THE SOLUTION OF THE DIOPHANTINE EQUATION $\sigma_{\eta}(n)=n(\Omega)$

by Pål Gronảs

This problem is closely connected to Problem 29916 in the first issue of the "Smarandache Function Journal" (see page 47 in [1]). The question is: "Are there an infinity of nonprimes n such that $\sigma_{n}(n)=n$?". My calculations will show that the answer is negative.

Let us move on to the first step in deriving the solution of (Ω). As the wording of Problem 29916 indicates, (Ω) is satisfied if n is a prime. This is not the case for $n=1$ because $\sigma_{\eta}(1)=0$.

Suppose $\prod_{i=1}^{k} p_{i}^{T_{i}}$ is the prime factorization of a composite number $n \geq 4$, where $p_{1} \ldots, p_{k}$ are distinct primes, $r_{i} \in N$ and $p_{1} r_{1} \geq p_{i} r_{i}$ for all $i \in\{1, \ldots, k\}$ and $p_{i}<p_{i+1}$ for all $i \in\{2, \ldots, k-1\}$ whenever $k \geq 3$.

First of all we consider the case where $k=1$ and $r_{1} \geq 2$. Using the fact that $\eta\left(p_{1}^{\mathbf{s}_{1}}\right) \leq p_{1} s_{1}$ we see that $p_{1}^{r_{1}}=n=\sigma_{n}(n)=\sigma_{n}\left(p_{1}^{r_{1}}\right)=\sum_{s_{1}=0}^{r_{1}} \eta\left(p_{1}^{s_{1}}\right) \leq \sum_{s_{1}=0}^{r_{1}} p_{1} s_{1}=\frac{p_{1} r_{1}\left(r_{1}+1\right)}{2}$. Therefore $2 p_{1}^{r_{1}^{-1}} \leq r_{1}\left(r_{1}+1\right)\left(\Omega_{1}\right)$ for some $r_{1} \geq 2$. For $p_{1} \geq 5$ this inequality $\left(\Omega_{1}\right)$ is not satisfied for any $r_{1} \geq 2$. So $p_{1}<5$, which means that $p_{1} \in\{2,3\}$. By the help of $\left(\Omega_{1}\right)$ we can find a supremum for r_{1} depending on the value of p_{1}. For $p_{1}=2$ the actual candidates for r_{1} are 2 , 3,4 and for $p_{1}=3$ the only possible choice is $r_{1}=2$. Hence there are maximum 4 possible solution of (Ω) in this case, namely $n=4,8,9$ and 16 . Calculating $\sigma_{\eta}(n)$ for each of these 4 values, we get $\sigma_{\eta}(4)=6, \sigma_{\eta}(8)=10, \sigma_{\eta}(9)=9$ and $\sigma_{\eta}(16)=16$. Consequently the only solutions of (Ω) are $n=9$ and $n=16$.

Sext we look at the case when $k \geq 2$:

$$
n=\sigma_{\eta}(n)
$$

Substituting n with it's prime factorization we get

$$
\begin{aligned}
\prod_{i=1}^{k} p_{i}^{r_{i}} & =\sigma_{\eta}\left(\prod_{i=1}^{k} p_{i}^{r_{i}}\right)=\sum_{\substack{1 \mid n \\
d>0}} \eta(d)=\sum_{s_{1}=0}^{r_{1}} \cdots \sum_{s_{k}=0}^{r_{k}} \eta\left(\prod_{i=1}^{k} p_{i}^{s_{i}}\right) \\
& =\sum_{s_{1}=0}^{r_{1}} \cdots \sum_{s_{k}=0}^{r_{k}} \max \left\{\eta\left(p_{1}^{s_{1}}\right), \ldots, \eta\left(p_{k}^{s_{k}}\right)\right\} \\
& \leq \sum_{s_{1}=0}^{r_{1}} \cdots \sum_{s_{k}=0}^{r_{k}} \max \left\{p_{1} s_{1}, \ldots, p_{k} s_{k}\right\} \text { since } \eta\left(p_{i}^{s_{i}}\right) \leq p_{i} s_{i} \\
& <\sum_{s_{1}=0}^{r_{1}} \cdots \sum_{s_{k}=0}^{r_{k}} \max \left\{p_{1} r_{1}, \ldots, p_{k} r_{k}\right\} \text { because } s_{i} \leq r_{i} \\
& =\sum_{s_{1}=0}^{r_{i}} \cdots \sum_{s_{k}=0}^{r_{k}} p_{1} r_{1} \quad\left(p_{1} r_{1} \geq p_{i} r_{i} \text { for } i \geq 2\right) \\
& \leq p_{1} r_{1} \prod_{i=1}^{k}\left(r_{i}+1\right)
\end{aligned}
$$

which is equivalent to

$$
\begin{equation*}
\prod_{i=2}^{k} \frac{p_{i}^{r_{i}}}{r_{i}-1}<\frac{p_{1} r_{i}\left(r_{1}-1\right)}{p_{1}^{r_{i}}}=\frac{r_{1}\left(r_{1}+1\right)}{p_{1}^{r_{1}-1}} \tag{2}
\end{equation*}
$$

This inequality motivates a closer study of the functions $f(x)=\frac{a^{z}}{x+1}$ and $g(x)=\frac{x(x-1)}{j^{z-1}}$ for $x \in(1, x)$. where a and b are real constants ≥ 2. The derivatives of these two functions are $f^{\prime}(x)=\frac{x^{x}}{(x+1)^{2}}[(x+1) \ln a-1]$ and $g^{\prime}(x)=\frac{(-\ln b) x^{2}+(2-\ln b) x+1}{j^{x-1}}$. Hence $f^{\prime}(x)>0$ for $x \geq 1$ since $(x+1) \ln a-1 \geq(1+1) \ln 2-1=2 \ln 2-1>0$. So f is increasing on $(1, x)$. Moreover $g(x)$ reaches its absolute maximum value for $x=\max \left\{1, \frac{2-\ln b+\sqrt{(\ln b)^{2}-4}}{2 \ln b}=\hat{x}\right\}$. Now $\sqrt{(\ln b)^{2}+4}<\ln b+2$ for $b \geq 2$, which implies that $\hat{x}<\frac{(2-\ln b)+(\ln b-2)}{2 \ln b}=\frac{2}{\ln b} \leq \frac{2}{\ln 2}<3$. Futhermore it is worth mentioning that $f(x) \rightarrow x$ and $g(x) \rightarrow 0$ as $x \rightarrow \infty$.

Applying this to our situation means that $\frac{p_{1}^{r_{i}}}{r_{1}+1}(i \geq 2)$ is strictly increasing from $\frac{p_{2}}{2}$ to x. Besides $\frac{r_{1}\left(r_{1}+1\right)}{p_{1}^{r_{1}^{2-1}}} \leq \max \left\{2, \frac{6}{p_{1}}, \frac{12}{p_{1}^{2}}\right\}=\max \left\{2 \cdot \frac{6}{p_{1}}\right\} \leq 3$ because $\frac{8}{p_{1}} \geq \frac{12}{p_{1}^{2}}$ whenever $p_{1} \geq 2$. Combining this knowledge with $\left(\Omega_{2}\right)$ we get that $\prod_{i=2}^{k} \frac{p_{i}}{2} \leq \prod_{i=2}^{k} \frac{p_{i}^{r_{i}}}{r_{1}+1}<\frac{r_{1}\left(r_{1}+1\right)}{p_{1}^{r_{1}-1}} \leq \frac{r_{1}\left(r_{1}+1\right)}{2_{1}-1} \leq$ $3\left(\Omega_{3}\right)$ for all $r_{1} \in N$. In other words, $\prod_{i=2}^{k} \frac{p_{i}}{2}<3$. Now $\prod_{i=2}^{4} \frac{p_{i}}{2} \geq \frac{2}{2} \cdot \frac{3}{2} \cdot \frac{5}{2}=\frac{15}{4}>3$, which implies that $k \leq 3$.

Let us assume $k=2$. Then $\left(\Omega_{2}\right)$ and $\left(\Omega_{3}\right)$ state that $\frac{p_{2}^{2}}{r_{2}+1}<\frac{r_{1}\left(r_{1}+1\right)}{p_{1}^{r_{1}^{1-1}}}$ and $\frac{p_{2}}{2}<3$, i.e. $p_{2}<6$. Next we suppose $r_{2} \geq 3$. It is obvious that $p_{1} p_{2} \geq 2 \cdot 3=6$, which is equivalent to $p_{2} \geq \frac{6}{p_{1}}$. Using this fact we get $\frac{p_{2}^{3}}{4} \leq \frac{p_{2}^{\prime 2}}{r_{2}+1}<\frac{r_{2}\left(r_{2}+1\right)}{p_{1}^{r_{1}^{1-1}}} \leq \max \left\{2, \frac{6}{p_{1}}\right\} \leq \max \left\{2, p_{2}\right\}=p_{2}$, so $p_{2}^{2}<4$. Accordingly $p_{2}<2$, a contradiction which implies that $r_{2} \leq 2$. Hence $p_{2} \in\{2,3,5\}$ and $r_{2} \in\{1,2\}$.

Futhermore $1 \leq \frac{p_{2}}{2} \leq \frac{p_{2}^{r_{2}}}{r_{2}+1}<\frac{r_{1}\left(r_{1}+1\right)}{p_{1}^{r_{1}-1}} \leq \frac{r_{1}\left(r_{1}+1\right)}{2^{r_{1}-1}}$, which implies that $r_{1} \leq 6$. Consequently, by fixing the values of p_{2} and r_{2}, the inequalities $\frac{r_{1}\left(r_{1}+1\right)}{p_{1}^{r_{1}-1}}>\frac{p_{2}^{r_{2}}}{r_{2}+1}$ and $p_{1} r_{1} \geq p_{2} r_{2}$ give us enough information to determine a supremum (less than 7) for r_{1} for each value of p_{1}.

This is just what we have done, and the result is as follows:

p_{2}	r_{2}	p_{1}	r_{1}	$n=p_{1}^{r_{1}} p_{2}^{r_{2}}$	$\sigma_{n}(n)$	IF $\sigma_{n}(n)=n$ THEN
2	1	3	$1 \leq r_{1} \leq 3$	$2 \cdot 3^{r_{1}}$	$2+3 r_{1}\left(r_{1}+1\right)$	$3 \mid 2$
2	1	5	$1 \leq r_{1} \leq 2$	$2 \cdot 5^{r_{1}}$	$2+5 r_{1}\left(r_{1}+1\right)$	$5 \mid 2$
2	1	$p_{1} \geq 7$	1	$2 p_{1}$	$2+2 p_{1}$	$0=2$
2	2	3	2	36	34	$34=36$
2	2	$p_{1} \geq 5$	1	$4 p_{1}$	$3 p_{1}+6$	$p_{1}=6$
3	1	2	$2 \leq r_{1} \leq 5$	$3 \cdot 2^{r_{1}}$	$2 r_{1}^{2}-2 r_{1}+12$	$r_{1}=3$
3	1	$p_{1} \geq 5$	1	$3 p_{1}$	$2 p_{1}+3$	$p_{1}=3$
5	1	2	3	40	30	$30=40$

By looking at the rightmost column in the table above, we see that there are only contradictions except in the case where $n=3 \cdot 2^{r_{1}}$ and $r_{1}=3$. So $n=3 \cdot 2^{3}=24$ and $\sigma_{n}(24)=24$. In other words, $n=24$ is the only solution of (Ω) when $k=2$.

Finally, suppose $k=3$. Then we know that $\frac{p_{2}}{2} \cdot \frac{p_{2}}{2}<3$, i.e. $p_{2} p_{3}<12$. Hence $p_{2}=2$ and $p_{3} \geq 3$. Therefore $\frac{r_{1}\left(r_{1}+1\right)}{p_{1}^{r_{1}-1}} \leq \frac{r_{1}\left(r_{1}+1\right)}{3_{1}^{r}+1} \leq 2\left(\Omega_{4}\right)$ and by applying $\left(\Omega_{3}\right)$ we find that $\prod_{i=2}^{3} \frac{2 i}{2}=\frac{23}{2}<2$, giving $p_{3}=3$.

Combining the two inequalities $\left(\Omega_{2}\right)$ and $\left(\Omega_{4}\right)$ we get that $\frac{2^{r}}{r_{2}+1} \cdot \frac{3^{r}}{r_{4}+1}<2$. Knowing that the left side of this inequality is a product of two strictly increasing functions on ($1, \infty$), we see that the only possible choices for r_{2} and r_{3} are $r_{2}=r_{3}=1$. Inserting these values in $\left(\Omega_{2}\right)$, we get $\frac{2^{1}}{1+1} \cdot \frac{3^{2}}{1+1}=\frac{3}{2}<\frac{r_{1}\left(r_{1}+1\right)}{p_{1}^{1+2}} \leq \frac{r_{1}\left(r_{1}+1\right)}{5_{1}^{2+1}}$. This implies that $r_{1}=1$. Accordingly (Ω) is satisfied only if $n=2 \cdot 3 \cdot p_{1}=6 p_{1}$:

$$
\begin{aligned}
6 p_{1} & =\sigma_{\eta}\left(6 p_{1}\right) \\
& =\eta(1)+\eta(2)+\eta(3)+\eta(6)+\sum_{i=0}^{1} \sum_{j=0}^{1} \eta\left(2^{i} 3^{j} p_{1}\right) \\
& =0+2+3+3+\sum_{i=0}^{1} \sum_{j=0}^{1} \max \left\{\eta\left(p_{1}\right), \eta\left(2^{i} 3^{j}\right)\right\} \\
& =8+\sum_{i=0}^{1} \sum_{j=0}^{1} \max \left\{p_{1}, \eta\left(2^{i} 3^{j}\right)\right\} \\
& =8+4 p_{1} \text { because } \eta\left(2^{i} 3^{j}\right) \leq 3<p_{1} \text { for all } i, j \in\{0,1\} \\
& \Downarrow \\
p_{1} & =4
\end{aligned}
$$

which contradicts the fact that $p_{1} \geq 5$. Therefore (Ω) has no solution for $k=3$.
Conclusion: $\sigma_{\eta}(n)=n$ if and only if n is a prime, $n=9, n=16$ or $n=24$.
REMARK: A consequence of this work is the solution of the inequality $\sigma_{\eta}(n)>n(*)$. This solution is based on the fact that (*) implies $\left(\Omega_{2}\right)$.

So $\sigma_{\eta}(n)>n$ if and only if $n=8,12,18,20$ or $n=2 p$ where p is a prime. Hence $\sigma_{n}(n) \leq n+4$ for all $n \in \mathbf{N}$.

Moreover, since we have solved the inequality $\sigma_{\eta}(n) \geq n$, we also have the solution of $\sigma_{7}(n)<n$.

References

[1] Smarandache Function Journal, Number Theory Publishing Co., Phoenix, New York, Lyon, Vol. 1, No. 1, 1990.

Pảl Gronảs, Enges gate 12, N-7500 Stjordal, NORWAY.

