum_{\substack{d|n \\ d>0}} \eta(d) = \sum_{s_{1}=0}^{r_{1}} \cdots \sum_{s_{k}=0}^{r_{k}} \eta(\prod_{i=1}^{k} p_{i}^{s_{i}}) \\ &= \sum_{s_{1}=0}^{r_{1}} \cdots \sum_{s_{k}=0}^{r_{k}} \max\{\eta(p_{1}^{s_{1}}), \dots, \eta(p_{k}^{s_{k}})\} \\ &\leq \sum_{s_{1}=0}^{r_{1}} \cdots \sum_{s_{k}=0}^{r_{k}} \max\{p_{1} s_{1}, \dots, p_{k} s_{k}\} \text{ since } \eta(p_{i}^{s_{i}}) \leq p_{i} s_{i} \\ &< \sum_{s_{1}=0}^{r_{1}} \cdots \sum_{s_{k}=0}^{r_{k}} \max\{p_{1} r_{1}, \dots, p_{k} r_{k}\} \text{ because } s_{i} \leq r_{i} \\ &= \sum_{s_{1}=0}^{r_{1}} \cdots \sum_{s_{k}=0}^{r_{k}} p_{1} r_{1} \quad (p_{1} r_{1} \geq p_{i} r_{i} \text{ for } i \geq 2) \\ &\leq p_{1} r_{1} \prod_{i=1}^{k} (r_{i} + 1), \end{split}$$

which is equivalent to

$$\prod_{i=2}^{k} \frac{p_i^{r_i}}{r_i+1} < \frac{p_1 r_1 (r_1+1)}{p_1^{r_1}} = \frac{r_1 (r_1+1)}{p_1^{r_1-1}} \quad (\Omega_2)$$

This inequality motivates a closer study of the functions $f(x) = \frac{a^x}{x+1}$ and $g(x) = \frac{x(x+1)}{b^{x-1}}$ for $x \in [1, \infty)$, where a and b are real constants ≥ 2 . The derivatives of these two functions are $f'(x) = \frac{a^x}{(x+1)^2}[(x+1)\ln a - 1]$ and $g'(x) = \frac{(-\ln b)x^2 + (2-\ln b)x+1}{b^{x-1}}$. Hence f'(x) > 0 for $x \geq 1$ since $(x+1)\ln a - 1 \geq (1+1)\ln 2 - 1 = 2\ln 2 - 1 > 0$. So f is increasing on $[1, \infty)$. Moreover g(x) reaches its absolute maximum value for $x = \max\{1, \frac{2-\ln b + \sqrt{(\ln b)^2 + 4}}{2\ln b} = \hat{x}\}$. Now $\sqrt{(\ln b)^2 + 4} < \ln b + 2$ for $b \geq 2$, which implies that $\hat{x} < \frac{(2-\ln b) + (\ln b+2)}{2\ln b} = \frac{2}{\ln b} \leq \frac{2}{\ln 2} < 3$. Furthermore it is worth mentioning that $f(x) \to \infty$ and $g(x) \to 0$ as $x \to \infty$.

Applying this to our situation means that $\frac{p_1^{r_1}}{r_1+1}$ $(i \ge 2)$ is strictly increasing from $\frac{p_1}{2}$ to ∞ . Besides $\frac{r_1(r_1+1)}{p_1^{r_1-1}} \le \max\{2, \frac{6}{p_1}, \frac{12}{p_1^2}\} = \max\{2, \frac{6}{p_1}\} \le 3$ because $\frac{6}{p_1} \ge \frac{12}{p_1^2}$ whenever $p_1 \ge 2$. Combining this knowledge with (Ω_2) we get that $\prod_{i=2}^k \frac{p_i}{2} \le \prod_{i=2}^k \frac{p_1^{r_1}}{r_1+1} < \frac{r_1(r_1+1)}{p_1^{r_1-1}} \le \frac{r_1(r_1+1)}{2r_1-1} \le 3$ (Ω_3) for all $r_1 \in \mathbb{N}$. In other words, $\prod_{i=2}^k \frac{p_i}{2} < 3$. Now $\prod_{i=2}^4 \frac{p_i}{2} \ge \frac{2}{2} \cdot \frac{3}{2} \cdot \frac{5}{2} = \frac{15}{4} > 3$, which implies that $k \le 3$.

Let us assume k = 2. Then (Ω_2) and (Ω_3) state that $\frac{p_2^{r_2}}{r_2+1} < \frac{r_1(r_1+1)}{p_1^{r_1-1}}$ and $\frac{p_2}{2} < 3$, i.e. $p_2 < 6$. Next we suppose $r_2 \ge 3$. It is obvious that $p_1 p_2 \ge 2 \cdot 3 = 6$, which is equivalent to $p_2 \ge \frac{6}{p_1}$. Using this fact we get $\frac{p_2^3}{4} \le \frac{p_2^{r_2}}{r_2+1} < \frac{r_1(r_1+1)}{p_1^{r_1-1}} \le \max\{2, \frac{6}{p_1}\} \le \max\{2, p_2\} = p_2$, so $p_2^2 < 4$. Accordingly $p_2 < 2$, a contradiction which implies that $r_2 \le 2$. Hence $p_2 \in \{2, 3, 5\}$ and $r_2 \in \{1, 2\}$.

Futhermore $1 \leq \frac{p_2}{2} \leq \frac{p_2^{r_2}}{r_2+1} < \frac{r_1(r_1+1)}{p_1^{r_1-1}} \leq \frac{r_1(r_1+1)}{2^{r_1-1}}$, which implies that $r_1 \leq 6$. Consequently, by fixing the values of p_2 and r_2 , the inequalities $\frac{r_1(r_1+1)}{p_1^{r_1-1}} > \frac{p_2^{r_2}}{r_2+1}$ and $p_1 r_1 \geq p_2 r_2$ give us enough information to determine a supremum (less than 7) for r_1 for each value of p_1 .

This is just what we have done, and the result is as follows:

p2	r ₂	<i>p</i> ₁	r ₁	$n = p_1^{r_1} p_2^{r_2}$	$\sigma_{\eta}(n)$	IF $\sigma_{\eta}(n) = n$ THEN
2	1	3	$1 \leq r_1 \leq 3$	$2 \cdot 3^{r_1}$	$2 + 3r_1(r_1 + 1)$	3 2
2	1	5	$1 \le r_1 \le 2$	$2 \cdot 5^{r_1}$	$2+5r_1(r_1+1)$	5 2
2	1	$p_1 \geq 7$	1	2p1	$2 + 2p_1$	0 = 2
2	2	3	2	36	34	34 = 36
2	2	$p_1 \geq 5$	1	$4p_1$	$3p_1 + 6$	$p_1 = 6$
3	1	2	$2 \le r_1 \le 5$	$3 \cdot 2^{r_1}$	$2r_1^2 - 2r_1 + 12$	$r_1 = 3$
3	1	$p_1 \geq 5$	1	3p1	$2p_1 + 3$	$p_1 = 3$
5	1	2	3	40	30	30 = 40

By looking at the rightmost column in the table above, we see that there are only contradictions except in the case where $n = 3 \cdot 2^{r_1}$ and $r_1 = 3$. So $n = 3 \cdot 2^3 = 24$ and $\sigma_{\eta}(24) = 24$. In other words, n = 24 is the only solution of (Ω) when k = 2. Finally, suppose k = 3. Then we know that $\frac{p_2}{2} \cdot \frac{p_3}{2} < 3$, i.e. $p_2 p_3 < 12$. Hence $p_2 = 2$ and $p_3 \ge 3$. Therefore $\frac{r_1(r_1+1)}{p_1^{r_1-1}} \le \frac{r_1(r_1+1)}{3^{r_1-1}} \le 2$ (Ω_4) and by applying (Ω_3) we find that $\prod_{i=2}^3 \frac{p_i}{2} = \frac{p_3}{2} < 2$, giving $p_3 = 3$.

Combining the two inequalities (Ω_2) and (Ω_4) we get that $\frac{2^{r_2}}{r_2+1} \cdot \frac{3^{r_3}}{r_3+1} < 2$. Knowing that the left side of this inequality is a product of two strictly increasing functions on $[1, \infty)$, we see that the only possible choices for r_2 and r_3 are $r_2 = r_3 = 1$. Inserting these values in (Ω_2) , we get $\frac{2^i}{1+1} \cdot \frac{3^i}{1+1} = \frac{3}{2} < \frac{r_1(r_1+1)}{p_1^{r_1-1}} \leq \frac{r_1(r_1+1)}{5^{r_1-1}}$. This implies that $r_1 = 1$. Accordingly (Ω) is satisfied only if $n = 2 \cdot 3 \cdot p_1 = 6 p_1$:

$$\begin{aligned} 6 p_1 &= \sigma_{\eta}(6 p_1) \\ &= \eta(1) + \eta(2) + \eta(3) + \eta(6) + \sum_{i=0}^{1} \sum_{j=0}^{1} \eta(2^i 3^j p_1) \\ &= 0 + 2 + 3 + 3 + \sum_{i=0}^{1} \sum_{j=0}^{1} \max\{\eta(p_1), \eta(2^i 3^j)\} \\ &= 8 + \sum_{i=0}^{1} \sum_{j=0}^{1} \max\{p_1, \eta(2^i 3^j)\} \\ &= 8 + 4 p_1 \text{ because } \eta(2^i 3^j) \leq 3 < p_1 \text{ for all } i, j \in \{0, 1\} \\ &\Downarrow \\ p_1 &= 4 \end{aligned}$$

which contradicts the fact that $p_1 \ge 5$. Therefore (Ω) has no solution for k = 3.

<u>Conclusion</u>: $\sigma_n(n) = n$ if and only if n is a prime, n = 9, n = 16 or n = 24.

<u>REMARK</u>: A consequence of this work is the solution of the inequality $\sigma_{\eta}(n) > n$ (*). This solution is based on the fact that (*) implies (Ω_2) .

So $\sigma_n(n) > n$ if and only if n = 8, 12, 18, 20 or n = 2p where p is a prime. Hence $\sigma_n(n) \le n + 4$ for all $n \in \mathbb{N}$.

Moreover, since we have solved the inequality $\sigma_{\eta}(n) \ge n$, we also have the solution of $\sigma_{\eta}(n) < n$.

References

[1] Smarandache Function Journal, Number Theory Publishing Co., Phoenix, New York, Lyon, Vol. 1, No. 1, 1990.

Pål Grønås, Enges gate 12, N-7500 Stjørdal, NORWAY.