Binding Number of Some Special Classes of Trees

B.Chaluvaraju ${ }^{1}$, H.S.Boregowda ${ }^{2}$ and S.Kumbinarsaiah ${ }^{3}$
${ }^{1}$ Department of Mathematics, Bangalore University, Janana Bharathi Campus, Bangalore-560 056, India
${ }^{2}$ Department of Studies and Research in Mathematics, Tumkur University, Tumkur-572 103, India
${ }^{3}$ Department of Mathematics, Karnatak University, Dharwad-580 003, India

E-mail: bchaluvaraju@gmail.com, bgsamarasa@gmail.com, kumbinarasaiah@gmail.com

Abstract

The binding number of a graph $G=(V, E)$ is defined to be the minimum of $|N(X)| /|X|$ taken over all nonempty set $X \subseteq V(G)$ such that $N(X) \neq V(G)$. In this article, we explore the properties and bounds on binding number of some special classes of trees.

Key Words: Graph, tree, realizing set, binding number, Smarandachely binding number.
AMS(2010): 05 C 05.

§1. Introduction

In this article, we consider finite, undirected, simple and connected graphs $G=(V, E)$ with vertex set V and edge set E. As such $n=|V|$ and $m=|E|$ denote the number of vertices and edges of a graph G, respectively. An edge - induced subgraph is a subset of the edges of a graph G together with any vertices that are their endpoints. In general, we use $\langle X\rangle$ to denote the subgraph induced by the set of edges $X \subseteq E$. A graph G is connected if it has a $u-v$ path whenever $u, v \in V(G)$ (otherwise, G is disconnected). The open neighborhood of a vertex $v \in V(G)$ is $N(v)=\{u \in V: u v \in E(G)\}$ and the closed neighborhood $N[v]=N(v) \cup\{v\}$. The degree of v, denoted by $\operatorname{deg}(v)$, is the cardinality of its open neighborhood. A vertex with degree one in a graph G is called pendant or a leaf or an end-vertex, and its neighbor is called its support or cut vertex. An edge incident to a leaf in a graph G is called a pendant edge. A graph with no cycle is acyclic. A tree T is a connected acyclic graph. Unless mentioned otherwise, for terminology and notation the reader may refer Harary [3].

Woodall [7] defined the binding number of G as follows: If $X \subseteq V(G)$, then the open neighborhood of the set X is defined as $N(X)=\bigcup_{x \in X} N(v)$. The binding number of G, denoted $b(G)$, is given by

$$
b(G)=\min _{x \in F} \frac{|N(X)|}{|X|}
$$

where $F=\{X \subseteq V(G): X \neq \varnothing, N(X) \neq V(G)\}$. We say that $b(G)$ is realized on a set X if $X \in F$ and $b(G)=\frac{|N(X)|}{|X|}$, and the set X is called a realizing set for $b(G)$. Generally, for a given graph H, a Smarandachely binding number $b_{H}(G)$ is the minimum number $b(G)$ on such F with

[^0]$\langle X\rangle_{G} \not \approx H$ for $\forall X \in F$. Clearly, if H is not a spanning subgraph of G, then $b_{H}(G)=b(G)$.
For complete review and the following existing results on the binding number and its related concepts, we follow [1], [2], [5] and [6].

Theorem 1.1 For any path P_{n} with $n \geq 2$ vertices,

$$
b\left(P_{n}\right)= \begin{cases}1 & \text { if } \mathrm{n} \text { is even } \\ \frac{n-1}{n+1} & \text { if } \mathrm{n} \text { is odd }\end{cases}
$$

Theorem 1.2 For any spanning subgraph H of a graph $G, b(G) \leq b(H)$.
In [8], Wayne Goddard established several bounds including ones linking the binding number of a tree to the distribution of its end-vertices $\operatorname{end}(G)=\{v \in V(G): \operatorname{deg}(v)=1\}$. Also, let $\varrho(v)=|N(v) \cap \operatorname{end}(G)|$ and $\varrho(G)=\max \{\varrho(v): v \in V(G)\}$. The following result is obviously true if $\varrho(G)=0$ and if $\varrho(G)=1$, follows from taking $X=\{N(v) \cap \operatorname{end}(G)\}$, where v is a vertex for which $\varrho(v)=\varrho(G)$.

Theorem 1.3 For any graph $G, \varrho(G) . b(G) \leq 1$.
Theorem 1.4 For any nontrivial tree T,
(1) $b(T) \geq 1 / \Delta(T)$;
(2) $b(T) \geq 1 / \varrho(T)+1$.

§2. Main Results

Observation 2.1 Let T be a tree with $n \geq 3$ vertices, having ($n-1$)-pendant vertices, which are connected to unique vertex. Then $b(T)$ is the reciprocal of number of vertices connected to unique vertex.

Observation 2.2 Let T be a nontrivial tree. Then $b(T)>0$.
Observation 2.3 Let T be a tree with $b(T)<1$. Then every realizing set of T is independent.

Theorem 2.4 For any Star $K_{1, n-1}$ with $n \geq 2$ vertices,

$$
b\left(K_{1, n-1}\right)=\frac{1}{n-1} .
$$

Proof Let $K_{1, n-1}$ be a star with $n \geq 2$ vertices. If $K_{1, n-1}$ has $\left\{v_{1}, v_{2}, \cdots, v_{n}\right\}$ vertices with $\operatorname{deg}\left(v_{1}\right)=n-1$ and $\operatorname{deg}\left(v_{2}\right)=\operatorname{deg}\left(v_{3}\right)=\cdots=\operatorname{deg}\left(v_{n}\right)=1$. We prove the result by induction on n. For $n=2$, then $|N(X)|=|X|=1$ and $b\left(K_{1,1}\right)=1$. For $n=3,|N(X)|<|X|=2$ and $b\left(K_{1,2}\right)=\frac{1}{2}$. Let us assume the result is true for $n=k$ for some k, where k is a positive integer. Hence $b\left(K_{1, k-1}\right)=\frac{1}{k-1}$.

Now we shall show that the result is true for $n>k$. Since $(k+1)$ - pendant vertices in $K_{1, k+1}$ are connected to the unique vertex v_{1}. Here newly added vertex v_{k+1} must be adjacent to v_{1} only. Otherwise $K_{1, k+1}$ loses its star criteria and v_{k+1} is not adjacent to $\left\{v_{2}, v_{3}, \cdots, v_{k}\right\}$, then $K_{1, k+1}$ has k number of pendant vertices connected to vertex v_{1}. Therefore by Observation 2.1, the desired result follows.

Theorem 2.5 Let T_{1} and T_{2} be two stars with order n_{1} and n_{2}, respectively. Then $n_{1}<n_{2}$ if and only if $b\left(T_{1}\right)>b\left(T_{2}\right)$.

Proof By Observation 2.1 and Theorem 2.4, we have $b\left(T_{1}\right)=\frac{1}{n_{1}}$ and $b\left(T_{2}\right)=\frac{1}{n_{2}}$. Due to the fact of $n_{1}<n_{2}$ if and only if $\frac{1}{n_{1}}>\frac{1}{n_{2}}$. Thus the result follows.

Definition 2.6 The double star $K_{r, s}^{*}$ is a tree with diameter 3 and central vertices of degree r and s respectively, where the diameter of graph is the length of the shortest path between the most distanced vertices.

Theorem 2.7 For any double star $K_{r, s}^{*}$ with $1 \leq r \leq s$ vertices,

$$
b\left(K_{r, s}^{*}\right)=\frac{1}{\max \{r, s\}-1} .
$$

Proof Suppose $K_{r, s}^{*}$ is a double star with $1 \leq r \leq s$ vertices. Then there exist exactly two central vertices x and y for all $x, y \in V\left(K_{r, s}^{*}\right)$ such that the degree of x and y are r and s respectively. By definition, the double star $K_{r, s}^{*}$ is a tree with diameter 3 having only one edge between x and y. Therefore the vertex x is adjacent to $(r-1)$-pendant vertices and the vertex y is adjacent to $(s-1)$-pendant vertices.

Clearly $\max \{r-1, s-1\}$ pendant vertices are adjacent to a unique vertex x or y as the case may be. Therefore $b\left(K_{r, s}^{*}\right)=\frac{1}{\max \{r-1, s-1\}}$. Hence the result follows.

Definition 2.8 A subdivided star, denoted $K_{1, n-1}^{*}$ is a star $K_{1, n-1}$ whose edges are subdivided once, that is each edge is replaced by a path of length 2 by adding a vertex of degree 2.

Observation 2.9 Let $K_{1, n-1}$ be a star with $n \geq 2$ vertices. Then cardinality of the vertex set of $K_{1, n-1}^{*}$ is $p=2 n-1$.

Theorem 2.10 For any subdivided star $K_{1, n-1}^{*}$ with $n \geq 2$ vertices,

$$
b\left(K_{1, n-1}^{*}\right)= \begin{cases}\frac{1}{2} & \text { if } \mathrm{n}=2 \\ \frac{2}{3} & \text { if } \mathrm{n}=3 \\ 1 & \text { otherwise }\end{cases}
$$

Proof By Observation 2.9, the subdivided star $K_{1, n-1}^{*}$ has $p=2 n-1$ vertices. Then the following cases arise:

Case 1. If $n=2$, then by Theorem 1.1, $b\left(K_{1,2-1}^{*}\right)=b\left(P_{3}\right)=\frac{1}{2}$.
Case 2. If $n=3$, then by Theorem 1.1, $b\left(K_{1,3-1}^{*}\right)=b\left(P_{5}\right)=\frac{2}{3}$.
Case 3. If a vertex $v_{1} \in V\left(K_{1, n-1}\right)$ with $\operatorname{deg}\left(v_{1}\right)=n-1$ and $\operatorname{deg}\left(N\left(v_{1}\right)\right)=1$, where $N\left(v_{1}\right)=\left\{v_{2}, v_{3}, \cdots, v_{n}\right\}$. Clearly, each edge $\left\{v_{1} v_{2}, v_{1} v_{3}, \cdots, v_{1} v_{n}\right\}$ takes one vertex on each edge having degree 2 , so that the resulting graph will be subdivided star $K_{1, n-1}^{*}$, in which $\left\{v_{1}\right\}$ and $\left\{v_{2}, v_{3}, \cdots, v_{n}\right\}$ vertices do not lose their properties. But the maximum degree vertex v_{1} is a cut vertex of $K_{1, n-1}^{*}$. Therefore $b\left(K_{1, n-1}\right)<b\left(K_{1, n-1}^{*}\right)$ for $n \geq 4$ vertices. Since each newly added vertex $\left\{u_{i}\right\}$ is adjacent to exactly one pendent vertex $\left\{v_{j}\right\}$, where $i=j$ and $2 \leq i, j \leq n$, in $K_{1, n-1}^{*}$. By the definition of binding number $|N(X)|=|X|$. Hence the result follows.

Definition 2.11 $A B_{t, k}$ graph is said to be a Banana tree if the graph is obtained by connecting one pendant vertex of each t-copies of an k-star graph with a single root vertex that is distinct from all the stars.

Theorem 2.12 For any Banana tree $B_{t, k}$ with $t \geq 2$ copies and $k \geq 3$ number of stars,

$$
b\left(B_{t, k}\right)=\frac{1}{k-2} .
$$

Proof Let t be the number of distinct k-stars. Then it has $k-1$-pendant vertices and the binding number of each k-stars is $\frac{1}{k-1}$. But in $B_{t, k}$, each t copies of distinct k-stars are joined by single root vertex. Then the resulting graph is connected and each k-star has $k-2$ number of vertices having degree 1, which are connected to unique vertex. By Observation 2.1, the result follows.

Definition $2.13 A$ caterpillar tree $C^{*}(T)$ is a tree in which removing all the pendant vertices and incident edges produces a path graph.

For example, $b\left(C^{*}\left(K_{1}\right)\right)=0 ; b\left(C^{*}\left(P_{2}\right)\right)=b\left(C^{*}\left(P_{4}\right)\right)=1 ; b\left(C^{*}\left(P_{3}\right)\right)=\frac{1}{2} ; b\left(C^{*}\left(P_{5}\right)\right)=\frac{2}{3}$ and $b\left(C^{*}\left(K_{1, n-1}\right)\right)=\frac{1}{n-1}$.

Theorem 2.14 For any caterpillar tree $C^{*}(T)$ with $n \geq 3$ vertices,

$$
b\left(K_{1, n-1}\right) \leq b\left(C^{*}(T)\right) \leq b\left(P_{n}\right)
$$

Proof By mathematical induction, if $n=3$, then by Theorem 1.1 and Observation 2.1, we have $b\left(K_{1,2}\right)=b\left(C^{*}(T)\right)=b\left(P_{3}\right)=\frac{1}{2}$. Thus the result follows. Assume that the result is true for $n=k$. Now we shall prove the result for $n>k$. Let $C^{*}(T)$ be a Caterpillar tree with $k+1$-vertices. Then the following cases arise:

Case 1. If $k+1$ is odd, then $b\left(C^{*}(T)\right) \leq \frac{k}{k+1}$.
Case 2. If $k+1$ is even, then $b\left(C^{*}(T)\right) \leq 1$.
By above cases, we have $b\left(C^{*}(T)\right) \leq b\left(P_{n}\right)$. Since, k vertices in $C^{*}(T)$ exist k-stars, which
contributed at least $\frac{1}{k-1}$. Hence the lower bound follows.

Definition 2.15 The binary tree B^{*} is a tree like structure that is rooted and in which each vertex has at least two children and child of a vertex is designated as its left or right child.

To prove our next result we make use of the following conditions of Binary tree B^{*}.
C_{1} : If B^{*} has at least one vertex having two children and that two children has no any child.
C_{2} : If B^{*} has no vertex having two children which are not having any child.

Theorem 2.16 Let B^{*} be a Binary tree with $n \geq 3$ vertices. Then

$$
b\left(B^{*}\right)=\left\{\begin{array}{cl}
\frac{1}{2} & \text { if } B^{*} \text { satisfy } C_{1} \\
b\left(P_{n}\right) & \text { if } B^{*} \text { satisfy } C_{2}
\end{array}\right.
$$

Proof Let B^{*} be a Binary tree with $n \geq 3$ vertices. Then the following cases are arises:
Case 1. Suppose binary tree B^{*} has only one vertex, say v_{1} has two children and that two children has no any child. Then only vertex v_{1} has two pendant vertices and no other vertex has more than two pendant vertices. That is maximum at most two pendant vertices are connected to unique vertex. There fore $b\left(B^{*}\right)=\frac{1}{2}$ follows.

Case 2. Suppose binary tree B^{*} has no vertex having two free child. That is each non-pendant vertex having only one child, then this binary tree gives path. This implies that $b\left(B^{*}\right)=b\left(P_{n}\right)$ with $n \geq 3$ vertices. Thus the result follows.

Definition 2.17 The t-centipede C_{t}^{*} is the tree on $2 t$-vertices obtained by joining the bottoms of t - copies of the path graph P_{2} laid in a row with edges.

Theorem 2.18 For any t-centipede C_{t}^{*} with $2 t$-vertices,

$$
b\left(C_{t}^{*}\right)=1
$$

Proof If $n=1$, then tree C_{1}^{*} is a 1 -centipede with 2 -vertices. Thus $b\left(C_{1}^{*}\right)=1$. Suppose the result is true for $n>1$ vertices, say $n=t$ for some t, that is $b\left(C_{t}^{*}\right)=1$. Further, we prove $n=t+1, b\left(C_{t+1}^{*}\right)=1$. In a $(t+1)$ - centipede exactly one vertex from each of the $(k+1)$ - copies of P_{2} are laid on a row with edges. Hence the resulting graph must be connected and each such vertex is connected to exactly one pendant vertex. By the definition of binding number $|N(X)|=|X|$. Hence the result follows.

Definition 2.19 The Fire-cracker graph $F_{t, s}$ is a tree obtained by the concatenation of t copies of s - stars by linking one pendant vertex from each.

Theorem 2.20 For any Fire-cracker graph $F_{t, s}$ with $t \geq 2$ and $s \geq 3$.

$$
b\left(F_{t, s}\right)=\frac{1}{s-1}
$$

Proof If $s=2$, then Fire-cracker graph $F_{t, 2}$ is a t-centipede and $b\left(F_{t, 2}\right)=1$. If $t \geq 2$ and $s \geq 3$, then t - copies of s - stars are connected by adjoining one pendant vertex from each s-stars. This implies that the resulting graph is connected and a Fire-cracker graph $F_{t, s}$. Then this connected graph has $(s-2)$-vertices having degree 1 , which are connected to unique vertex. Hence the result follows.

Theorem 2.21 For any nontrivial tree T,

$$
\frac{1}{n-1} \leq b(T) \leq 1
$$

Further, the lower bound attains if and only if $T=K_{1, n-1}$ and the upper bound attains if the tree T has 1-factor or there exists a realizing set X such that $X \cap N(X)=\phi$.

Proof The upper bound is proved by Woodall in [7]with the fact of $\delta(T)=1$. Let $X \in F$ and $\frac{|N(X)|}{|X|}=b(G)$. Then $|N(X)| \geq 1$, since the set X is not empty. Suppose, $|N(X)| \geq n-\delta(T)+1$. If $\delta(T)=1$, then any vertex of T is adjacent to atleast one vertex in X. This implies that $N(X)=V(T)$, which is a contradiction. There fore $|X| \leq n-1$ and $b(T)=|N(X)| /|X| \geq 1 /(n-1)$. Thus the lower bound follows.

Acknowledgments The authors wish to thank Prof.N.D.Soner for his help and valuable suggestions in the preparation of this paper.

References

[1] I.Anderson, Binding number of a graphs: A Survey, Advances in Graph Theory, ed. V. R. Kulli, Vishwa International Publications, Gulbarga (1991) 1-10.
[2] W.H.Cunningham, Computing the binding number of a graph, Discrete Applied Math. 27(1990) 283-285.
[3] F.Harary, Graph Theory, Addison Wesley, Reading Mass, (1969).
[4] V.G.Kane, S.P.Mohanty and R.S.Hales, Product graphs and binding number, Ars Combin., 11 (1981) 201-224.
[5] P.Kwasnik and D.R.Woodall, Binding number of a graph and the existence of k - factors, Quarterly J. Math. 38 (1987) 221-228.
[6] N.Tokushinge, Binding number and minimum degree for k-factors, J. Graph Theory 13 (1989) 607-617.
[7] D.R.Woodall, The binding number of agraph and its Anderson number, J. Combinatorial Theory Ser. B, 15 (1973) 225-255.
[8] Wayne Goddard, The Binding Number of Trees and $K_{(1,3)}$-free Graphs, J. Combin. Math. Combin. Comput, 7 (1990)193-200.

[^0]: ${ }^{1}$ Received July 23, 2015, Accepted February 18, 2016.

