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1. The Smarandache function satisfies certain elementary inequalities which have 
importance in the deduction of properties of this (or related) functions. We quote here the 
following relations which have appeared in the Smarandache Function Journal: 

Let p be a prime number. Then 

S ( pX) ::; S ( pY ) 

S(pa) S(pa+l) 

for x ::; y 

-- > .......;::...----<pa - pa+l for a 2: 0 

where X, y, a are nonnegative integers; 

S ( p') ::; S ( qa ) for p ::; q primes; 

(p-I )a + 1 ::; S ( p' ) ::; pa ; 

If P > ~ and p::; a-I (a 2: 2) , then 

S (p. ) ::; p( a-I) 

For inequalities (3), (4), (5), see [2], and for (1), (2), see [1]. 
We have also the result ([4]): 

. S(n) < 2 
For composIte n ;t 4. -n- - 3 

Clearly, 1::; S(n) for n 2: 1 and 1 < S(n) for n 2: 2 

and S(n)::; n 

which follow easily from tfe definition S(n) = min { kEN- : n dividesk!} 
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2. Inequality (2), written in the fonn S (p.+1 ) ~ pS( p') , gives by successive application 
S( p.+2 ) ~ pS( p.+1 ) ~ p2S( p' ) , ... , that is 

S( pO+c ) ~ pc .S( p' ) (9) 

where a and c are natural numbers (For c = 0 there is equality, and for a = 0 this follows 
by (8». 

Relation (9) suggest the following result: 

Theorem 1. 

For all positive integers m and n holds true the inequality 

S(mn) ~ m·S(n) 

Proof. 

For a general proof, suppose that m and n have a canonical factorization 

a I a, bib, C I c, d I do 
m=PI ... Pr ·ql··.qs ,n=PI···Pr ·tl···tlc 

(10) 

where Pi (i = If), Cli (j = IS), tp (P = Ii() are distinct primes and ai ~ 0, c
J 
~ 0, b

J 
~ 1, 

dp ~ 1 are integers. 
By a well known result of Smarandache (see [3]) we can write 

S( ) { &I+CI) (p&r+c, b l b. dl S( do)} m· n = max S(PI ' ... , S r ), S(ql ), ... , S(qs ), S(tl ), ... , tic 

~ max{p~1 S(P~I), ... , p:'S(p~'), S(q~I), ... , S(q~'), '" , S(t~t)} 

by (9). Now, a simple remark and inequality (8) easily give 

S( ) &1 &, b l b, {S CI) C, ( dl S dt)} S m·n ~PI ... pr ql ... qs ·max (PI , ... ,S(pr ),S tl ), ... , (tic =m (n) 

proving relation (10). 

Remark. 

For (m,n)=l, inequality (10) appears as 

max { S(m), S(n)}~ mS(n) 

This can be proved more generally, for all m and n 

Theorem 2. 
For all m, n we have: 

max{S(m), S(n)} ~ mS(n) (11) 

Proof. 

The proof is very simple. Indeed, if S(m) ~ S(n) , then S(m) 5 mS(n) holds, since S(n) 
~ 1 and S(m) ~ m , see (7), (8). For S(m) ~ S(n) we have S(n) ~ mS(n) which is t me by m ~ 
1. In all cases, relation (11) follows. 

This proof has an independent interest. As we shall see, Theorem 2 will follow also 
from Theorem 1 and the following result: 
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Theorem 3. 

For all m, n we have 

S(mn) 2! max {S(m), S(n)} (12) 

Proof. 

Inequality (1) implies that SCpo ) $; S(pO+C ), S(pC ) $; S(pO+C ), so by using the 
representations of m and n, as in the proof of Theorem 1, by Smarandache's theorem and the 
above inequalities we get relation (12). 

We note that, equality holds in (12) only when all a, =0 or all cj =0 (i = If) , i.e. when 
m and n are coprime. 

3. As an application of (10), we get: 

Corollary 1. 

Proof. 

) Sea) S(b) ·f b I a-a-$;-b-,l a 

b) If a has a composite divisor b -:t:- 4 , then 

Sea) S(b) 2 
-<--<a - b - 3 

(13) 

(14) 

Let a = b . k . Then S~~k) $; S~b) is equivalent with S(kb) ~ kS(b) , which is relation 

(10) for m=k, n=b. 
Relation (14) is a consequence of (13) and (6). We note that (14) offers an 

improvement of inequality (6). 
We now prove: 

Corollary 2. 

Let m, n, r, s be positive integers. Then: 

S(mn) + S(rs) 2! max { S(m) + S(r), S(n) + S(s) } (15) 

Proof. 

We apply the known relation: 

max { a + c , b + d } $; max { a, b } + max { c, d } (16) 

By Theorem 3 we can write S(mn) 2! max {SCm), Sen)} and S(rs) 2! max {S(r), S(s)}, 
so by consideration of(16) with 

a == SCm), b == S(r), c == S(n), d == S(s) 

we get the desired result. 

Remark. 
Since (16) can be generalized to n numbers (n 2! 2), and also Theorem 1-3 do hard for 

the general case (which follow by induction; however these results are based essentially on 
(10) - (15), we can obtain extensions of these theorems to n numbers. 
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Corollary 3. 
Let a, b composite numbers, a ~ 4, b ~ 4 . Then 

SCab) < Sea) + S(b) < ~ . 
ab - a+b -3' 

and 
S2 (ab) ~ ab[S2(a) + S2(b)] 

where S2(a) = (S(a»2, etc. 

Proof. 

By (10) we have Sea) ~ S~b) , S(b) ~ S(:b) ,so by addition 

Sea) + S(b) ~ S(ab)(~ + ~), giving the first part of(16). 

For the second, we have by (6): 

Sea) ~ ~ a , S(b) ~ ~ b , so Sea) + S(b) ~ ~(a + b), yielding the second 

part of (16). 
For the proof of (17), remark that by 2(n2+ r) ~ (n + ri, the first past of(16), as 

well as the inequality 2ab ~ (a + b)2 we can write successively: 

S2(ab) ~ a
2
b

2 
. [Sea) + S(b)]2 ~ 2a

2
b

2 
. [S2(a) + S2(b)] ~ ab[S2(a) + S2(b)] 

(a+b)2 (a+b)2 
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