ALGORITHM FOR LISTING OF SMARANDACHE FACTOR PARTITIONS

(Amarnath Murthy ,S.E. (E \&T), Well Logging Services, Oil And Natural Gas Corporation Ltd. ,Sabarmati, Ahmedbad, India- 380005.)

ABSTRACT: In [1] we define SMARANDACHE FACTOR PARTITION FUNCTION (SFP), as follows:

Let $\quad \alpha_{1}, \alpha_{2}, \alpha_{3}, \ldots \alpha_{r}$ be a set of r natural numbers and $p_{1}, p_{2}, p_{3}, \ldots p_{r}$ be arbitrarily chosen distinct primes then $F\left(\alpha_{1}, \alpha_{2}, \alpha_{3}, \ldots \alpha_{r}\right)$ called the Smarandache Factor Partition of $\left(\alpha_{1}, \alpha_{2}, \alpha_{3}, \ldots \alpha_{r}\right)$ is defined as the number of ways in which the number product of its' divisors. For simplicity, we denote $F\left(\alpha_{1}, \alpha_{2}, \alpha_{3}, \ldots\right.$. $\left.\alpha_{r}\right)=F^{\prime}(N)$, where

and p_{r} is the $r^{\text {th }}$ prime. $p_{1}=2, p_{2}=3$ etc.
In this note an algorithm to list out all the SFPs of a number without missing any is developed.

DISCUSSION:

DEFINITION: $F^{\prime}{ }_{x}(y)$ is defined as the number of those SFPs of y which involve terms not greater than x.

If F_{1} be a factor partition of y :
$F_{1} \cdots x_{1} \times x_{2} X x_{3} X \ldots x_{r}$, then F_{1} is included in $F_{x}{ }^{\prime}(y)$ iff
$x_{i} \leq x$ for $1 \leq 1 \leq r$
clearly $\quad F_{x}^{\prime}(y) \leq F^{\prime}(y)$, The equality holds good iff $x \geq y$.
Example: $\mathrm{F}_{8}^{\prime}(24)=5$. Out of 7 only the last 5 are included in $\mathrm{F}_{8}(24)$.
(1) 24
(2) 12×2
(3) 8×3
(4) 6×4
(5) $6 \times 2 \times 2$
(6) $4 \times 3 \times 2$
(7) $3 \times 2 \times 2 \times 2$.

ALGORITHM: Let $d_{1}, d_{2}, d_{3}, \ldots d_{r}$ be the divisors of N in descending order. For listing the factor partitions following are the steps:
(A) (1) Start with $d_{1}=N$.
(2) Write all the factor partitions involving d_{2} and so on.
(B) While listing care should be taken that the terms from left to right should be written in descending order.
** At $d_{k} \geq N^{1 / 2} \geq d_{k+1}$, and onwards , step (B) will ensure that there is no repeatition.

Example: $N=36$, Divisors are $36,18,12,9,6,4,3,2,1$.
$36 \rightarrow 36$
$18 \rightarrow 18 \times 2$
$12 \rightarrow 12 \times 3$
$9 \rightarrow 9 \times 4$
$9 \times 2 \times 2$
$6 \rightarrow 6 \times 6$
$6 \rightarrow 6 \times 3 \times 2$

$4 \rightarrow 4 \times 3 \times 3$

3	$-\rightarrow 3 \times 3 \times 2 \times 2$
2	\rightarrow NIL
1	$-\rightarrow$ NIL

FORMULA FOR $F^{\prime}(N)$

$$
\begin{equation*}
F^{\prime}(N)=\sum_{d_{r} / N} F^{\prime} d r_{r}\left(N / d_{r}\right) \tag{8.1}
\end{equation*}
$$

Example:

$$
N=216=2^{3} 3^{3}
$$

(1) 216
(2) 108×2

$$
-\rightarrow F_{108}(2)=1
$$

(3) 72×3

$$
\cdots F_{72}(3)=1
$$

(4) 54×4

$$
\rightarrow \rightarrow F_{54}(4)=2
$$

(5) $54 \times 2 \times 2$
(6) 36×6

$$
\cdots F_{36}(6)=2
$$

(7) $36 \times 3 \times 2$
(8) 27×8

$$
\rightarrow F_{27}(8)=3
$$

(9) $27 \times 4 \times 2$
(10) $27 \times 2 \times 2 \times 2$
(11) 24×9

$$
\cdots F_{24}(9)=2
$$

(12) $24 \times 3 \times 3$
(13) 18×12

$$
\rightarrow \rightarrow F_{18}(12)=4
$$

(14) $18 \times 6 \times 2$
(15) $18 \times 4 \times 3$
(16) $18 \times 3 \times 2 \times 2$
(17) $12 \times 9 \times 2$

$$
\rightarrow-F_{12}(18)=3
$$

(18) $12 \times 6 \times 3$
(19) $12 \times 3 \times 3 \times 2$
(20) $9 \times 8 \times 3$
$\rightarrow F_{9}(24)=5$
(21) $9 \times 6 \times 4$
(22) $9 \times 6 \times 2 \times 2$
(23) $9 \times 4 \times 3 \times 2$
(24) $9 \times 3 \times 2 \times 2$
(25) $8 \times 3 \times 3 \times 3$
(26) $6 \times 6 \times 6$
(27) $6 \times 6 \times 3 \times 2$
(28) $6 \times 4 \times 3 \times 3$
(29) $6 \times 3 \times 3 \times 2 \times 2$
(30) $4 \times 3 \times 3 \times 3 \times 2 \times 2$
(31) $3 \times 3 \times 3 \times 2 \times 2 \times 2$

$$
-\rightarrow F_{216}(1)=1
$$

$\cdots F_{4}(54)=1$
$\cdots F_{3}(72)=1$
$\cdots F_{2}(108)=0$
$\cdots F_{1}(216)=0$
288

$$
F^{\prime}(216)=\sum_{d_{r} / N} F_{d r}^{\prime}\left(216 / d_{r}\right)=31
$$

Remarks: This algorithm would be quite helpfull in developing a computer program for the listing of SFPs.

REFERENCES:

[1] "Amarnath Murthy", 'Generalization Of Partition Function, Introducing 'Smarandache Factor Partition', SNJ, Vol. 11, No. 1-2-3, 2000.
[2] "The Florentine Smarandache" Special Collection, Archives of American Mathematics, Centre for American History, University of Texas at Austin, USA.

