Binding Number of Some Special Classes of Trees

B.Chaluvaraju¹, H.S.Boregowda² and S.Kumbinarsaiah³

¹Department of Mathematics, Bangalore University, Janana Bharathi Campus, Bangalore-560 056, India ²Department of Studies and Research in Mathematics, Tumkur University, Tumkur-572 103, India ³Department of Mathematics, Karnatak University, Dharwad-580 003, India

E-mail: bchaluvaraju@gmail.com, bgsamarasa@gmail.com, kumbinarasaiah@gmail.com

Abstract: The binding number of a graph G = (V, E) is defined to be the minimum of |N(X)|/|X| taken over all nonempty set $X \subseteq V(G)$ such that $N(X) \neq V(G)$. In this article, we explore the properties and bounds on binding number of some special classes of trees.

Key Words: Graph, tree, realizing set, binding number, Smarandachely binding number. AMS(2010): 05C05.

§1. Introduction

In this article, we consider finite, undirected, simple and connected graphs G = (V, E) with vertex set V and edge set E. As such n = |V| and m = |E| denote the number of vertices and edges of a graph G, respectively. An edge - induced subgraph is a subset of the edges of a graph G together with any vertices that are their endpoints. In general, we use $\langle X \rangle$ to denote the subgraph induced by the set of edges $X \subseteq E$. A graph G is connected if it has a u - vpath whenever $u, v \in V(G)$ (otherwise, G is disconnected). The open neighborhood of a vertex $v \in V(G)$ is $N(v) = \{u \in V : uv \in E(G)\}$ and the closed neighborhood $N[v] = N(v) \cup \{v\}$. The degree of v, denoted by deg(v), is the cardinality of its open neighborhood. A vertex with degree one in a graph G is called pendant or a leaf or an end-vertex, and its neighbor is called its support or cut vertex. An edge incident to a leaf in a graph G is called a pendant edge. A graph with no cycle is acyclic. A tree T is a connected acyclic graph. Unless mentioned otherwise, for terminology and notation the reader may refer Harary [3].

Woodall [7] defined the binding number of G as follows: If $X \subseteq V(G)$, then the open neighborhood of the set X is defined as $N(X) = \bigcup_{x \in X} N(v)$. The binding number of G, denoted b(G), is given by

$$b(G) = \min_{x \in F} \frac{|N(X)|}{|X|},$$

where $F = \{X \subseteq V(G) : X \neq \emptyset, N(X) \neq V(G)\}$. We say that b(G) is realized on a set X if $X \in F$ and $b(G) = \frac{|N(X)|}{|X|}$, and the set X is called a realizing set for b(G). Generally, for a given graph H, a Smarandachely binding number $b_H(G)$ is the minimum number b(G) on such F with

¹Received July 23, 2015, Accepted February 18, 2016.

 $\langle X \rangle_G \not\cong H$ for $\forall X \in F$. Clearly, if H is not a spanning subgraph of G, then $b_H(G) = b(G)$.

For complete review and the following existing results on the binding number and its related concepts, we follow [1], [2], [5] and [6].

Theorem 1.1 For any path P_n with $n \ge 2$ vertices,

$$b(P_n) = \begin{cases} 1 & \text{if n is even;} \\ \frac{n-1}{n+1} & \text{if n is odd.} \end{cases}$$

Theorem 1.2 For any spanning subgraph H of a graph G, $b(G) \leq b(H)$.

In [8], Wayne Goddard established several bounds including ones linking the binding number of a tree to the distribution of its end-vertices $end(G) = \{v \in V(G) : deg(v) = 1\}$. Also, let $\varrho(v) = |N(v) \cap end(G)|$ and $\varrho(G) = \max \{\varrho(v) : v \in V(G)\}$. The following result is obviously true if $\varrho(G) = 0$ and if $\varrho(G) = 1$, follows from taking $X = \{N(v) \cap end(G)\}$, where v is a vertex for which $\varrho(v) = \varrho(G)$.

Theorem 1.3 For any graph G, $\rho(G).b(G) \leq 1$.

Theorem 1.4 For any nontrivial tree T,

(1) $b(T) \ge 1/\Delta(T);$ (2) $b(T) \ge 1/\varrho(T) + 1.$

§2. Main Results

Observation 2.1 Let T be a tree with $n \ge 3$ vertices, having (n-1)-pendant vertices, which are connected to unique vertex. Then b(T) is the reciprocal of number of vertices connected to unique vertex.

Observation 2.2 Let T be a nontrivial tree. Then b(T) > 0.

Observation 2.3 Let T be a tree with b(T) < 1. Then every realizing set of T is independent.

Theorem 2.4 For any Star $K_{1,n-1}$ with $n \ge 2$ vertices,

$$b(K_{1,n-1}) = \frac{1}{n-1}$$

Proof Let $K_{1,n-1}$ be a star with $n \ge 2$ vertices. If $K_{1,n-1}$ has $\{v_1, v_2, \dots, v_n\}$ vertices with $deg(v_1) = n - 1$ and $deg(v_2) = deg(v_3) = \dots = deg(v_n) = 1$. We prove the result by induction on n. For n = 2, then |N(X)| = |X| = 1 and $b(K_{1,1}) = 1$. For n = 3, |N(X)| < |X| = 2 and $b(K_{1,2}) = \frac{1}{2}$. Let us assume the result is true for n = k for some k, where k is a positive integer. Hence $b(K_{1,k-1}) = \frac{1}{k-1}$.

Now we shall show that the result is true for n > k. Since (k + 1)- pendant vertices in $K_{1,k+1}$ are connected to the unique vertex v_1 . Here newly added vertex v_{k+1} must be adjacent to v_1 only. Otherwise $K_{1,k+1}$ loses its star criteria and v_{k+1} is not adjacent to $\{v_2, v_3, \dots, v_k\}$, then $K_{1,k+1}$ has k number of pendant vertices connected to vertex v_1 . Therefore by Observation 2.1, the desired result follows.

Theorem 2.5 Let T_1 and T_2 be two stars with order n_1 and n_2 , respectively. Then $n_1 < n_2$ if and only if $b(T_1) > b(T_2)$.

Proof By Observation 2.1 and Theorem 2.4, we have $b(T_1) = \frac{1}{n_1}$ and $b(T_2) = \frac{1}{n_2}$. Due to the fact of $n_1 < n_2$ if and only if $\frac{1}{n_1} > \frac{1}{n_2}$. Thus the result follows.

Definition 2.6 The double star $K_{r,s}^*$ is a tree with diameter 3 and central vertices of degree r and s respectively, where the diameter of graph is the length of the shortest path between the most distanced vertices.

Theorem 2.7 For any double star $K_{r,s}^*$ with $1 \le r \le s$ vertices,

$$b(K_{r,s}^*) = \frac{1}{\max\{r,s\} - 1}.$$

Proof Suppose $K_{r,s}^*$ is a double star with $1 \leq r \leq s$ vertices. Then there exist exactly two central vertices x and y for all $x, y \in V(K_{r,s}^*)$ such that the degree of x and y are r and srespectively. By definition, the double star $K_{r,s}^*$ is a tree with diameter 3 having only one edge between x and y. Therefore the vertex x is adjacent to (r-1)-pendant vertices and the vertex y is adjacent to (s-1)-pendant vertices.

Clearly $max\{r-1, s-1\}$ pendant vertices are adjacent to a unique vertex x or y as the case may be. Therefore $b(K_{r,s}^*) = \frac{1}{max\{r-1,s-1\}}$. Hence the result follows.

Definition 2.8 A subdivided star, denoted $K_{1,n-1}^*$ is a star $K_{1,n-1}$ whose edges are subdivided once, that is each edge is replaced by a path of length 2 by adding a vertex of degree 2.

Observation 2.9 Let $K_{1,n-1}$ be a star with $n \ge 2$ vertices. Then cardinality of the vertex set of $K_{1,n-1}^*$ is p = 2n - 1.

Theorem 2.10 For any subdivided star $K_{1,n-1}^*$ with $n \ge 2$ vertices,

$$b(K_{1,n-1}^{*}) = \begin{cases} \frac{1}{2} & \text{if } n = 2;\\ \frac{2}{3} & \text{if } n = 3;\\ 1 & \text{otherwise} \end{cases}$$

Proof By Observation 2.9, the subdivided star $K_{1,n-1}^*$ has p = 2n - 1 vertices. Then the following cases arise:

Case 1. If n = 2, then by Theorem 1.1, $b(K_{1,2-1}^*) = b(P_3) = \frac{1}{2}$. **Case 2.** If n = 3, then by Theorem 1.1, $b(K_{1,3-1}^*) = b(P_5) = \frac{2}{3}$.

Case 3. If a vertex $v_1 \in V(K_{1,n-1})$ with $deg(v_1) = n - 1$ and $deg(N(v_1)) = 1$, where $N(v_1) = \{v_2, v_3, \dots, v_n\}$. Clearly, each edge $\{v_1v_2, v_1v_3, \dots, v_1v_n\}$ takes one vertex on each edge having degree 2, so that the resulting graph will be subdivided star $K_{1,n-1}^*$, in which $\{v_1\}$ and $\{v_2, v_3, \dots, v_n\}$ vertices do not lose their properties. But the maximum degree vertex v_1 is a cut vertex of $K_{1,n-1}^*$. Therefore $b(K_{1,n-1}) < b(K_{1,n-1}^*)$ for $n \ge 4$ vertices. Since each newly added vertex $\{u_i\}$ is adjacent to exactly one pendent vertex $\{v_j\}$, where i = j and $2 \le i, j \le n$, in $K_{1,n-1}^*$. By the definition of binding number |N(X)| = |X|. Hence the result follows. \Box

Definition 2.11 A $B_{t,k}$ graph is said to be a Banana tree if the graph is obtained by connecting one pendant vertex of each t-copies of an k-star graph with a single root vertex that is distinct from all the stars.

Theorem 2.12 For any Banana tree $B_{t,k}$ with $t \ge 2$ copies and $k \ge 3$ number of stars,

$$b(B_{t,k}) = \frac{1}{k-2}$$

Proof Let t be the number of distinct k-stars. Then it has k - 1-pendant vertices and the binding number of each k-stars is $\frac{1}{k-1}$. But in $B_{t,k}$, each t copies of distinct k-stars are joined by single root vertex. Then the resulting graph is connected and each k-star has k - 2 number of vertices having degree 1, which are connected to unique vertex. By Observation 2.1, the result follows.

Definition 2.13 A caterpillar tree $C^*(T)$ is a tree in which removing all the pendant vertices and incident edges produces a path graph.

For example, $b(C^*(K_1)) = 0$; $b(C^*(P_2)) = b(C^*(P_4)) = 1$; $b(C^*(P_3)) = \frac{1}{2}$; $b(C^*(P_5)) = \frac{2}{3}$ and $b(C^*(K_{1,n-1})) = \frac{1}{n-1}$.

Theorem 2.14 For any caterpillar tree $C^*(T)$ with $n \ge 3$ vertices,

$$b(K_{1,n-1}) \le b(C^*(T)) \le b(P_n).$$

Proof By mathematical induction, if n = 3, then by Theorem 1.1 and Observation 2.1, we have $b(K_{1,2}) = b(C^*(T)) = b(P_3) = \frac{1}{2}$. Thus the result follows. Assume that the result is true for n = k. Now we shall prove the result for n > k. Let $C^*(T)$ be a Caterpillar tree with k + 1-vertices. Then the following cases arise:

Case 1. If k + 1 is odd, then $b(C^*(T)) \leq \frac{k}{k+1}$.

Case 2. If k + 1 is even, then $b(C^*(T)) \leq 1$.

By above cases, we have $b(C^*(T)) \leq b(P_n)$. Since, k vertices in $C^*(T)$ exist k-stars, which

contributed at least $\frac{1}{k-1}$. Hence the lower bound follows.

Definition 2.15 The binary tree B^* is a tree like structure that is rooted and in which each vertex has at least two children and child of a vertex is designated as its left or right child.

To prove our next result we make use of the following conditions of Binary tree B^* .

 C_1 : If B^* has at least one vertex having two children and that two children has no any child.

 C_2 : If B^* has no vertex having two children which are not having any child.

Theorem 2.16 Let B^* be a Binary tree with $n \ge 3$ vertices. Then

$$b(B^*) = \begin{cases} \frac{1}{2} & \text{if } B^* \text{ satisfy } C_1; \\ b(P_n) & \text{if } B^* \text{ satisfy } C_2. \end{cases}$$

Proof Let B^* be a Binary tree with $n \ge 3$ vertices. Then the following cases are arises:

Case 1. Suppose binary tree B^* has only one vertex, say v_1 has two children and that two children has no any child. Then only vertex v_1 has two pendant vertices and no other vertex has more than two pendant vertices. That is maximum at most two pendant vertices are connected to unique vertex. There fore $b(B^*) = \frac{1}{2}$ follows.

Case 2. Suppose binary tree B^* has no vertex having two free child. That is each non-pendant vertex having only one child, then this binary tree gives path. This implies that $b(B^*) = b(P_n)$ with $n \ge 3$ vertices. Thus the result follows.

Definition 2.17 The t-centipede C_t^* is the tree on 2t-vertices obtained by joining the bottoms of t - copies of the path graph P_2 laid in a row with edges.

Theorem 2.18 For any t-centipede C_t^* with 2t-vertices,

$$b(C_t^*) = 1.$$

Proof If n = 1, then tree C_1^* is a 1-centipede with 2-vertices. Thus $b(C_1^*) = 1$. Suppose the result is true for n > 1 vertices, say n = t for some t, that is $b(C_t^*) = 1$. Further, we prove $n = t+1, b(C_{t+1}^*) = 1$. In a (t+1) - centipede exactly one vertex from each of the (k+1)- copies of P_2 are laid on a row with edges. Hence the resulting graph must be connected and each such vertex is connected to exactly one pendant vertex. By the definition of binding number |N(X)| = |X|. Hence the result follows.

Definition 2.19 The Fire-cracker graph $F_{t,s}$ is a tree obtained by the concatenation of t -copies of s - stars by linking one pendant vertex from each.

Theorem 2.20 For any Fire-cracker graph $F_{t,s}$ with $t \ge 2$ and $s \ge 3$.

$$b(F_{t,s}) = \frac{1}{s-1}.$$

Proof If s = 2, then Fire-cracker graph $F_{t,2}$ is a *t*-centipede and $b(F_{t,2}) = 1$. If $t \ge 2$ and $s \ge 3$, then t - copies of s - stars are connected by adjoining one pendant vertex from each s-stars. This implies that the resulting graph is connected and a Fire-cracker graph $F_{t,s}$. Then this connected graph has (s-2)-vertices having degree 1, which are connected to unique vertex. Hence the result follows.

Theorem 2.21 For any nontrivial tree T,

$$\frac{1}{n-1} \le b(T) \le 1.$$

Further, the lower bound attains if and only if $T = K_{1,n-1}$ and the upper bound attains if the tree T has 1-factor or there exists a realizing set X such that $X \cap N(X) = \phi$.

Proof The upper bound is proved by Woodall in [7] with the fact of $\delta(T) = 1$. Let $X \in F$ and $\frac{|N(X)|}{|X|} = b(G)$. Then $|N(X)| \ge 1$, since the set X is not empty. Suppose, $|N(X)| \ge n - \delta(T) + 1$. If $\delta(T) = 1$, then any vertex of T is adjacent to atleast one vertex in X. This implies that N(X) = V(T), which is a contradiction. There fore $|X| \le n - 1$ and $b(T) = |N(X)|/|X| \ge 1/(n-1)$. Thus the lower bound follows.

Acknowledgments The authors wish to thank Prof.N.D.Soner for his help and valuable suggestions in the preparation of this paper.

References

- I.Anderson, Binding number of a graphs: A Survey, Advances in Graph Theory, ed. V. R. Kulli, Vishwa International Publications, Gulbarga (1991) 1-10.
- [2] W.H.Cunningham, Computing the binding number of a graph, Discrete Applied Math. 27(1990) 283–285.
- [3] F.Harary, Graph Theory, Addison Wesley, Reading Mass, (1969).
- [4] V.G.Kane, S.P.Mohanty and R.S.Hales, Product graphs and binding number, Ars Combin., 11 (1981) 201–224.
- [5] P.Kwasnik and D.R.Woodall, Binding number of a graph and the existence of k- factors, Quarterly J. Math. 38 (1987) 221–228.
- [6] N.Tokushinge, Binding number and minimum degree for k-factors, J. Graph Theory 13(1989) 607–617.
- [7] D.R.Woodall, The binding number of agraph and its Anderson number, J. Combinatorial Theory Ser. B, 15 (1973) 225–255.
- [8] Wayne Goddard, The Binding Number of Trees and $K_{(1,3)}$ -free Graphs, J. Combin. Math. Combin. Comput, 7 (1990)193–200.