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Abstract: Let G = (V, E) be a graph. A subset S of V is called a Smarandachely antidegree

equitable k-set for any integer k, 0 ≤ k ≤ ∆(G), if |deg(u) − deg(v)| 6= k, for all u, v ∈ S.

A Smarandachely antidegree equitable 1-set is usually called an antidegree equitable set.

The antidegree equitable number ADe(G), the lower antidegree equitable number ade(G),

the independent antidegree equitablenumber ADie(G) and lower independent antidegree

equitable number adie(G) are defined as follows:

ADe(G) = max{|S| : S is a maximal antidegree equitable set in G},

ade(G) = min{|S| : S is a maximal antidegree equitable set in G},

ADie(G) = max{|S| : S is a maximal independent and antidegree equitable set in G},

adie(G) = min{|S| : S is a maximal independent and antidegree equitable set in G}.

In this paper, we study these four parameters on Smarandachely antidegree equitable 1-sets.
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AMS(2010): 05C69

§1. Introduction

By a graph G = (V, E) we mean a finite, undirected graph with neither loops nor multiple

edges. The number of vertices in a graph G is called the order of G and number of edges in

G is called the size of G. For standard definitions and terminologies on graphs we refer to the

books [2] and [3].

In this paper we introduce four graph theoretic parameters which just depend on the basic

concept of vertex degrees. We need the following definitions and theorems, which can be found

in [2] or [3].

Definition 1.1 A graph G1 is isomorphic to a graph G2, if there exists a bijection φ from

V (G1) to V (G2) such that uv ∈ E(G1) if, and only if, φ(u)φ(v) ∈ E(G2).

If G1 is isomorphic to G2, we write G1
∼= G2 or sometimes G1 = G2.
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Definition 1.2 The degree of a vertex v in a graph G is the number of edges of G incident

with v and is denoted by deg(v) or degG(v).

The minimum and maximum degrees of G are denoted by δ(G) and ∆(G) respectively.

Theorem 1.3 In any graph G, the number of odd vertices is even.

Theorem 1.4 The sum of the degrees of vertices of a graph G is twice the number of edges.

Definition 1.5 The corona of two graphs G1 and G2 is defined to be the graph G = G1 ◦ G2

formed from one copy of G1 and |V (G1)| copies of G2 where the ith vertex of G1 is adjacent to

every vertex in the ith copy of G2.

Theorem 1.6 Let G be a simple graph i.e, a undirected graph without loops and multiple edges,

with n ≥ 2. Then G has atleast two vertices of the same degree.

Definition 1.7 Any connected graph G having a unique cycle is called a unicyclic graph.

Definition 1.8 A graph is called a caterpillar if the deletion of all its pendent vertices produces

a path graph.

Definition 1.9 A subset S of the vertex set V in a graph G is said to be independent if no two

vertices in S are adjacent in G.

The maximum number of vertices in an independent set of G is called the independence

number and is denoted by β0(G).

Theorem 1.10 Let G be a graph and S ⊂ V . S is an independent set of G if, and only if,

V − S is a covering of G.

Definition 1.11 A clique of a graph is a maximal complete subgraph.

Definition 1.12 A clique is said to be maximal if no super set of it is a clique.

Definition 1.13 The vertex degrees of a graph G arranged in non-increasing order is called

degree sequence of the graph G.

Definition 1.14 For any graph G, the set D(G) of all distinct degrees of the vertices of G is

called the degree set of G.

Definition 1.15 A sequence of non-negative integers is said to be graphical if it is the degree

sequence of some simple graph.

Theorem 1.16([1]) Let G be any graph. The number of edges in Gde the degree equitable graph

of G, is given by
∆−1∑

i=δ

(|Si|
2

)
−

∆∑

i=δ+1

(|Si
′|

2

)
,

where, Si = {v|v ∈ V, deg(v) = i or i + 1} and Si
′ = {v|v ∈ V, deg(v) = i}.
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Theorem 1.17 The maximum number of edges in G with radius r ≥ 3 is given by

n2 − 4nr + 5n + 4r2 − 6r

2
.

Definition 1.18 A vertex cover in a graph G is such a set of vertices that covers all edges of

G. The minimum number of vertices in a vertex cover of G is the vertex covering number α(G)

of G.

Recently A. Anitha, S. Arumugam and E. Sampathkumar [1] have introduced degree eq-

uitable sets in a graph and studied them. “The characterization of degree equitable graphs”

is still an open problem. In this paper we give some necessary conditions for a graph to be

degree equitable. For this purpose, we introduce another concept “Antidegree equitable sets”

in a graph and we study them.

§2. Antidegree Equitable Sets

Definition 2.1 Let G = (V, E) be a graph. A non-empty subset S of V is called an antidegree

equitable set if |deg(u) − deg(v)| 6= 1 for all u, v ∈ S.

Definition 2.2 An antidegree equitable set is called a maximal antidegree equitable set if for

every v ∈ V − S, there exists at least one element u ∈ S such that |deg(u) − deg(v)| = 1.

Definition 2.3 The antidegree equitable number ADe(G) of a graph G is defined as ADe(G) =

max{|S| : S is a maximal antidegree equitable set}.

Definition 2.4 The lower antidegree equitable number ade(G) of a graph G is defined as

ade(G) = min{|S| : S is a maximal antidegree equitable set}.

A few ADe(G) and ade(G) of some graphs are listed in the following:

(i) For the complete bipartite graph Km,n, we have

ADe(Km,n) =





m + n if |m − n| 6= 1,

max{m, n} if |m − n| = 1

and

ade(Km,n) =





m + n if |m − n| 6= 1,

min{m, n} if |m − n| = 1.

(ii) For the wheel Wn on n-vertices, we have

ADe(Wn) =





n if n 6= 5,

4 if n = 5
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and

ade(Wn) =





n if n 6= 5,

1 if n = 5.

(iii) For the complete graph Kn, we have ADe(Kn) = ade(Kn) = n − 1.

Now we study some important basic properties of antidegree equitable sets and independent

antidegree equitable sets in a graph.

Theorem 2.5 Let G be a simple graph on n-vertices. Then

(i) 1 ≤ ade(G) ≤ ADe(G) ≤ n;

(ii) ADe(G) = 1 if, and only if, G = K1;

(iii) ade(G) = ade(G), ADe(G) = ADe(G).

(iv) ade(G) = 1 if, and only if, there exists a vertex u ∈ V (G) such that |deg(u)−deg(v)| =

1 for all v ∈ V − {u};
(v) If G is a non-trivial connected graph and ade(G) = 1, then ADe(G) = n − 1 and n

must be odd.

Proof (i) follows from the definition.

(ii) Suppose ADe(G) = 1 and G 6= K1. Then G is a non-trivial graph and from Theorem

1.6 there exists at least two vertices of same degree and they form an antidegree equitable set

in G. So ADe(G) ≥ 2 which is a contradiction. The converse is obvious.

(iii) Since degG(u) = (n− 1)− degG(u), it follows that an antidegree equitable set in G is

also an antidegree equitable set in G.

(iv) If ade(G) = 1 and there is no such vertex u in G, then {u} is not a maximal antidegree

equitable set for any u ∈ V (G) and hence ade(G) ≥ 2 which is a contradiction. The converse is

obvious.

(v) Suppose G is a non-trivial connected graph with ade(G) = 1. Then there exists a vertex

u ∈ V such that |deg(u) − deg(v)| = 1, ∀ v ∈ V − {u}. Clearly, |deg(v) − deg(w)| = 0 or 2,

∀ v, w ∈ V − {u}. Hence, ADe(G) = |V − {u}| = n − 1. It follows from Theorem 1.4 that

(n − 1) is even and thus n is odd. 2
Theorem 2.6 Let G be a non-trivial connected graph on n-vertices. Then 2 ≤ ADe(G) ≤ n

and ADe(G) = 2 if, and only if, G ∼= K2 or P2 or P3 or L(H) or L2(H) where H is the

caterpillar T5 with spine P = (v1v2).

Proof By Theorem 2.5, for a non-trivial connected graph G on n-vertices, we have 2 ≤
ADe(G) ≤ n. Suppose ADe(G) = 2. Then for each antidegree equitable set S in G, we have

|S| ≤ 2. Let D(G) = {d1, d2, . . . , dk}, where d1 < d2 < d3 < · · · < dk. As there are at least

two vertices with same degree, we have k ≤ n − 1. Since ADe(G) = 2, more than two vertices

cannot have the same degree. Let di ∈ D(G) be such that exactly two vertices of G have degree

di. Since the cardinality of each antidegree equitable set S cannot exceed two, it follows that
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· · · , di−3, di−2, di+2, di+3, di+4, · · · do not belong to D(G). Thus D(G) ⊂ {di−1, di, di+1}.

Case 1. If di − 1, di + 1 do not belong to D(G) then D(G) = {di} and the degree sequence

{di, di} is clearly graphical. Thus n = 2 and di = 1 which implies G = K2.

Case 2. If di − 1, di + 1 ∈ D(G), then the degree sequence {di − 1, di, di, di + 1} is graphical.

Thus n = 4 and di = 2 which implies G ∼= L(H), where H is the caterpillar T5 with spine

P = (v1v2).

Case 3. If di−1 ∈ D(G) and di+1 does not belong to D(G), then di−1 may or may not repeat

twice in degree sequence. Thus degree sequence is given by {di−1, di, di} or {di−1, di−1, di, di}.
The first sequence is not graphical but the second sequence is graphical. Thus n = 4 and di = 2

which implies G ∼= P4.

Case 4. If di − 1 does not belong to D(G) and di + 1 ∈ D(G), then the degree sequence is

given by {di, di, di + 1} or {di, di, di + 1, di +1}. Both sequences are graphical. In the first case

n = 3, di = 1 which implies G ∼= P2, and in the second case n = 4, di = 1 or 2 which implies

G ∼= P3 or G ∼= L2(H) respectively.

The converse is obvious. 2
Theorem 2.7 If a and b are positive integers with a ≤ b, then there exists a connected simple

graph G with ade(G) = a and ADe(G) = b except when a = 1 and b = 2m + 1, m ∈ N .

Proof If a = b then for any regular graph of order a, we have ade(G) = ADe(G) = a.

If b = a + 1, then for the complete bipartite graph G = ka,a+1 we have ade(G) = a and

ADe(G) = a + 1 = b. If b ≥ a + 2, a ≥ 2, and b > 4, then for the graph G consisting of the

wheel Wb−1 and the path Pa = (v1v2v3 . . . va) with an edge joining a pendant vertex of Pa to

the center of the wheel Wb−1, we have ade(G) = a, ADe(G) = b. If a = 1 and b = 2m, m ∈ N ,

then the graph consisting of two cycles Cm and Cm+1 along with edges joining ith vertex of Cm

to ith vertex of Cm+1, we have ade(G) = 1 = a and ADe(G) = 2m = b.

Figure 1
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For a = 2 and b = 4 we consider graph G in Figure 1, for which ade(G) = 2 and ADe(G) =

4. Also, it follows from Theorem 2.5 that there is no graph G with ade(G) = 1 and ADe(G) =

2m + 1. 2
Theorem 2.8 Let G be a non-trivial connected graph on n vertices and let S∗ be a subset of V

such that |deg(u)− deg(v)| ≥ 2 for all u, v ∈ S∗. Then 1 ≤ |S∗| ≤
[
∆ − δ

2

]
+ 1 and also, if S∗

is a maximal subset of V such that |deg(u)−deg(v)| ≥ 2 for all u, v ∈ S∗, then S =
⋃

v∈S∗

Sdeg(v)

is a maximal antidegree equitable set in G, where Sdeg(v) = {u ∈ V : deg(u) = deg(v)}.

Proof For any two vertices u, v ∈ S∗, d(u) and d(v) cannot be two successive members of

A = {δ, δ + 1, δ + 2, . . . , δ + k = ∆} and D(G) ⊂ A. Hence

|S∗| ≤
[ |D(G)| + 1

2

]
≤
[ |A| + 1

2

]
=

[
∆ − δ

2

]
+ 1.

If a, b ∈ S =
⋃

v∈S∗ Sdeg(v), then it is clear that either |deg(a)−deg(b)| = 0 or |deg(a)−deg(b)| ≥
2 and hence S is an antidegree equitable set. Suppose u ∈ V − S. Then deg(u) 6= deg(v) for

any v ∈ S∗. So, u do not belong to S∗ and hence |deg(u) − deg(v)| = 1 for all v ∈ S. This

implies that S is a maximal antidegree equitable set. 2
Theorem 2.9 Given a positive integer k, there exists graphs G1 and G2 such that ade(G1) −
ade(G1 − e) = k and ade(G2 − e) − ade(G2) = k.

Proof Let G1 = Kk+2. Then ade(G1) = k + 2 and ade(G1 − e) = 2, where e ∈ E(G1).

Hence ade(G1) − ade(G1 − e) = k. Let G2 be the graph obtained from Ck+1 by attaching one

leaf e at (k + 1)th vertex of Ck+1. Then ade(G2 − e) − ade(G2) = k. 2
Theorem 2.10 Given two positive integers n and k with k ≤ n. Then there exists a graph G

of order n with ade(G) = k.

Proof If k < n
2 , then we take G to be the graph obtained from the path Pk = (v1v2v3 . . . vk)

and the complete graph Kn−k by joining v1 and a vertex of Kn−k by an edge. Clearly, ade(G) =

k. If k ≥ n
2 , then we take G to be the graph obtained from the cycle Ck by attaching exactly

one leaf at (n − k) vertices of Ck. Clearly, ade(G) = k. 2
§3. Independent Antidegree Equitable Sets

In this section, we introduce the concepts of independent antidegree equitable number and lower

independent antidegree equitable number and establish important results on these parameters.

Definition 3.1 The independent antidegree equitable number ADie(G) = max{|S| : S ⊂
V, S is a maximal independent and antidegree equitable set in G}.

Definition 3.2 The lower independent antidegree equitable number adie(G) = min{|S| :
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S is a maximal independent and antidegree equitable set in G}.

A few ADie and adie of graphs are listed in the following.

(i) For the star graph K1,n we have, ADie(K1,n) = n and adie(K1,n) = 1.

(ii) For the complete bipartite graph Km,n we have ADie(Km,n) = max{m, n} and

adie(Km,n) = min{m, n}.

(iii) For any regular graph G we have, ADie(G) = adie(G) = βo(G).

The following theorem shows that on removal of an edge in G, ADie(G) can decrease by

at most one and increase by at most 2.

Theorem 3.3 Let G be a connected graph, e = uv ∈ E(G). Then

ADie(G) − 1 ≤ ADie(G − e) ≤ ADie(G) + 2.

Proof Let S be an independent antidegree equitable set in G with |S| = ADie(G). After

removing an edge e = uv from the graph G, we shall give an upper and a lower bound for

ADie(G − e).

Case 1. If u, v does not belong to S, then S is a maximal independent antidegree equitable

set in G − e as well as in G. Hence, ADie(G − e) = ADie(G).

Case 2. If u ∈ S and v does not belong to S, then S − {u} is an independent antidegree

equitable set in G − e. Hence, ADie(G − e) ≥ |S − {u}| = ADie(G) − 1. Thus, ADie(G) − 1 ≤
ADie(G − e).

Now, Let S be an independent antidegree equitable set in G − e with |S| = ADie(G − e).

Case 3. If u, v ∈ S, then S − {u, v} is an independent antidegree equitable set in G. Hence,

by definition ADie(G) ≥ |S − {u, v}| = ADie(G − e) − 2.

Case 4. If u ∈ S and v does not belong to S, then S − {u} is an independent antidegree

equitable set in G. Hence, by definition ADie(G) ≥ |S − {u}| = ADie(G − e) − 1.

Case 5. If u, v do not belong to S, then S is an independent antidegree equitable set in G.

Hence, by definition ADie(G) ≥ |S| = ADie(G−e). It follows that ADie(G) ≥ ADie(G−e)−2.

Hence,

ADie(G) − 1 ≤ ADie(G − e) ≤ ADie(G) + 2. 2
Theorem 3.4 Let G be a connected graph. ADie(G) = 1 if, and only if, G ∼= Kn or for any

two non-adjacent vertices u, v ∈ V , |deg(u) − deg(v)| = 1.

Proof Suppose ADie(G) = 1.

Case 1. If G ∼= Kn, then there is nothing to prove.

Case 2. Let G 6= Kn, and u, v be any two non-adjacent vertices in G. Since ADie(G) = 1,

{u, v} is not an antidegree equitable set and hence |deg(u) − deg(v)| = 1. The converse is
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obvious. 2
Theorem 3.5 Let G be a connected graph. adie(G) = 1 if, and only if, either ∆ = n − 1 or

for any two non-adjacent vertices u, v ∈ V , |deg(u) − deg(v)| = 1.

Proof Suppose adie(G) = 1, then for any two non-adjacent vertices u and v, {u, v} is not

an antidegree equitable set.

Case 1. If ∆ = n − 1, then there is nothing to prove.

Case 2. Let ∆ < n − 1, and u, v be any two non-adjacent vertices in G. Then {u, v} is not

an antidegree equitable set and hence, |deg(u) − deg(v)| = 1.

The converse is obvious. 2
Remark 3.6 Theorems 3.4 and 3.5 are equivalent.

§4. Degree Equitable and Antidegree Equitable Graphs

After studying the basic properties of antidegree equitable and independent antidegree equitable

sets in a graph, in this section we give some conditions for a graph to be degree equitable.

We recall the definition of degree equitable graph given by A. Anitha, S. Arumugam, and E.

Sampathkumar [1].

Definition 4.1 Let G = (V, E) be a graph. The degree equitable graph of G, denoted by Gde

is defined as follows:V (Gde) = V (G) and two vertices u and v are adjacent vertices in Gde if,

and only if, |deg(u) − deg(v)| ≤ 1.

Example 4.2 For any regular graph G on n vertices, we have Gde = Kn.

Definition 4.3 A graph H is called degree equitable graph if there exists a graph G such that

H ∼= Gde.

Example 4.4 Any complete graph Kn is a degree equitable graph because Kn = Gde for any

regular graph G on n-vertices.

Theorem 4.5 Let G = (V, E) be any graph on n vertices with radius r ≥ 3. Then

(i) 1 ≤ β0(G
de) ≤

√
n2 − 4nr + 5n + 4r2 − 6r.

(ii) β0(G
de) ≤

[
∆−δ

2

]
+ 1, where ∆ = ∆(G) and δ = δ(G).

Proof (i) Let A be an independent set of Gde such that |A| = β0(G
de). Then A is an

antidegree equitable set in G and hence

∑

v∈V

degG(v) ≥
∑

v∈A

degG(v) =

β0(G
de)∑

ℓ=1

2ℓ − 1 = β0
2(Gde).
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By Theorem 1.17 it follows that

2

(
n2 − 4nr + 5n + 4r2 − 6r

2

)
≥ β0

2(Gde).

Therefore,

1 ≤ β0(G
de) ≤

√
n2 − 4nr + 5n + 4r2 − 6r.

(ii) We know that every independent set A in Gde is an antidegree equitable set in G and hence

by Theorem 2.8,

|A| ≤
[
∆(G) − δ(G)

2

]
+ 1.

Therefore,

β0(G
de) ≤

[
∆(G) − δ(G)

2

]
+ 1.

This completes the proof. 2
Theorem 4.6 Let H be any degree equitable graph on n vertices and H = Gde for some graph

G. Then √∑

v∈A

degG(v) ≤
[
∆(G) − δ(G)

2

]
+ 1

where A is an independent set in Gde such that |A| = β0(G
de).

Proof We know that if A is an independent set in H then it is an antidegree equitable set

in G. Hence,

∑

v∈A

degG(v) ≤
β0(H)∑

ℓ=1

2ℓ − 1 = β0
2(H).

By Theorem 4.5
∑

v∈A

degG(v) ≤
([

∆(G) − δ(G)

2

]
+ 1

)2

.

Therefore, √∑

v∈A

degG(v) ≤
[
∆(G) − δ(G)

2

]
+ 1. 2

We introduce a new concept antidegree equitable graph and present some basic results.

Definition 4.7 Let G = (V, E) be a graph. The antidegree equitable graph of G, denoted by

Gade defined as follows: V (Gade) = V (G) and two vertices u and v are adjacent in Gade if, and

only if, |deg(u) − deg(v)| 6= 1.

Example 4.8 For a complete bipartite graph Km,n, we have

Gade =





Km+n if |m − n| ≥ 2,or = 0

Km ∪ Kn if |m − n| = 1.
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Definition 4.9 A graph H is called an antidegree equitable graph if there exists a graph G such

that H ∼= Gade.

Example 4.10 Any complete graph Kn is an antidegree equitable graph because Kn = Gade

for any regular graph G on n-vertices.

Theorem 4.11 Let G be any graph on n vertices. Then the number of edges in Gade is given

by (
n

2

)
−

∆−1∑

i=δ

(|Si|
2

)
+

(|Sδ
′|

2

)
+ 2

∆∑

i=δ+1

(|Si
′|

2

)
,

where Si = {v| v ∈ V degG(v) = i or i + 1}, Si
′ = {v| v ∈ V degG(v) = i}, ∆ = ∆(G) and

δ = δ(G).

Proof By Theorem 1.16, we have the number of edges in Gade with end vertices having

the difference degree greater than two in G is

(
n

2

)
−

∆−1∑

i=δ

(|Si|
2

)
+

∆∑

i=δ+1

(|Si
′|

2

)
.

and also, the number of edges in Gade with end vertices having the same degree is

∆∑

i=δ

(|Si
′|

2

)
.

Hence, the total number of edges in Gade is

(
n

2

)
−

∆−1∑

i=δ

(|Si|
2

)
+

∆∑

i=δ+1

(|Si
′|

2

)
+

∆∑

i=δ

(|Si
′|

2

)

=

(
n

2

)
−

∆−1∑

i=δ

(|Si|
2

)
+

(|Sδ
′|

2

)
+ 2

∆∑

i=δ+1

(|Si
′|

2

)
. 2

Theorem 4.12 Let G be any graph on n vertices. Then

(i) α(Gade) ≤
√

n(n − 1);

(ii) α(Gade) ≤
[
∆−δ

2

]
+ 1, where ∆ = ∆(G) and δ = δ(G).

Proof Let A ⊂ V be the set of vertices that covers all edges of Gade. Then A is an

antidegree equitable set in G. Hence,

∑

v∈A

degG(v) ≥
α(Gade)∑

ℓ=1

2ℓ − 1 = α2(Gade).

Therefore,

2

(
n(n − 1)

2

)
≥ α2(Gade),
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α(Gade) ≤
√

n(n − 1).

Since, the set A is an antidegree equitable set in G, by Theorem 2.8, we have

|A| ≤
[
∆ − δ

2

]
+ 1.

This implies

α(Gade) ≤
[
∆ − δ

2

]
+ 1. 2
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