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Abstract: The binding number of a graph G = (V, E) is defined to be the minimum of

|N(X)|/|X| taken over all nonempty set X ⊆ V (G) such that N(X) 6= V (G). In this article,

we explore the properties and bounds on binding number of some special classes of trees.
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§1. Introduction

In this article, we consider finite, undirected, simple and connected graphs G = (V,E) with

vertex set V and edge set E. As such n =| V | and m =| E | denote the number of vertices

and edges of a graph G, respectively. An edge - induced subgraph is a subset of the edges of a

graph G together with any vertices that are their endpoints. In general, we use 〈X〉 to denote

the subgraph induced by the set of edges X ⊆ E. A graph G is connected if it has a u − v

path whenever u, v ∈ V (G) (otherwise, G is disconnected). The open neighborhood of a vertex

v ∈ V (G) is N(v) = {u ∈ V : uv ∈ E(G)} and the closed neighborhood N [v] = N(v) ∪ {v}.
The degree of v, denoted by deg(v), is the cardinality of its open neighborhood. A vertex with

degree one in a graph G is called pendant or a leaf or an end-vertex, and its neighbor is called

its support or cut vertex. An edge incident to a leaf in a graph G is called a pendant edge.

A graph with no cycle is acyclic. A tree T is a connected acyclic graph. Unless mentioned

otherwise, for terminology and notation the reader may refer Harary [3].

Woodall [7] defined the binding number of G as follows: If X ⊆ V (G), then the open

neighborhood of the set X is defined as N(X) =
⋃
x∈X N(v). The binding number of G,

denoted b(G), is given by

b(G) = minx∈F
|N(X)|
|X | ,

where F = {X ⊆ V (G) : X 6= ∅, N(X) 6= V (G)}. We say that b(G) is realized on a set X if

X ∈ F and b(G) = |N(X)|
|X| , and the set X is called a realizing set for b(G). Generally, for a given

graph H , a Smarandachely binding number bH(G) is the minimum number b(G) on such F with
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〈X〉G 6∼= H for ∀X ∈ F . Clearly, if H is not a spanning subgraph of G, then bH(G) = b(G).

For complete review and the following existing results on the binding number and its related

concepts, we follow [1], [2], [5] and [6].

Theorem 1.1 For any path Pn with n ≥ 2 vertices,

b(Pn) =





1 if n is even;

n−1
n+1 if n is odd.

Theorem 1.2 For any spanning subgraph H of a graph G, b(G) ≤ b(H).

In [8], Wayne Goddard established several bounds including ones linking the binding num-

ber of a tree to the distribution of its end-vertices end(G) = {v ∈ V (G) : deg(v) = 1}. Also, let

̺(v) = |N(v) ∩ end(G)| and ̺(G)= max {̺(v) : v ∈ V (G)}. The following result is obviously

true if ̺(G) = 0 and if ̺(G) = 1, follows from taking X = {N(v)∩end(G)}, where v is a vertex

for which ̺(v) = ̺(G).

Theorem 1.3 For any graph G, ̺(G).b(G) ≤ 1.

Theorem 1.4 For any nontrivial tree T ,

(1) b(T ) ≥ 1/∆(T );

(2) b(T ) ≥ 1/̺(T ) + 1.

§2. Main Results

Observation 2.1 Let T be a tree with n ≥ 3 vertices, having (n− 1)-pendant vertices, which

are connected to unique vertex. Then b(T ) is the reciprocal of number of vertices connected to

unique vertex.

Observation 2.2 Let T be a nontrivial tree. Then b(T ) > 0.

Observation 2.3 Let T be a tree with b(T ) < 1. Then every realizing set of T is independent.

Theorem 2.4 For any Star K1,n−1 with n ≥ 2 vertices,

b(K1,n−1) =
1

n− 1
.

Proof Let K1,n−1 be a star with n ≥ 2 vertices. If K1,n−1 has {v1, v2, · · · , vn} vertices with

deg(v1) = n− 1 and deg(v2) = deg(v3) = · · · = deg(vn) = 1. We prove the result by induction

on n. For n = 2, then |N(X)| = |X | = 1 and b(K1,1) = 1. For n = 3, |N(X)| < |X | = 2 and

b(K1,2) = 1
2 . Let us assume the result is true for n = k for some k, where k is a positive integer.

Hence b(K1,k−1) = 1
k−1 .
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Now we shall show that the result is true for n > k. Since (k + 1)- pendant vertices in

K1,k+1 are connected to the unique vertex v1. Here newly added vertex vk+1 must be adjacent

to v1 only. Otherwise K1,k+1 loses its star criteria and vk+1 is not adjacent to {v2, v3, · · · , vk},
then K1,k+1 has k number of pendant vertices connected to vertex v1. Therefore by Observation

2.1, the desired result follows. 2
Theorem 2.5 Let T1 and T2 be two stars with order n1 and n2 , respectively. Then n1 < n2

if and only if b(T1) > b(T2).

Proof By Observation 2.1 and Theorem 2.4, we have b(T1) = 1
n1

and b(T2) = 1
n2

. Due to

the fact of n1 < n2 if and only if 1
n1
> 1

n2
. Thus the result follows. 2

Definition 2.6 The double star K∗
r,s is a tree with diameter 3 and central vertices of degree r

and s respectively, where the diameter of graph is the length of the shortest path between the

most distanced vertices.

Theorem 2.7 For any double star K∗
r,s with 1 ≤ r ≤ s vertices,

b(K∗
r,s) =

1

max{r, s} − 1
.

Proof Suppose K∗
r,s is a double star with 1 ≤ r ≤ s vertices. Then there exist exactly

two central vertices x and y for all x, y ∈ V (K∗
r,s) such that the degree of x and y are r and s

respectively. By definition, the double star K∗
r,s is a tree with diameter 3 having only one edge

between x and y. Therefore the vertex x is adjacent to (r− 1)-pendant vertices and the vertex

y is adjacent to (s− 1)-pendant vertices.

Clearly max{r − 1, s − 1} pendant vertices are adjacent to a unique vertex x or y as the

case may be. Therefore b(K∗
r,s) = 1

max{r−1,s−1} . Hence the result follows. 2
Definition 2.8 A subdivided star, denoted K∗

1,n−1 is a star K1,n−1 whose edges are subdivided

once, that is each edge is replaced by a path of length 2 by adding a vertex of degree 2.

Observation 2.9 Let K1,n−1 be a star with n ≥ 2 vertices. Then cardinality of the vertex set

of K∗
1,n−1 is p = 2n− 1.

Theorem 2.10 For any subdivided star K∗
1,n−1 with n ≥ 2 vertices,

b(K∗
1,n−1) =






1
2 if n = 2;

2
3 if n = 3;

1 otherwise.

Proof By Observation 2.9, the subdivided star K∗
1,n−1 has p = 2n− 1 vertices. Then the

following cases arise:
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Case 1. If n = 2, then by Theorem 1.1, b(K∗
1,2−1) = b(P3) = 1

2 .

Case 2. If n = 3, then by Theorem 1.1, b(K∗
1,3−1) = b(P5) = 2

3 .

Case 3. If a vertex v1 ∈ V (K1,n−1) with deg(v1) = n − 1 and deg(N(v1)) = 1, where

N(v1) = {v2, v3, · · · , vn}. Clearly, each edge {v1v2, v1v3, · · · , v1vn} takes one vertex on each

edge having degree 2, so that the resulting graph will be subdivided star K∗
1,n−1, in which {v1}

and {v2, v3, · · · , vn} vertices do not lose their properties. But the maximum degree vertex v1 is

a cut vertex of K∗
1,n−1. Therefore b(K1,n−1) < b(K∗

1,n−1) for n ≥ 4 vertices. Since each newly

added vertex {ui} is adjacent to exactly one pendent vertex {vj},where i = j and 2 ≤ i, j ≤ n,

in K∗
1,n−1. By the definition of binding number |N(X)| = |X |. Hence the result follows. 2

Definition 2.11 A Bt,k graph is said to be a Banana tree if the graph is obtained by connecting

one pendant vertex of each t-copies of an k-star graph with a single root vertex that is distinct

from all the stars.

Theorem 2.12 For any Banana tree Bt,k with t ≥ 2 copies and k ≥ 3 number of stars,

b(Bt,k) =
1

k − 2
.

Proof Let t be the number of distinct k-stars. Then it has k − 1-pendant vertices and

the binding number of each k-stars is 1
k−1 . But in Bt,k, each t copies of distinct k-stars are

joined by single root vertex. Then the resulting graph is connected and each k-star has k − 2

number of vertices having degree 1, which are connected to unique vertex. By Observation 2.1,

the result follows. 2
Definition 2.13 A caterpillar tree C∗(T ) is a tree in which removing all the pendant vertices

and incident edges produces a path graph.

For example, b(C∗(K1)) = 0; b(C∗(P2)) = b(C∗(P4)) = 1; b(C∗(P3)) = 1
2 ; b(C∗(P5)) = 2

3

and b(C∗(K1,n−1)) = 1
n−1 .

Theorem 2.14 For any caterpillar tree C∗(T ) with n ≥ 3 vertices,

b(K1,n−1) ≤ b(C∗(T )) ≤ b(Pn).

Proof By mathematical induction, if n = 3, then by Theorem 1.1 and Observation 2.1,

we have b(K1,2) = b(C∗(T )) = b(P3) = 1
2 . Thus the result follows. Assume that the result is

true for n = k. Now we shall prove the result for n > k. Let C∗(T ) be a Caterpillar tree with

k + 1-vertices. Then the following cases arise:

Case 1. If k + 1 is odd, then b(C∗(T )) ≤ k
k+1 .

Case 2. If k + 1 is even, then b(C∗(T )) ≤ 1.

By above cases, we have b(C∗(T )) ≤ b(Pn). Since, k vertices in C∗(T ) exist k-stars, which
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contributed at least 1
k−1 . Hence the lower bound follows. 2

Definition 2.15 The binary tree B∗ is a tree like structure that is rooted and in which each

vertex has at least two children and child of a vertex is designated as its left or right child.

To prove our next result we make use of the following conditions of Binary tree B∗.

C1: If B∗ has at least one vertex having two children and that two children has no any

child.

C2: If B∗ has no vertex having two children which are not having any child.

Theorem 2.16 Let B∗ be a Binary tree with n ≥ 3 vertices. Then

b(B∗) =






1
2 if B∗ satisfy C1;

b(Pn) if B∗ satisfy C2.

Proof Let B∗ be a Binary tree with n ≥ 3 vertices. Then the following cases are arises:

Case 1. Suppose binary tree B∗ has only one vertex, say v1 has two children and that two

children has no any child. Then only vertex v1 has two pendant vertices and no other vertex has

more than two pendant vertices. That is maximum at most two pendant vertices are connected

to unique vertex. There fore b(B∗) = 1
2 follows.

Case 2. Suppose binary tree B∗ has no vertex having two free child. That is each non-pendant

vertex having only one child, then this binary tree gives path. This implies that b(B∗) = b(Pn)

with n ≥ 3 vertices. Thus the result follows. 2
Definition 2.17 The t-centipede C∗

t is the tree on 2t-vertices obtained by joining the bottoms

of t - copies of the path graph P2 laid in a row with edges.

Theorem 2.18 For any t-centipede C∗
t with 2t-vertices,

b(C∗
t ) = 1.

Proof If n = 1, then tree C∗
1 is a 1-centipede with 2-vertices. Thus b(C∗

1 ) = 1. Suppose

the result is true for n > 1 vertices, say n = t for some t, that is b(C∗
t ) = 1. Further, we prove

n = t+1, b(C∗
t+1) = 1. In a (t+1) - centipede exactly one vertex from each of the (k+1)- copies

of P2 are laid on a row with edges. Hence the resulting graph must be connected and each

such vertex is connected to exactly one pendant vertex. By the definition of binding number

|N(X)| = |X |. Hence the result follows. 2
Definition 2.19 The Fire-cracker graph Ft,s is a tree obtained by the concatenation of t -

copies of s - stars by linking one pendant vertex from each.
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Theorem 2.20 For any Fire-cracker graph Ft,s with t ≥ 2 and s ≥ 3.

b(Ft,s) =
1

s− 1
.

Proof If s = 2, then Fire-cracker graph Ft,2 is a t-centipede and b(Ft,2) = 1. If t ≥ 2 and

s ≥ 3, then t - copies of s - stars are connected by adjoining one pendant vertex from each

s-stars. This implies that the resulting graph is connected and a Fire-cracker graph Ft,s. Then

this connected graph has (s−2)-vertices having degree 1, which are connected to unique vertex.

Hence the result follows. 2
Theorem 2.21 For any nontrivial tree T ,

1

n− 1
≤ b(T ) ≤ 1.

Further, the lower bound attains if and only if T = K1,n−1 and the upper bound attains if the

tree T has 1-factor or there exists a realizing set X such that X ∩N(X) = φ.

Proof The upper bound is proved by Woodall in [7]with the fact of δ(T ) = 1. Let

X ∈ F and |N(X)|
|X| = b(G). Then |N(X)| ≥ 1, since the set X is not empty. Suppose,

|N(X)| ≥ n − δ(T ) + 1. If δ(T ) = 1, then any vertex of T is adjacent to atleast one vertex

in X . This implies that N(X) = V (T ), which is a contradiction. There fore |X | ≤ n − 1 and

b(T ) = |N(X)|/|X | ≥ 1/(n− 1). Thus the lower bound follows. 2
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