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Abstract. A food web on n living things x1, x2, · · · , xn, i.e., a biological n-system can be mathematically

characterized by action flow
−→
G

L
of order n with surplus flows of growth rates ẋi of population on vertices vi,

vector flow (xi, xj), end-operators xifij , xjf ′
ji on edge (vi, vj), where fij , f ′

ji are 2 variable functions for integers
1 ≤ i, j ≤ n holding with a system of conservation equations

ẋi = xi

⎛⎝ ∑
vk∈N−(vi)

f ′
ki(xk, xi) −

∑
vl∈N+(vi)

fil(xi, xl)

⎞⎠ , 1 ≤ i ≤ n,

which is a system of n differential equations. Certainly, 0 ∈ R
n is one of its equilibrium points. But the system∑

vk∈N−(vi)

f ′
ki(xk, xi) =

∑
vl∈N+(vi)

fil(xi, xl), 1 ≤ i ≤ n

of equations may be solvable or not. However, even if it is non-solvable, it characterizes biological systems also

if it can be classified into solvable subsystems. The main purpose of this paper is to characterize the biological

behavior of such systems with global stability by a combinatorial approach, i.e., establish the relationship

between solvable subsystems of a biological n-system with Eulerian subgraphs of labeling bi-digraph of
−→
G

L
,

characterize n-system with linear growth rate and the global stability on subgraphs, and interpret also the

biological behavior of GL-solutions of non-solvable equations, which opened a way for characterizing biological

system with species more than 3, i.e., mathematical combinatorics. As we know, nearly all papers discussed

biological system with species less or equal to 3 in the past decades.

§1. Introduction. There is a well-known biological law for living things in the natural

world, i.e., the survival of the fittest in the natural selection because of the limited resources

of foods. Thus, foods naturally result in connection with living things, i.e., food chain,

a linear network starting from producer organisms and ending at apex predator species or

decomposer species. And biologically, a food web is a natural interconnection of food chains,

a resultant by a simple ruler (Williams and Martinez, 2000), and generally a graphical

representation of what-eats-what in the ecological community such as those shown in Fig. 1

for 4 food chains: grass→ ladybug→ frog→ snake→ eagle, grass→ ladybug→ frog→ egret,

grass→ rabbit→ snake→eagle and grass→rabbit→eagle.
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Fig. 1

Actually, a food web is an interaction system in physics (Mao, 2015, Quang and Pham,

1998) which can be mathematically characterized by the strength of what action on what. For

a biological 2-system, let x, y be the two species with the action strength F ′(x → y), F (y → x)

of x to y and y to x on their growth rate, respectively (Neuhauser, 2001). Then, such a system

can be quantitatively characterized by differential equations{
ẋ = F (y → x)

ẏ = F ′(x → y)

on the populations of species x and y.

Usually, we denote 2 competing things by a directed edge (u, v) labeling with vector flow

(x, y) and end-operators F, F ′ respectively on its center and both ends, where F, F ′ are action

operators with F (x → 0) = F ′(0 → y) = 0 if y = 0 or x = 0 and the growth rates ẋ, ẏ of

populations on vertices, such as those shown in Fig.2. Particularly, F = xf, F ′ = yf ′ in the

Kolmogorov model, where f , f ′ are 2 variable functions, and f = λ − by, f ′ = µ + cx in the

Lotka-Volterra model (Brauer and Castillo-Chaver, 2012 and Murray, 2002).

Fig. 2
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Then, a food web is nothing else but a topological digraph −→
G , a 2-tuple

(
V (−→G), E(−→G)

)
with E(−→G) ⊂ V (−→G) × V (−→G) and a labeling L : −→

G → R
⋃

S on −→
G with L : V (−→G) → R and

E(−→G) → S, where R and S are predetermined sets (Mao, 2016). Particularly, if R = {ẋ, ẏ},
the growth rates of populations and S = {(F, (x, y), F ′)}, a 3-tuple with action operator F on

the initial, F ′ on the end and vector (x, y) on the middle of edge (u, v), we get the biological

2-system shown in Fig. 2.

However, the law of conservation of matter concludes that matter is neither created nor

destroyed in chemical reactions. In other words, the mass of any one element at the beginning

of a reaction will equal to that of element at the end, i.e., the in and out-action must be

conservative with the surplus on each vertex of −→GL
. Thus, a food web is an action flow (Mao,

2015) further, i.e., a topological digraph −→
G

L
labeled with surplus flows of growth rates ẋi of

population on vertices vi, vector flow (xi, xj), initial and end operators Fij , F
′
ij on edge (vi, vj)

for integers 1 ≤ i, j ≤ n, where n ≥ 2 holding with a system of conservation equations

ẋi =
∑

vk∈N−(vi)

F ′
ki(xk → xi) −

∑
vl∈N+(vi)

Fil(xi → xl), 1 ≤ i ≤ n

and particularly,

ẋi = xi

⎛⎝ ∑
vk∈N−(vi)

f ′
ki(xk, xi) −

∑
vl∈N+(vi)

fil(xi, xl)

⎞⎠ , 1 ≤ i ≤ n (1.1)

in the Kolmogorov model. For example, a biological 4-system shown in Fig.3 is a system of 4

ordinary differential equations

Fig. 3
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ẋ1 = x1 ((b52 − a11 − a12)x1 − a12x2 − a22x3 + b51x4)

ẋ2 = x2 (b11x1 + (b12 + b62 − a31)x2 − a32x3 + b61x4)

ẋ3 = x3 (b21x1 + b31x2 + (b22 + b32 − a41)x3 − a42x4)

ẋ4 = x4 (b41x3 − a52x1 − a62x2 + (b42 − a51 − a61)x4)

(1.2)

where,
f1(x1, x2) = a11x1 + a12x2, f ′

1(x1, x2) = b11x1 + b12x2,

f2(x1, x3) = a21x1 + a22x3, f ′
2(x1, x3) = b21x1 + b22x3,

f3(x2, x3) = a31x2 + a32x3, f ′
3(x2, x3) = b31x2 + b32x3,

f4(x3, x4) = a41x3 + a42x4, f ′
4(x3, x4) = b41x3 + b42x4,

f5(x4, x1) = a51x4 + a52x1, f ′
5(x4, x1) = b51x4 + b52x1,

f6(x4, x2) = a61x4 + a62x2, f ′
6(x4, x2) = b61x4 + b62x2.

DEFINITION 1.1 Let −→GL
be a labeling topological digraph. A subgraph −→

H of −→G is said to be a

labeling subgraph of −→GL
if its vertices and edges are labeled by L|H , denoted by −→

H
L ≺ −→

G
L

and

furthermore, if −→
H

L
= −→

G
L
∣∣∣
V (H)

, such a labeling subgraph is said to be an induced subgraph of

−→
G

L
, denoted by

〈
V (−→H )

〉
G
.

For example, the 2 labeling graphs −→
G

L

1 , −→GL

2 in Fig.4 are all labeling subgraphs but only
−→
G

L

1 is an induced subgraph of the graph shown in Fig. 3.

Fig. 4

Clearly, a labeling subgraph of −→
G

L
is also consisting of food chains but it maybe not a

food web if it is not an action flow again. Even it is, the sizes of species are not the same as
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they in −→
G

L
because the conservative laws are completely changed. For example, the system of

conservation equations for the labeling subgraph −→
G

L

1 is⎧⎪⎨⎪⎩
ẋ1 = x1 ((b51 − a21)x1 − a22x3 + b51x4)

ẋ3 = x3 (b21x1 + (b22 − a41)x3 − a42x4)

ẋ4 = x4 (b41x3 − a52x1 + (b42 − a51)x4)

(1.3)

a very different system from that of (1.2).

The following terminologies are useful for characterizing food webs.

DEFINITION 1.2 Let −→
G be a digraph with ←−

G a digraph reversing direction on every edge

in −→
G . A bi-digraph of −→

G is defined by −→
G

⋃←−
G and a labeling bi-digraph

(−→
G

⋃←−
G

)L̂

of a

labeling digraph −→
G

L
is a labeling graph on −→

G
⋃←−

G with a labeling L̂ : V (−→G
⋃←−

G) → L
(
V (−→G)

)
,

L̂ : E
(−→

G
⋃←−

G
)
→ L

(
E

(−→
G

⋃←−
G

))
by L̂ : (u, v) → {0, (x, y), yf ′}, (v, u) → {xf, (x, y), 0} if

L : (u, v) → {xf, (x, y), yf ′} for ∀(u, v) ∈ E(−→G), such as those shown in Fig. 5.

Fig. 5

DEFINITION 1.3 A circuit in a digraph −→
G is a nontrivial closed trail with different edges in

−→
G and an Eulerian circuit in digraph −→

G is a circuit of −→G containing every edge of −→G .

A digraph −→
G is Eulerian if it contains an Eulerian circuit.

Clearly, a bi-digraph of a digraph is an Eulerian graph. The main purpose of this paper

is to characterize the biological behavior of biological n-systems with global stability by

a combinatorial approach, i.e., establish the relationship between solvable subsystems of a

biological n-system with that of labeling Eulerian subgraphs of labeling bi-digraph
(−→

G
⋃←−

G
)L̂

of −→
G

L
, characterize conditions of an n-system with linear growth rate become distinct and

global stability, and interpret also the biological behavior of GL-solutions of non-solvable
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equations, which opened a way for characterizing biological system with species more than

3, i.e., mathematical combinatorics, or differential equations over graphs.

For terminologies and notations not mentioned here, we follow references Abraham and

Marsden, 1978) for mechanics, (Quang and Pham, 1998) for interaction particles, (Braur and

Castillo-Chaver, 2012) and (Murray, 2002) for biological mathematics, (HIrsch, Smale and

Devaney, 2006) for differential equations with stability, (Mao, 2007, 2011) for topological graphs,

digraphs and combinatorial geometry, (Mao, 2011) and (Smarandache, 1997) for Smarandache

multispaces.

§2. Geometry Over Equilibrium Points

2.1 Equilibrium Sets. We consider the generalized Kolmogorov model on biological

n-system ((Brauer and Castillo-Chaver, 2012 and Murray, 2002), i.e., the system (1.1) of

differential equations⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋ1 = x1

( ∑
vk∈N−(v1)

f ′
k1(xk, x1) −

∑
vl∈N+(v1)

f1l(x1, xl)

)

ẋ2 = x2

( ∑
vk∈N−(v2)

f ′
k2(xk, x2) −

∑
vl∈N+(v2)

f2l(x2, xl)

)
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

ẋn = xn

( ∑
vk∈N−(vn)

f ′
kn(xk, xn) −

∑
vl∈N+(vn)

fnl(xn, xl)

)
satisfying conditions following :

(1) fij , f ′
ij ∈ C

1
for integers 1 ≤ i, j ≤ n;

(2) For any integer i, 1 ≤ i ≤ n, there is (x0
1, x

0
2, · · · , x0

n) ∈ R
n hold with∑

vk∈N−(vi)

f ′
ki(x

0
k, x0

i ) =
∑

vl∈N+(vi)

fil(x0
i , x

0
1)

but ∑
vk∈N−(vi)

∂f ′
ki

∂xi

∣∣∣∣
(x0

k
,x0

i
)

	=
∑

vl∈N+(vi)

∂fil

∂xi

∣∣∣∣
(x0

i
,x0

1)

.

For any integer i, 1 ≤ i ≤ n, define

Fi =
∑

vk∈N−(vi)

f ′
ki(xk, xi) −

∑
vl∈N+(vi)

fil(xi, xl).
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Then it concludes that

(1) Fi ∈ C
1

for integers 1 ≤ i ≤ n;

(2) Fi|(x0
1,x0

2,···,x0
n) = 0 but

∂Fi

∂xi

∣∣∣∣
(x0

1,x0
2,···,x0

n)

=
∑

vk∈N−(vi)

∂f ′
ki

∂xi

∣∣∣∣
(x0

1,x0
2,···,x0

n)

−
∑

vl∈N+(vi)

∂fil

∂xi

∣∣∣∣
(x0

1,x0
2,···,x0

n)

	= 0.

Applying the implicity function theorem, each equation

Fi(x1, x2, · · · , xn) = 0

is solvable, i.e., there is a solution manifold SFi in R
n for any integer 1 ≤ i ≤ n, and in this

case furthermore, there is a unique solution on the Cauchy problem of system (1.1) prescribed

with an initial condition (x1(t0), x2(t0), · · · , xn(t0)) =
(
x0

1, x
0
2, · · · , x0

n

)
.

An equilibrium set of system (1.1) are all points (x0
1, x

0
2, · · · , x0

n) ∈ R
n holding with⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x0
1

( ∑
vk∈N−(v1)

f ′
k1(x

0
k, x0

1) −
∑

vl∈N+(v1)

f1l(x0
1, x

0
l )

)
= 0

x0
2

( ∑
vk∈N−(v2)

f ′
k2(x

0
k, x0

2) −
∑

vl∈N+(v2)

f2l(x0
2, x

0
l )

)
= 0

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

x0
n

( ∑
vk∈N−(vn)

f ′
kn(x0

k, x0
n) −

∑
vl∈N+(vn)

fnl(x0
n, x0

l )

)
= 0

(2.1)

Clearly, only those solutions x0
i ≥ 0, 1 ≤ i ≤ n of system (2.1) have the biological meaning,

and (0, 0, · · · , 0) ∈ R
n is an obvious equilibrium point. We classify all equilibrium points of

system (2.1) into 3 categories following :

(C1) Only (0, 0, · · · , 0) ∈ R
n hold with system (2.1), i.e., the system⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑
vk∈N−(v1)

f ′
k1(x

0
k, x0

1) =
∑

vl∈N+(v1)

f1l(x0
1, x

0
l )

∑
vk∈N−(v2)

f ′
k2(x

0
k, x0

2) =
∑

vl∈N+(v2)

f2l(x0
2, x

0
l )

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·∑
vk∈N−(vn)

f ′
kn(x0

k, x0
n) =

∑
vl∈N+(vn)

fnl(x0
n, x0

l )

(2.2)

is non-solvable in R
n.
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(C2) Only (0, · · · , 0, K1, 0, · · · , 0, K2, 0, · · · , 0, Ks, 0, · · · , 0) ∈ R
n hold system (2.1) with

numbers K1, K2, · · · , Ks > 0 on columns i1, i2, · · · , is respectively, i.e., for any integer j 	∈
{i1, i2, · · · , is}, the system⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑
vk∈N−(vi1 )

f ′
ki1

(x0
k, x0

i1
) =

∑
vl∈N+(vi1 )

fi1l(x0
i1

, x0
l )

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·∑
vk∈N−(vis )

f ′
kis

(x0
k, x0

is
) =

∑
vl∈N+(vis )

fisl(x0
is

, x0
l )

∑
vk∈N−(vj)

f ′
kj(x

0
k, x0

j ) =
∑

vl∈N+(vj)

fjl(x0
j , x

0
l )

(2.3)

is non-solvable in R
n.

(C3) There are (K1, K2, · · · , Kn) ∈ R
n hold system (2.1) with Ki > 0 for integers 1 ≤ i ≤

n.

2.2 Geometry Over Equations. Usually, one applies differential equations to characterize

the reality of things by their solutions. But can this notion describes the all behavior of things?

Certainly not ((Mao, 2012, 2013, 2014, 2015, 2016), particularly in biology follows by the

discussion following.

For an integer n ≥ 1, let u : R
n → R

n be differentiable mapping. Its n-dimensional graph

Γ[u] is defined by the ordered pairs

Γ[u] = {((x1, · · · , xn) , u (x1, · · · , xn))) |(x1, · · · , xn)}

in R
n+1. Clearly, the assumption on fij , f

′
ij , 1 ≤ i, j ≤ n concludes that the solution manifold

SFi
is nothing else but a graph Γ[Fi] in R

n.

Geometrically, the system ⎧⎪⎪⎪⎨⎪⎪⎪⎩
F1(x1, x2, · · · , xn) = 0

F2(x1, x2, · · · , xn) = 0
. . . . . . . . . . . . . . . . . . . . .
Fn(x1, x2, · · · , xn) = 0

(2.4)

is solvable or not dependent on
n⋂

i=1

SFi
	= ∅ or not, and conversely, if

n⋂
i=1

SFi
	= ∅ or not, we

can or can not choose point (x1, x2, · · · , xn) in
n⋂

i=1

SFi
, a solution of (2.4). We therefore get a

simple but meaningful conclusion following.
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THEOREM 2.1 A system of equations⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
F1(x1, x2, · · · , xn) = 0

F2(x1, x2, · · · , xn) = 0
. . . . . . . . . . . . . . . . . . . . .

Fn(x1, x2, · · · , xn) = 0

under previous assumption is non-solvable or not if and only if
n⋂

i=1

SFi = ∅ or 	= ∅.

If the intersection
n⋂

i=1

SFi 	= ∅, it is said to be a ∧-solution of equations (2.4).

Usually, one characterizes a system S of things T1, T2, · · · , Tn by equations (2.4) with their

solutions to hold on the dynamical behavior of these things. Is it always right? The answer is

negative at least in the non-solvable case of equations (2.4), and even if they are solvable, it can

be used only to characterize those of coherent behaviors of things in S, not the individual such

as those of discussions on multiverse of particles in (Mao, 2015) and (Mao, 2015). Then, what is

its basis in philosophy? It results deeply in an assumption on things, i.e., the behavior of things

discussed is always consistent, i.e., the system (2.4) is solvable. If it holds, the behavior of

these things then can be completely characterized by the intersection
n⋂

i=1

SFi , i.e., the solution

of system (2.4). However, this is a wrong understanding on things because all things are in

contradiction in the nature even for human ourselves, and further on different species. This

fact also concludes that characterizing things by solvable system (2.4) of equations is only part,

not the global, and with no conclusion if it is non-solvable in classical meaning.

Philosophically, things T1, T2, · · · , Tn consist of a group, or a union set
n⋃

i=1

Ti, and if Ti

is characterized by the ith equation in (2.4), they are geometrically equivalent to the union
n⋃

i=1

SFi
, i.e., a Smarandache multispace, not the intersection

n⋂
i=1

SFi
.

For example, if things T1, T2, T3, T4 and T ′
1, T

′
2, T

′
3, T

′
4 are respectively characterized by

systems of equations following

(LESN
4 )

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
x + y = 1

x + y = −1

x − y = −1

x − y = 1

(LESS
4 )

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
x = y

x + y = 2

x = 1

y = 1

then it is clear that (LESN
4 ) is non-solvable because x + y = −1 is contradictious to x + y = 1,
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and so that for equations x − y = −1 and x − y = 1, i.e., there are no solutions x0, y0 hold

with this system. But (LESS
4 ) is solvable with x = 1 and y = 1. Can we conclude that

things T ′
1, T

′
2, T

′
3, T

′
4 are x = 1, y = 1 and T1, T2, T3, T4 are nothing? Certainly not because

(x, y) = (1, 1) is the intersection of straight line behavior of things T ′
1, T

′
2, T

′
3, T

′
4 and there are

no intersection of T1, T2, T3, T4 in plane R
2. However, they are indeed exist in R

2 such as those

shown in Fig. 6.

Fig. 6

Denoted by the point set

La,b,c = {(x, y)|ax + by = c, ab 	= 0}

in R
2. Then, we are easily know the straight line behaviors of T1, T2, T3, T4 and T ′

1, T
′
2, T

′
3, T

′
4

are nothings else but the unions L1,−1,0

⋃
L1,1,2

⋃
L1,0,1

⋃
L0,1,1 and L1,1,1

⋃
L1,1,−1

⋃
L1,−1,−1⋃

L1,−1,1, respectively.

DEFINITION 2.2 A ∨-solution, also called G-solution of system (2.4) is a labeling graph GL

defined by

V (G) = {SFi , 1 ≤ i ≤ n};

E(G) =
{
(SFi , SFj ) if SFi

⋂
SFj 	= ∅ for integers 1 ≤ i, j ≤ n

}
with a labeling

L : SFi → SFi , (SFi , SFj ) → SFi

⋂
SFj .

ExAMPLE 2.3 The ∨-solutions of (LESN
4 ) and (LESS

4 ) are respectively labeling graphs CL
4

and KL
4 shown in Fig.7 following.
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Fig. 7

THEOREM 2.4 A system (2.4) of equations is ∨-solvable if Fi ∈ C
1

and Fi|(x0
1,x0

2,···,x0
n) = 0

but
∂Fi

∂xi

∣∣∣∣
(x0

1,x0
2,···,x0

n)

	= 0 for any integer i, 1 ≤ i ≤ n.

Proof: Applying the implicity function theorem, the proof is completed by definition.

THEOREM 2.5 A system (1.1) of differential equations on food web −→
G

L
is uniquely ∨-solvable

if fij , f ′
ij ∈ C

1
for integers 1 ≤ i, j ≤ n and (x1(0), x2(0), · · · , xn(0)) = (x0

1, x
0
2, · · · , x0

n) ∈ R
n.

Proof: Applying the existence and uniqueness theorem on the Cauchy problem of differential

equations,

ẋi = xi

⎛⎝ ∑
vk∈N−(vi)

f ′
k1(xk, xi) −

∑
vl∈N+(vi)

f1l(xi, xl)

⎞⎠
with (x1(0), x2(0), · · · , xn(0)) = (x0

1, x
0
2, · · · , x0

n) ∈ R
n, it is uniquely solvable for any integer

1 ≤ i ≤ n. Consequently, the system (1.1) is uniquely ∨-solvable in R
n by definition.

2.3 Equilibrium Sets of Linear Equations. Certainly, the Lotka-Volterra model on

biological 2-system is a system of linear growth rates. Generally, if all fij , f
′
ij are linear for

integers 1 ≤ i, j ≤ n, then it is a generalization of Lotka-Volterra model on biological n-system.

We can further characterize the equilibrium sets of linear system (2.4) by linear algebra.

DEFINITION 2.6 For any positive integers i, j, i 	= j, the linear equations

ai1x1 + ai2x2 + · · · ainxn = bi,

aj1x1 + aj2x2 + · · · ajnxn = bj
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are called parallel if there exists a constant c such that

c = aj1/ai1 = aj2/ai2 = · · · = ajn/ain 	= bj/bi.

The following criterion is known in (Mao, 2012).

THEOREM 2.7 (Mao, 2012) For any integers i, j, i 	= j, the linear equation system{
ai1x1 + ai2x2 + · · · ainxn = bi,

aj1x1 + aj2x2 + · · · ajnxn = bj

is non-solvable if and only if they are parallel.

By Theorem 2.7, we divide all linear equations Li, 1 ≤ i ≤ n in (2.4) into parallel families

C
1
, C

2
, · · · , C

s

by the property that all equations in a family C
i
are parallel and there are no other equations

parallel to equations in C
i

for integers 1 ≤ i ≤ s. Denoted by |C
i
| = ni, 1 ≤ i ≤ s. Then

we can characterize equilibrium sets of linear system (2.1) by Theorem 2.6 in (Mao, 2012)

following.

THEOREM 2.8 (Mao, 2012) The equilibrium sets of system (2.1) with linear growth rates

fij , f
′
ij , 1 ≤ i, j ≤ n can be classified into 3 classes following :

(LC1) there is only point (0, 0, · · · , 0) ∈ R
n holding with linear system (2.1), i.e., its ∨-solution

GL  KL
n1,n2,···,ns

with n1 + n + 2 + · · ·+ ns = n, where ni = |C
i
| and C

i
is the parallel family for integers

1 ≤ i ≤ s, s ≥ 2.

(LC2) there is only point (0, · · · , 0, c1, 0, · · · , 0, c2, 0, · · · , 0, cn−l, 0, · · · , 0) ∈ R
n holding system

(2.1) with numbers c1, c2, · · · , cn−l > 0 respectively on columns i1, i2, · · · , in−l for 1 ≤ l <

n, i.e., its ∨-solution

GL  KL
n1,n2,···,nt

with n1 + n + 2 + · · · + nt = l, where ni = |C
i
| and C

i
is the parallel family for integers

1 ≤ i ≤ t, s ≥ 2.

(LC3) there is an unique point (c1, c2, · · · , cn) ∈ R
n holding linear system (2.1) with constant

ci > 0 for integers 1 ≤ i ≤ n.
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§3. Biology Over Equations. Classically, a solvable system (1.1) of differential equations

characterizes dynamical behaviors of a food web in area. However, the solvable systems are

individual but non-solvable systems are universal. Then what about biology over those of

non-solvable systems (1.1)? Are there no biological significance? The answer is negative.

Firstly, let us think about a food web how to run. Certainly, a food chain only follows a

direct, linear pathway of one animal at a time, and different thing T has his own food chain for

living, even for the same kind of things.

Fig. 8

For example, the eagle can lives respectively on the rabbit, on the snake or on the both via

its food chains snake→ eagle or rabbit→ eagle with interactions in Fig. 1, i.e., although the

eagle preys on the snake and the rabbit but it is also dependent on the 2 populations such as

those shown in Fig. 8, and its living web should be consisted of circuits eagle→ snake→ eagle,

eagle→ rabbit→ eagle or eagle→snake and rabbit→ eagle, Eulerian subgraphs.

Generally, a predator P preys on a living thing T , i.e., P action on T and there are also T

reacts on P at the same time, which implies the interaction between living things, the in and

out action exist together. We therefore know a biological fact following.

FACT 3.1 A living thing must live in an Eulerian subgraph of bi-digraph of a food web −→
G

L
.

The following result characterizes action flows on Eulerian subgraphs with that of solvable

subsystems of equations (1.1).

THEOREM 3.2 Let −→GL
be a food web with solvable or non-solvable conservative equations (1.1)

on initial value (x1(0), x2(0), · · · , xn(0)) = (x0
1, x

0
2, · · · , x0

n) and −→
H

L ≺
(−→

G
L ⋃←−

G
)L̂

, a food web
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containing species T with solvable conservation equations

ẋi0 = xi0

⎛⎝ ∑
vk∈N−(vi0 )

f ′
ki0(xk, xi0) −

∑
vl∈N+(vi0 )

fi0l(xi0 , xl)

⎞⎠ , 1 ≤ i0 ≤ |H| (3.1)

in −→
H

L
where L(vi0) = ẋi0 . Then −→

H is an Eulerian digraph and HL is an action flow.

Proof: If −→HL
is a food web, by Fact 3.1 −→

H must be an Eulerian digraph.

Now let xi0 = f(x1, x2, · · · , xn), 1 ≤ i ≤ |H| be the solution of (2.5). Notice that in solution

xi0 , xi can be any chosen constant c, particularly, xi = 0 if i 	∈ {i0, 1 ≤ i ≤ |H|} in (3.2), i.e.,

xi0 = f(0, · · · , 0, x10 , 0, · · · , 0, x20 , 0, · · · , 0, xn, 0 · · · , 0), 1 ≤ i ≤ |H|

is also the solution of (2.5) with fik(xi, xk) = 0, f ′
ki(xk, xi) = 0, which implies that −→

H
L

is an

action flow with conservation laws at each vertex.

Let −→
H 1,

−→
H 2, · · · ,−→H s be subgraphs of digraph −→

G with −→
H i 	= −→

H j
−→
H i

⋂−→
H j = ∅ or 	= ∅

for integers 1 ≤	= j ≤ s. If −→
G =

s⋃
i=1

−→
H i, they are called a subgraph multi-decomposition of

−→
G . Furthermore, if each −→

H i is Eulearian, such a decomposition is called an Eulerian multi-

decomposition, denoted by −→
G =

s⊕
i=1

−→
H i. For example, an Eulerian multi-decomposition of the

graph on the left is shown on the right in Fig.9.

Fig. 9

Particularly, if E
(−→
H i

) ⋂
E

(−→
H j

)
= ∅ for integers 1 ≤ i 	= j ≤ s, such a decomposition on

−→
G is called an Eulearian decomposition of −→G .

The next result characterizes food webs by Eulerian multi-decomposition.
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THEOREM 3.3 If there are Eulerian subgraphs −→
H

L

i , 1 ≤ i ≤ s with solvable conservative

equations, i.e., food webs such that −→G L̂
=

s⊕
i=1

−→
H

L

i with

L̂ : v →
l∑

i=1

ẋvi , ∀v ∈ V (−→G)

if v ∈
l⋂

i0=1

V (−→H i0) with L(v) = ẋvi in −→
H

L

i0 and

L̂ : (u, v) →
(

s∑
l=1

F ′
il
(u → v), (x, y),

s∑
l=1

Fil
(v → u)

)
, ∀(u, v) ∈ E(−→GL

)

if (u, v) ∈
s⋂

j0=1

E(−→H j0), then −→
G

L̂
is also a food web, i.e., an action flow.

Proof: Clearly, −→G L̂
is a labeling graph holding with conservative law on each vertex v ∈ V (−→GL

),

i.e., an action flow.

§4. Global Stability and Extinction. In biology, the generation is the necessary

condition for the continuation of species in a food web constraint on the interaction, i.e., the

stability in dynamics with small perturbations on initial values. Usually, the dynamical behavior

is characterized by differential equations, which maybe solvable or not and can not immediately

apply to the stability of food web −→
G

L
for n ≥ 3 by Theorems 3.2 and 3.3. Generalizing the

classical stability enables one to define the stability of food web following.

DEFINITION 4.1 A food web −→
G

L
with initial value −→

G
L0 , where L(v) = ẋv, L0(v) = ẋ0

v

for v ∈ V (−→GL
) is globally stable or asymptotically stable for any initial value −→

G
L′

0 , where

L′
0(v) = ẏ0

v for v ∈ V (−→GL
) and a number εv > 0, there is always a number δv > 0 such that if

|y0
v − x0

v| < δv exists for all t ≥ 0, then

|yv(t) − xv(t)| < εv, ∀v ∈ V (−→GL
),

or furthermore,

lim
t→0

|yv(t) − xv(t)| = 0, ∀v ∈ V (−→GL
).

Certainly, we need new criterions on the classic for discussing the stability of species in

biology.
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THEOREM 4.2 A food web −→
G

L
with initial value −→

G
L0 is globally stable or asymptotically stable

if and only if there is an Eulerian multi-decomposition(−→
G

⋃←−
G

)L̂

=
s⊕

i=1

−→
H

L

i

with solvable stable or asymptotically stable conservative equations on labeling Eulerian

subgraphs −→
H

L

i for integers 1 ≤ i ≤ s.

Proof: The necessary is obvious because if −→
G

L
with initial value −→

G
L0 is globally stable or

asymptotically stable, then
(−→

G
⋃←−

G
)L̂

is Eulerian itself by Fact 3.1.

Now if there is an Eulerian multi-decomposition(−→
G

⋃←−
G

)L̂

=
s⊕

i=1

−→
H

L

i

on labeling bi-digraph
(−→

G
⋃←−

G
)L̂

with stable or asymptotically stable conservative equations

on labeling Eulerian subgraphs −→HL

i , i.e., for any number εv > 0, there is a number δv > 0 such

that if |y0
v − x0

v| < δv exists for all t ≥ 0, then

|yv(t) − xv(t)| < εv, ∀v ∈ V (−→HL

i ),

or furthermore,

lim
t→0

|yv(t) − xv(t)| = 0, ∀v ∈ V (−→HL

i )

for integers 1 ≤ i ≤ s, let λv be the multiple of vertex v ∈ V (−→GL
) appeared in subgraphs

−→
H

L

i , 1 ≤ i ≤ s, we then know that

|yv(t) − xv(t)| < εi
v

for v ∈ V (−→HL

i ) if |y0
v − x0

v| < δi
v for integers 1 ≤ i ≤ λv.

Define

δv = min{δi
v, 1 ≤ i ≤ λv} and εv = max{εi

v, 1 ≤ i ≤ λv}.

We therefore know that

|yv(t) − xv(t)| < εv,

i.e., the species on vertex v is stable if the conservative equations of −→HL

i are stable for integers

1 ≤ i ≤ λv and −→
G

L
is globally stable.
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Now if furthermore, xv is asymptotically stable, i.e.,

lim
t→0

|yv(t) − xv(t)| = 0

in food web −→
H

L

i , 1 ≤ i ≤ λv, it is clear that

lim
t→0

|yv(t) − xv(t)| = 0

in −→
G

L
also, i.e., −→GL

is globally asymptotically stable. This completes the proof.

COROLLARY 4.3 A food web −→
G

L
with initial value −→

G
L0 is globally stable or asymptotically

stable if there is an Eulerian decomposition

(−→
G

⋃←−
G

)L̂

=
s⊕

i=1

−→
H

L

i

with solvable stable or asymptotically stable conservative equations on labeling Eulerian

subgraphs −→
H

L

i for integers 1 ≤ i ≤ s.

Clearly, the bi-digraph −→
G

⋃←−
G has an Eulerian decomposition, called parallel decomposition

−→
G

⋃←−
G =

⊕
(u,v)∈E(

−→
G )

(
(u, v)

⋃
(v, u)

)
.

We get the next conclusion.

COROLLARY 4.4 A food web −→
G

L
with initial value −→

G
L0 is globally stable or asymptotically

stable if it is parallel stable or asymptotically stable, i.e., ((u, v)
⋃

(v, u))L̂ is an action flow for

∀(u, v) ∈ E(−→GL
).

For an equilibrium point −→GL0 of (2.1), we can also linearize F (v, u), F ′(v, u) at (x0, y0) for

∀(v, u) ∈ E(−→GL
) and know the stable behavior of −→GL

in neighborhood of −→GL0 by applying the

following well-known result.

THEOREM 4.5 (Hirsch, Smale and Devaney, 2006) If an n-dimensional system Ẋ = F (X) has

an equilibrium point X0 that is hyperbolic, i.e., all of the eigenvalues of DFX0 have nonzero real

parts, then the nonlinear flow is conjugate to the flow of the linearized system in a neighborhood

of X0.

The next result on the stability of food webs is an immediate application of Theorem 4.5.
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THEOREM 4.6 A food web −→
G

L
with initial value −→

G
L0 is globally asymptotically stable if there

is an Eulerian multi-decomposition

(−→
G

⋃←−
G

)L̂

=
s⊕

k=1

−→
H

L

k

with solvable conservative equations such that Reλi < 0 for characteristic roots λi of Av in the

linearization AvXv = 0hv×hv
of conservative equations at an equilibrium point −→HL0

k in −→
H

L

k for

integers 1 ≤ i ≤ hv and v ∈ V (−→HL

k ), where V (−→HL

k ) = {v1, v2, · · · , vhv},

Av =

⎛⎜⎜⎝
av
11 av

12 · · · av
1hv

av
21 av

22 · · · av
2hv

av
h1 av

h2 · · · av
hhv

⎞⎟⎟⎠
a constant matrix and Xk = (xv1 , xv2 , · · · , xvhv

)T for integers 1 ≤ k ≤ l.

Proof: Applying the theory of linear ordinary differential equations, we are easily know the

species

xv(t) =
hv∑
i=1

ciβi(t)e
λit,

where, ci is a constant, βi(t) is an hv-dimensional vector consisting of polynomials in t

determined as follows

β1(t) =

⎡⎢⎢⎢⎣
t11

t21

· · ·
thv1

⎤⎥⎥⎥⎦ , β2(t) =

⎡⎢⎢⎢⎢⎣
t11t + t12

t21t + t22

· · · · · · · · ·
tn1t + thv2

⎤⎥⎥⎥⎥⎦ ,

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ,

βk1
(t) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

t11
(k1 − 1)!

tk1−1 +
t12

(k1 − 2)!
tk1−2 + · · · + t1k1

t21
(k1 − 1)!

tk1−1 +
t22

(k1 − 2)!
tk1−2 + · · · + t2k1

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
thv1

(k1 − 1)!
tk1−1 +

thv2

(k1 − 2)!
tk1−2 + · · · + thvk1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,
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βk1+1(t) =

⎡⎢⎢⎢⎢⎣
t1(k1+1)

t2(k1+1)

· · · · · ·
thv(k1+1)

⎤⎥⎥⎥⎥⎦ , βk1+2(t) =

⎡⎢⎢⎢⎣
t11t + t12

t21t + t22
· · · · · · · · ·
tn1t + thv2

⎤⎥⎥⎥⎦ ,

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ,

βhv
(t) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

t1(hv−ks+1)

(ks − 1)!
tks−1 +

t1(hv−ks+2)

(ks − 2)!
tks−2 + · · · + t1hv

t2(hv−ks+1)

(ks − 1)!
tks−1 +

t2(hv−ks+2)

(ks − 2)!
tks−2 + · · · + t2hv

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
thv(hv−ks+1)

(ks − 1)!
tks−1 +

thv(hv−ks+2)

(ks − 2)!
tks−2 + · · · + thvhv

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
with each tij a real number for 1 ≤ i, j ≤ hv such that det([tij ]hv×hv

) 	= 0,

αi =

⎧⎪⎪⎨⎪⎪⎩
λ1, if 1 ≤ i ≤ k1;
λ2, if k1 + 1 ≤ i ≤ k2;
· · · · · · · · · · · · · · · · · · · · · ;
λs, if k1 + k2 + · · · + ks−1 + 1 ≤ i ≤ hv.

If Reλi < 0 for integers 1 ≤ i ≤ hv, it is clear that

lim
t→∞

xv(t) = 0

for vertex v ∈ E(−→HL

k ), i.e., each linearized conservative equation AvXv = 0hv×hv is stable

for 1 ≤ k ≤ s. Applying Theorems 4.2 and 4.5, we therefore know that −→
G

L
is globally

asymptotically stable.

Comparatively, we also get the next conclusion on the unstable of a species by Theorem 4.2

following.

COROLLARY 4.7 A species T is unstable in a food web −→
G

L
with initial value −→

G
L0 if and only

if the subgraph containing T in all Eulerian multi-decompositions

(−→
G

⋃←−
G

)L̂

=
s⊕

i=1

−→
H

L

i

of −→GL
is unstable.
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A unstable behavior of species T will causes the redistribution of flows and makes for a stable

situation on the food web −→
G

L
. If it established, the food web works in order again. Otherwise,

a few species will evolve finally to extinction, i.e., ceases to exist in that area. If all species in a

food web −→
G

L
vanished on that area, there must be a series of species x1, x2, · · · , xs successively

died out on the time, the stability of the web is repeatedly broken, established and broken, and

finally, all species become extinct. In this case there must be vertices v1, v2, · · · , vs ∈ V (−→GL
)

and a series of action flows

−→
G

L → −→
G

L − v1 →
(−→

G
L − v1

)
− v2 → · · · → −→

G
L − {v1, v2, · · · , vs}

such that there are no flows in −→
G

L − {v1, v2, · · · , vs}, i.e., −→GL − {v1, v2, · · · , vs}  Kl, where

l = |−→G | − s.

Notice that if species x is extinct, there must be lim
t→+∞

x(t) = 0. Let f(t) be a differentiable

function on populations of a species x. If f(t) = O(t−α), α > 1, i.e., there are constants A > 0

such that |f(t)| ≤ At−α holds with t ∈ (0,+∞), then f is said to be α-declined and x a species

extinct in rate α. Furthermore, if f(t) = O(e−βt) for β > 0, because

eβt = 1 + βt +
β2

2!
t2 + · · · + βn

n!
tn + · · · ,

we are easily know that there is a constant A > 0 such that |f(t)| ≤ Atn for any integer n ≥ 1.

In this case, f is said to be ∞-declined and x a species extinct in rate ∞.

The results following characterize the extinct behavior of species in a food web.

THEOREM 4.8 Let −→
G

L
be a food web hold with labeling L : vi → ẋi on vertices vi,

L : (vi, vj) → {Fij , (xi, xj), F ′
ij} on edges for integers 1 ≤ i, j ≤ n, V ⊂ V (−→GL

). If

V (t) =
∑
v∈V

⎛⎝ ∑
v′∈N−(v)

F ′
v′v(v′ → v) −

∑
v′∈N+(v)

Fvv′(v → v′)

⎞⎠
is α-declined, then all species X =

∑
v∈V

xv in V is extinct in at least rates α−1 and particularly,

if V = {v}, the species xv is extinct in at least rates α − 1 on t.

Proof: Notice that the conservative equation at vertex v ∈ V is

ẋv =
∑

v′∈N−(v)

F ′
v′v(xv′ → xv) −

∑
v′∈N+(v)

Fvv′(xv → xv′)
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and

Ẋ =
d

( ∑
v∈V

xv

)
dt

=
∑
v∈V

ẋv

=
∑
v∈V

⎛⎝ ∑
v′∈N−(v)

F ′
v′v(v′ → v) −

∑
v′∈N+(v)

Fvv′(v → v′)

⎞⎠ .

Now, if V (t) is α-declined, there must be constant A > 0 such that

− A

tα
≤ Ẋ =

∑
v∈V

⎛⎝ ∑
v′∈N−(v)

F ′
v′v(v′ → v) −

∑
v′∈N+(v)

Fvv′(v → v′)

⎞⎠ = V (t) ≤ A

tα
.

Consequently,

|X| ≤
+∞∫
0

A

tα
dt = A

+∞∫
0

1
tα

dt =
A

(α − 1)tα−1
= O(t−α+1).

Therefore, all species X in V is extinct in at least rates α−1 on t, and particularly, it holds

with the case of V = {v}.

THEOREM 4.9 Let −→
G

L
be a food web hold with labeling L : vi → ẋi on vertices vi,

L : (vi, vj) → {Fij , (xi, xj), F ′
ij} on edges for integers 1 ≤ i, j ≤ n, and V ⊂ V (−→GL

) a cut

set with components C1, C2, · · · , Cl in −→
G

L \ V , where l ≥ 2. If

fv(t) =
∑

v′∈N−(v)

F ′
v′v(v′ → v) −

∑
v′∈N+(v)

Fvv′(v → v′)

is αv-declined for ∀v ∈ V with α = min
v∈V

αv, then

(1) −→
G

L
eventually turns to l food webs −→

C
L

1 ,
−→
C

L

2 , · · · ,−→C L

l ;

(2) the species XV =
∑

v∈V

xv, particularly, xv is extinct in at least rates α − 1 on t for ∀v ∈
V .

Proof: Applying Theorem 4.8, all species X in V is extinct in at least rates α − 1 on t, and

eventually, extinction if t → ∞. In this case, there are only left components C1, C2, · · · , Cl, and

each of them is a food web because if xv = 0, there must be F (v → u) = 0 and F ′(u → v) = 0

for ∀v ∈ V and u ∈ V (−→GL
) \ V . Therefore, the conservative laws

ẋu =
∑

v∈N−(u)

F ′
vu(xu → xv) −

∑
v∈N+(u)

Fuv(xu → xv)
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in −→
G

L
turns to

ẋu =
∑

v∈N−(u)
⋂

V (Ci)

F ′
vu(xv → xu) −

∑
v∈N+(u)

⋂
V (Ci)

Fuv(xu → xv),

i.e., it holds also with vertex u in −→
C

L

i for integers 1 ≤ i ≤ l, the assertion (1).

For (2), by the proof of Theorem 4.8 there is a number A > 0 such that

−
+∞∫
0

κ(−→GL
)
A

tα
dt ≤ XV (t) =

∑
v∈V

xv(t) ≤
+∞∫
0

κ(−→GL
)
A

tα
dt

by definition, where κ(−→GL
) is the connectivity of −→

G
L
. Whence, XV (t) = O(t−α+1), and

particularly, xv(t) = O(t−α+1) for v ∈ V .

Finally, there are indeed the case of extinction of species in rate ∞. For example, the proof

of Theorem 4.6 implies the case of extinction in rate ∞ on t following.

THEOREM 4.10 Let −→GL
be food web with an Eulerian multi-decomposition

(−→
G

⋃←−
G

)L̂

=
s⊕

k=1

−→
H

L

k

and all conservative equations on −→
H

L

k are solvable for integers 1 ≤ k ≤ l. For a vertex

v ∈ V (−→GL
) including repeatedly in −→

H
L

i1 ,
−→
H

L

i2 , · · · ,
−→
H

L

il
, if Reλi < 0 for characteristic roots

λi of Ak in the linearization

AkXk = 0hk×hk

of conservative equation at an equilibrium point −→HL0

k , v ∈ V (−→HL

k ) for integers 1 ≤ i ≤ hk, then

the species xv is simultaneously extinct in rate ∞ on time t and asymptotically stable, where

V (−→HL

k ) = {v1, v2, · · · , vhk
}, Ak and Xk are as the same in Theorem 4.6 for integers 1 ≤ k ≤ l.

Proof: By the proof of Theorem 4.6, we know that xv(t) is asymptotically stable with

xv(t) =
hk∑
i=1

ciβi(t)e
λit.

Define β = min
1≤i≤hk

λi. If λi < 0 for integers 1 ≤ i ≤ hk, then xv(t) is clearly an ∞-declined

function and species xv is extinct in rate ∞ on time t.
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§5. Algorithm. Let G = {C
1
, C

2
, · · · , C

m
} be solvable Eulerian multi-decompositions

of bi-digraph (−→G
⋃←−

G)L̂ of a food web −→
G

L
with conservation equations (1.1) solvable or not,

where C
1

and C
m

are respectively a parallel decomposition, −→GL
itself of −→GL

. Theorems 4.2

and 4.6 conclude the following algorithm on the global stability of −→GL
.

ALGORITHM 5.1 The stability of a food web −→
G

L
can be determined by programming following :

STEP 1. Input Xi = C
i
and i = 1, 2, · · · , m;

STEP 2. Determine Eulerian circuits in Xi is globally stable or not;

STEP 3. If Xi is globally stable, go to STEP 6; Otherwise, go to STEP 4;

STEP 4. Replace Xi by Xi+1, return to STEP 2;

STEP 5. If Xi+1 is globally stable, go to STEP 6; Otherwise, go to STEP 4 if i < m, or go to

STEP 7 if i = m;

STEP 6. −→
G

L
is globally stable, the algorithm is terminated;

STEP 7. −→
G

L
is globally non-stable, the algorithm is terminated.

This algorithm certainly enables one to determine the stability of a food web −→
G

L
regardless

of whether its conservation equations solvable or not, and get stability of food webs with more

species than 3 by conclusions on 2 or 3 species.

EXAMPLE 5.2 Determine the stability of a biological 5-system −→
G

L
shown in Fig. 10,

Fig. 10
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where, fij and f ′
ij , 1 ≤ i, j ≤ 5 are defined by

f21(x2, x1) = 1 − x2 − λ1x1, f ′
21(x2, x1) = 1 − x1 − λ2x2,

f31(x3, x1) = 1 − x3 − λ1x1, f ′
31(x3, x1) = 1 − x1 − λ3x3,

f41(x4, x1) = 1 − x4 − λ1x1, f ′
41(x4, x1) = 1 − x1 − λ4x4,

f51(x5, x1) = 1 − x5 − λ1x1, f ′
51(x5, x1) = 1 − x1 − λ5x5

with conservative equations⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

ẋ1 = x1 (4 − 4x1 − λ2x2 − λ3x3 − λ4x4 − λ5x5)

ẋ2 = −x2 (1 − x2 − λ1x1)

ẋ3 = −x3 (1 − x3 − λ1x1)

ẋ4 = −x4 (1 − x4 − λ1x1)

ẋ5 = −x5 (1 − x5 − λ1x1)

(5.1)

Let (x0
1, x

0
2, x

0
3, x

0
4, x

0
5) be an equilibrium point of (5.1). Calculation shows the linearization

of (5.1) is ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋ1 = Ax1 − λ2x
0
1x2 − λ3x

0
1x3 − λ4x

0
1x4 − λ5x

0
1x5

ẋ2 = λ1x
0
2x1 +

(
−1 + 2x0

2 + λ1x
0
1

)
x2

ẋ3 = λ1x
0
3x1 +

(
−1 + 2x0

3 + λ1x
0
1

)
x3

ẋ4 = λ1x
0
4x1 +

(
−1 + 2x0

4 + λ1x
0
1

)
x4

ẋ5 = λ1x
0
5x1 +

(
−1 + 2x0

5 + λ1x
0
1

)
x5

, (5.2)

where A = 4 − 8x0
1 − λ2x

0
2 − λ3x

0
3 − λ4x

0
4 − λ5x

0
5.

Fig. 11
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As usual, we can hold on the stability of system (5.2) of linear equations and then, the

stability of (5.1) by Theorem 4.6 on equilibrium points with tedious calculation. However, we

apply Algorithm 5.1 for the objective.

Notice that bi-digraph (−→G
⋃←−

G)L̂ of −→
G

L
in Fig.11 has a parallel decomposition such as

those shown in Fig. 12,

Fig. 12

and the conservation equations on these parallel edges are respectively

{
ẋ1 = x1(1 − x1 − λ2x2)

ẋ2 = x2(1 − x2 − λ1x1)
(5.3)

{
ẋ1 = x1(1 − x1 − λ3x3)

ẋ3 = x3(1 − x3 − λ1x1)
(5.4)

{
ẋ1 = x1(1 − x1 − λ4x4)

ẋ4 = x4(1 − x4 − λ1x1)
(5.5)

{
ẋ1 = x1(1 − x1 − λ5x5)

ẋ5 = x5(1 − x5 − λ1x1)
(5.6)



428 linfan mao

We have known the stability of equations (5.3)–(5.6) by their linearizations following

(Murray, 2002) :

(1) the equilibrium point (x1, xi) = (0, 0) is unstable for equations (5.3)–(5.6), where

i = 2, 3, 4, 5;

(2) the equilibrium point (x1, xi) = (1, 0) is stable if λ1 > 1 for i = 2, 3, 4, 5;

(4) the equilibrium point (x1, xi) = (0, 1) is stable if λi > 1 for equations (5.3)–(5.6), where

i = 2, 3, 4, 5;

(4) the equilibrium point
(

λi − 1
λ1λi − 1

,
λ1 − 1

λ1λi − 1

)
is asymptotically stable if λ1 >1 and λi >1

for equations (5.3)–(5.6), where i = 2, 3, 4, 5.

Therefore, we know this biological 5-system is unstable on the equilibrium point (0, 0, 0, 0, 0)

but stable on the equilibrium points (0, 1, 1, 1, 1) and (1, 0, 0, 0, 0), and asymptotically stable

on the equilibrium point(
λ − 1

λ1λ − 1
,

λ1 − 1
λ1λ − 1

,
λ1 − 1
λ1λ − 1

,
λ1 − 1
λ1λ − 1

,
λ1 − 1
λ1λ − 1

)
of system (5.1) if λ > 1 and λ1 > 1 by Theorem 4.2, where λ = λ2 = λ3 = λ4 = λ5.

§6. Conclusion. Today, we have many mathematical theories but we are still helpless on

opening the mystery of the nature as Einstein’s complaint, i.e., as far as the laws of mathematics

refer to reality, they are not certain; and as far as they are certain, they do not refer to reality

because the multiple nature, or contradiction is universal on things, particularly, living things

different from rigid bodies. Usually, we establish differential equations for characterizing things

T and holds on their behavior by solutions, which is only hold on those of coherent behaviors

of things, not the individual. Thus, we encounter non-solvable cases in biology, and even if it

is solvable, finding the exact solution is nearly impossible in most cases. In fact, the solvable

equation is individual but the non-solvable is universal for knowing the nature. This fact implies

that we should also research those of non-solvable equations for revealing reality of things in

mathematics, which finally brings about the mathematics over topological graphs, i.e., action

flows, or mathematical combinatorics, and only which is the practicable way for understanding

things, particularly, living things in the world.
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