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Abstract: This chapter presents an environmental application of DSmT for the

land cover prediction. The spatial prediction of land cover at the field scale in winter

is useful to reduce the bare soils in agricultural intensive regions. Fusion process with

the Dempster-Shafer theory (DST) proved to have limitations with the increase of

conflict between the sources of evidence that support land cover hypotheses. Several

modifications may be used such as source weighting or the hedging methods, but with

no benefit in the considered case studied since the conflict may not explain by itself

all the bad decisions. Actually, sources of evidence may induce all together a wrong

decision. Then, it is necessary to introduce paradoxical information. Nevertheless,

sources of evidence that are in use, are defined according to hypothesis “covered soil”

or “bare soil” in the frame of DST. We investigate several points of view to define

the belief assignments of the hyper-power set of the DSmT from the initial power set

of DST. So, smart belief assignments induce a better prediction of bare soils.

Samuel Corgne is also affiliated with TAMCIC, CNRS FRE 2658, team TIME, GET/ENST Bretagne, France.
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17.1 Introduction

I
n intensive agricultural areas, water quality may be improved by reducing bare soil surfaces during

the winter months. In this context, the knowledge of the spatio-temporal variations of the land use

and cover as well as the spatial prediction of the land cover at the field scale appear essential for the issue

of bare soils reduction. Land-cover prediction, that is useful for stakeholders that manage water-quality

programs in focusing on the areas where the probability to find a bare soil is high, requires the identifica-

tion and characterization of the driving factors of observed land-cover changes. The high variability of the

driving factors that motivate land-cover changes between two successive winters induces the integration

of uncertainty in the modelling of the prediction process.

Several short-term predictions have been simulated with the Dempster-Shafer (DS) theory in pre-

vious studies to assess land-cover distribution in winter on a relatively intensive farming watershed of

61.5km2 [1]. This study area, located in western France, produces significant amounts of nitrogen be-

fore winter infiltration of water. Fusion process with the DS theory proved to have limitations with the

increase of conflict between the sources of evidence that support land cover hypotheses. Several mod-

ifications may be used (such as source weighting or the Hedging methods) but with no benefit in our

application. It appears that conflict may not explain by itself all the bad decisions. Actually, each sources

of evidence may induce all together a wrong decision. Then, paradoxical information was introduced to

improve the prediction accuracy.

A first application of the Dezert-Smarandache theory on the study area has pointed some results a

little bit better than the DS, but the rate for the hypothesis “bare soil” was still inferior to 40% of good

prediction. An improvement of the fusion process must be performed specially for this hypothesis. In

this application, sources of evidence that are in use, are still defined according to hypothesis “Covered

soil” or “Bare soil” in the frame of the Dempster-Shafer theory. Mass functions assignment determined

from statistical analysis and expert knowledge are defined to support the hypotheses but the high level of

conflict between sources requires a finest mass attribution and a “contextual” fusion process to manage

the uncertainty and the paradoxical.

This chapter focuses on the application of the Dezert-Smarandache theory for the land-cover prediction

in winter, and more precisely on the transfer from evidence to plausible and paradoxical reasoning. Our

objective is to improve the land-cover prediction scores in investigating several points of view to define

the belief assignments of the hyper-powerset of the Dezert-Smarandache theory from the initial powerset

of the Dempster-Shafer theory. A first part concerns the identification and hierarchization of the driving

factors that drive the land cover changes on the studied watershed for their transformation in pieces
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of evidences for the selected working hypothesis. The other one presents the process of the land cover

modelling with the Dezert-Smarandache theory comparatively to the Dempster-Shafer theory and its

adaptation for this specific environmental study.

17.2 Determination of information sources

The land cover in winter has been classified from remote sensing images in two land cover categories,

“Bare soil” and “Covered soil” that correspond to the two hypotheses of work. The determination of the

information sources for each hypothesis for the fusion process consists in identifying and hierarchizing

the factors that motivate the land cover changes between winters for the studied period (1996-2003).

17.2.1 Identification of the driving factors of land cover change

The land-cover changes between winters in intensive agricultural regions are characterized by an high

spatio-temporal variability depending on factors of several origin (economical, social, political, physics

constraints) that need to be carfully defined in the modelling process. The identification of the driving

factors of land-cover changes requires to study the land use on a quite long period. A set of 10 satellite

images (9 SPOT images and 1 IRS-LISS III —2 per year over 5 years since 1996—) has been acquired,

pre-processed and classified. Winter land cover change trajectories were produced by merging successively

all classifications [2]. All this data have been integrated in a GIS (Geographic Information System) to

identify the crop successions spatially and the land-cover changes between winters on the field scale. A

statistical analysis and a meeting with the agricultural experts provided four main driving factors of

land-cover changes, namely the field size, the crop successions, the agro-environmental actions and the

distance of the fields from farm buildings. All this factors explain the winter land-cover distribution in the

categories “Bare soil” or “Covered soil”. Then, a hierarchization of the identified driving factors of land-

cover change was needed in the fusion process to predict the future land-cover (Mass belief assignment

to the sources of evidence), to assess the respective “weight” of each explicative factors.

17.2.2 Hierarchization of the factors of land cover change

The mutual information between the variables has been used to hierarchize the explicative factors of land-

cover change. The mutual information analysis is based on the information theory [3]. It is used to outline

relations between the variables [4]. For this study, three indicators have been chosen to characterize the

relationship between variables that may explicit the land cover evolution between the winters.

• Entropy H: the main property of the information concept is that the quantity of information is

maximum when the events are distributed uniformly. It allows to calculate the information quantity
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between the set of events.

H =
N∑

i=1

pi log pi,

with N number of possible events and pi probability of event i.

• Mutual Information I: it represents the mutual information between two variables X and Y ; it is

obtained through the difference between the entropy H of X , Y and the joint entropy H(X,Y ) as

follows.

I(X,Y ) = H(X) +H(Y )−H(X,Y ).

• Redundancy R: It is issued from the entropy and the mutual information. It measures the hetero-

geneity rate of two variables X , Y .

R =
I(X,Y )

H(Y )
.

The process provides a hierarchization of the information quantity for the explicative variables with

the variable to explain. The results of the mutual information test (Table 17.1) show that the most repre-

sentative variable is “Crop successions (1996-2002)”, followed by “Size of the fields”, “Agro-environmental

actions” and “Distance from farm buildings” in decreasing representative order. These results allow to

optimise the mass belief assignment for the hypotheses “Bare soil” and “Covered soil”, in comparison

with an empirical “expert knowledge” method.

Classes NF (%) R I

Distance from 1: < 1.25 1255 (67.6 %)
0.14 % 0.0006

farm buildings 2: > 1.25 601 (32.4 %)

Agro-environmental 1: without 1619 (87.2 %)
0.2 % 0.0008

actions 2: with 237 (12.8 %)

Field size
1: < 1.5 ha 1517 (81.7 %)

0.97 % 0.0039

2: > 1.5 ha 339 ( 18.3 %)

1: (SC W) 1046 (56.4 %)

2: (BS 1W) 301 (16.2 %)

Crop rotation 3: (BS 2W) 186 (10 %)
5.19 % 0.0211

(1996–2002) 4: (BS 3W) 179 (9.64 %)

5: (BS 4W) 89 (4.8 %)

6: (BS 5W) 55 (2.96 %)

Table 17.1: Explicative variables hierarchization with the mutual information analysis.
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Column NF (%) of the Table 17.1 indicates the numbers NF of fields (and their percentage). Column

5 of the table indicates the values of redundancy R and column 6 the values of mutual information I.

In the last row (i.e. crop rotations during 1996-2000) of Table 17.1, six cases have been identified and

correspond to

1. (SC W) : soils covered during all winters

2. (BS 1W) : bare soil during one winter

3. (BS 2W) : bare soil during two winters

4. (BS 3W) :bare soil during three winters

5. (BS 4W) : bare soil during four winters

6. (BS 5W) : bare soil during five winters

17.3 Land cover prediction with the Dempster-Shafer Theory

The theory of evidence proposed by Dempster was developed by Shafer in 1976 and the basic concepts

of this theory have often been exposed [5, 6]. Detailed applications of the Dempster-Shafer theory can

be found in [7]. Previous applications of the DS theory for our study [1] showed that 45% of the infor-

mation sources were highly conflicting and generate misprediction results. Performances decrease when

the conflict between the evidences is rising (k < 0.6). In our case, only 75% of the fields concerned by

a high degree of conflict are correctly predicted. On the contrary, results become clearly better (91% of

right prediction) when the conflict is low (k < 0.2).

Several methods that attempt to make the fusion operators more reliable in considering the different

sources of conflict may be found in [8, 9, 10, 11]. No optimal techniques exist yet, even if an approximate

adjustment of the fusion threshold can be successful for some applications. In order to deal with the

conflict between the information sources, we have applied here a method based on the source weakness.

17.3.1 Basic belief assignment

The assignment of basic beliefs (membership function shape) on the selected indicators is assigned by

experts and from the evidence image distribution (Fig. 17.1). They are adjusted and validated with

past-observed data and expert’s knowledge. Table 17.2 illustrates this stage in including the uncertainty

through mass function affectation. For each evidences, denoted B for “bare soil”, C for “covered soil”,

and B ∪ C for “Bare soil or covered soil”, classes are defined in order to support one of the hypotheses

B, C or B ∪ C.
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Figure 17.1: Evidence image distribution for each hypothesis.

Classes hyp. B hyp. C hyp. B ∪ C

Distance from 1: < 1 km 0.3 0.5 0.2

farm buildings 2: > 1 km 0.6 0.2 0.2

Agro-environmental 1: without 0.6 0.3 0.1

actions 2: with 0.005 0.95 0.045

Field size
1: < 1.5 ha 0.2 0.5 0.3

2: > 1.5 ha 0.65 0.2 0.15

1: (SC W) 0.005 0.95 0.045

2: (BS 1W) 0.01 0.9 0.09

Crop rotation 3: (BS 2W) 0.25 0.7 0.05

(1996–2002) 4: (BS 3W) 0.45 0.4 0.15

5: (BS 4W) 0.65 0.3 0.05

6: (BS 5W) 0.85 0.1 0.05

Table 17.2: Affectation of the belief masses for the DS theory.
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17.3.2 Conflict managing with the source weakness

17.3.2.1 Principle

Sources weakness method (i.e. discounting technique presented in chapter 1 consists in taking in account

the reliability of the evidences by using reliability factor α for each source as a value such as 0 6 α 6 1.

This way, a source may be considered as totally reliable if α = 1, or on the contrary completely unreliable

if α = 0. Damping rule is defined as follows:







m′(A) = αm(A) ∀A 6= Θ

m′(Θ) = (1− α) + αm(Θ).

The weakness process is performed when the conflict is too high (relatively to a threshold, such as k < 0.4).

Two rules have been investigated:

• α is set to a value so that the source does not interfere in the decision process. Then,







m′(θbare soil) = 0.01

m′(θcovered soil) = 0.01

m′(θbare soil ∪ θcovered soil) = 0.98.

• α is set to a value linked to the conflict level k. So that the more the conflict, the more the weakness.

We remind the conflict between two sources is defined as:

k =
∑

A∩B 6=∅

m1(A)m2(B).

17.3.2.2 Results and partial conclusion

The results provided with this method are a little better than the simple application of the DS theory for

the hypothesis “bare soil” since 84 fields are correctly predicted against 73 for the DS. But the analysis

of the results showed that the conflict does not necessary take place in the mispredictions for the “bare

soil” hypothesis. Also, Plausibility-Belief interval can not be helpful for the accuracy of the predictions.

Then, an ambiguity between the sources must be taken into consideration in the process. Than is why,

prediction process has been moved to the DSm theory in order to deal with paradoxical.

17.4 Land cover prediction with DSmT

The Dezert-Smarandache theory (DSmT) can be considered as a generalization of the Dempster-Shafer.

In this new theory, the rule of combination takes into account both uncertain and paradoxical information,

see chapter 1 of this book and [12]. Let be the simplest frame of discernment Θ = {θbare soil, θcovered soil} in-

volving only two elementary hypotheses with no more additional assumptions on θbare soil and θcovered soil.
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DSm theory deals with new basic belief assignments m(·) ∈ [0, 1] in accepting the possibility for para-

doxical information such that:

m(θbare soil) +m(θcovered soil) +m(θbare soil ∪ θcovered soil) +m(θbare soil ∩ θcovered soil) = 1.

Recently, a hybrid rule of combination issued of the DSm theory has been developed by the authors of

the theory, see chapter 4 of this book. The fusion of paradoxical and uncertain evidences with the hybrid

DSm rule of combination combines several masses of independent sources of information and takes into

consideration the dynamics of data sets. Thus, hybrid DSm model can be considered as an intermediary

model between the DS and the DSm theory. The capacity to deals with several hyper-power set makes

the hybrid model an interesting alternative in various fusion problems.

17.4.1 Mass belief assignment

17.4.1.1 Fuzzy mass belief assignment

the mass belief assignment follows the same process as the DS theory. Nevertheless, a fuzzy mass belief

assignment is here applied for two sources of evidence: “size of fields” and “distance from farm buildings”

because of their specific characteristics (Fig. 17.1). For the variable “Size of fields” for example, the size

evolves to 0.05 to 7.7 ha. Then, a continuous mass belief affectation appears pertinent for fusion process,

by integrating paradoxical information when experts had introduced threshold instead. It is achieved by

smoothing the actual bi-level assignment (Fig. 17.2).
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Figure 17.2: Fuzzy mass belief assignment for the evidences “Distance” and “Field size”.

17.4.1.2 Contextual damping of source of evidence

since the conflit level between sources is not necessary involved in the misprediction for the “bare soil”

hypothesis, a contextual damping strategy is applied depending on the decision that is about to be taken.

Actually, we consider that when the decision is about to be taken to the “bare soil” hypothesis, distance

to farm and field size are completely paradoxical when crop rotation belongs to class 1 or 2. Furthermore,
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when the decision is to be taken to the “covered soil” hypothesis, all the sources become paradoxical when

crop rotation is greater than 3 (bare soil during two winters at least).

In order to make sources of evidence paradoxical, a partial damping is applied as follows:







m′(θbare soil) = αm(θbare soil)

m′(θcovered soil) = β m(θcovered soil)

m′(θbare soil ∪ θcovered soil) = m(θbare soil ∪ θcovered soil)

m′(θbare soil ∩ θcovered soil) = 1− αm(θbare soil)− β m(θcovered soil)−m(θbare soil ∪ θcovered soil).

The couple (α, β) allows to remove the mass of an hypothesis to the benefit of the paradoxical. Here,

(α, β) = (0.1, 1) is applied when the decision “bare soil” is about to be taken with crop rotation of 1 or 2

(bare soil during no more than one winter). Also, (α, β) is set to (1, 0.1) when deciding a “covered soil”

while crop rotation is greater than 3 (bare soil during 2 winters at least).

Here, this contextual partial damping allows the DSm rule to take into consideration a kind of contional

mass assignment.

17.4.2 Results

The application of a contextual DSm rule of combination provides better results for the hypotheses “bare

soil”. 121 fields (Table 17.4.2) are correctly predicted against 73 with the DS and 84 with the source

weakness process. The “bare soil” hypothesis still generates a high level of mispredictions, which is not

the case for the “covered soil” hypothesis. Several factors can explain the weak rate of right prediction for

the hypothesis “Bare soils”. It is strongly linked to the high spatio-temporal variability of the land-use.

Actually, an important number of fields covered with meadows during four or five years are ploughed in

autumn and re-integrated in a cycle of crop successions. This kind of change is difficult to model since it

can be due to unexpected individual human decisions, or exceptional and isolated weather-events. The

spatial distribution of the results can be analyzed on the Fig. 17.3. The west part of the watershed

corresponds to more intensive system farming than the east part. In the context of intensive system,

the variability of land cover changes is higher than the others systems, it depends mostly on economics

constraints that are difficult to model. On the contrary, the south part of the watershed is characterized

by dairy milk production system. In this part of the watershed, the land cover evolution is better known

and highly depends of the crop successions. Its integration into DSm theory is easier and the prediction

process yields finest results.
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Land use for winter 2001/2002 (from

remote sensing data)
Prediction (rate)

bare soils 266 fields 121 (0.46 %)

covered soils 1588 fields 1239 (0.78 %)

Total 1856 fields 1360 (0.73 %)

Table 17.3: Performance of hybrid DSm rule for land prediction

.

Figure 17.3: Prediction performance with the hybrid DSm rule on the Yar watershed (Brittany).
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17.5 Conclusion

Two studies have been analyzed in this chapter for the prediction of land cover on a watershed subject to

environmental problems. The land cover prediction with DS proved to have limitations with the increase

of conflict between the sources of evidence that support land cover hypotheses. Several modifications may

be used such as source weighting or the Hedging methods, but with no benefit in our case. To manage

the conflict, the DSm has been applied with a little improvement of the accuracy of predictions. Actually

conflict may not explain by itself all the bad decisions since the sources of evidence may induce all to-

gether a wrong decision. That is why, a contextual fusion rule appeared necessary for this environmental

problem where information sources can be paradoxical or/and uncertain. This new fusion process re-

quired first the identification of the driving factors of land cover changes. Then, a mass belief assignment

is built for the two hypotheses “covered soil” and “bare soil” through expert knowledge and a mutual

information analysis that yield a hierarchization of the source of evidences. A fuzzy affectation is per-

formed for two of the information sources and a “contextual” combination rule is applied to manage the

uncertainty and the paradoxical characteristics of the information sources into the DSm decision process.

The results for the “bare soil” hypothesis, which still generates too many mispredictions, are better than

the prediction through DS decision rule (46% of correct “bare soil” predictions against 36% issued from

the previous study). The hypothesis “covered soil” yields 78% of right prediction; this difference between

the hypotheses can be explained with the weak rate of bare soil on the watershed and especially with

the high variability of the land cover changes that characterized the intensive farm systems located on

the north-west part of the watershed. Nevertheless, the fusion process appears to be robust and doesn’t

require specifics data as input. Thus, prediction system developed with the DSm theory can be apply

on different watersheds in Brittany and provides a useful tool for assessing and planning land use. The

knowledge of land use is one of the key for restoring water quality intensive agricultural regions.
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