About The $\mathbf{S}(\mathbf{n})=\mathbf{S (n}-\mathbf{S (n)})$ Equation

Mihaly Bencze
Str. Harmanului 6, 2212 Sacele 3
Jud. Brasov, Romania
Theorem 1: (M. Bencze, 1997) There exists infinitely many $n \in N$ such that $\mathrm{S}(\mathrm{n})=\mathrm{S}(\mathrm{n}-\mathrm{S}(\mathrm{n})$), where S is the Smarandache function.

Proof: Let r be a positive integer and $\mathrm{p}>\mathrm{r}$ a prime number. Then

$$
S(p r)=S(p)=S((r-1) p)=S(p r-p)=S(p r-S(p r))
$$

Remark 1.1 There exists infinitely many $\mathrm{n} \in \mathrm{N}$ such that

$$
S(n)=S(n-S(n))=S(n-S(n-S(n)))=\ldots
$$

Theorem 2: There exists infinitely many $n \in N$ such that

$$
\mathrm{S}(\mathrm{n})=\mathrm{S}(\mathrm{n}+\mathrm{S}(\mathrm{n})) .
$$

Proof:

$$
S(p r)=S(p)=S((r+1) p)=S(p r+p)=S(p r+S(p r))
$$

Remark 2.1 There exists infinitely many $n \in N$ such that
$S(n)=S(n+S(n))=S(n+S(n+S(n)))=\ldots$
Theorem 3 There exists infinitely many $n \in N$ such that

$$
S(n)=S(n \pm k S(n)) .
$$

Proof: See theorems 1 and 2.

