Characterization of Weak Bi-Ideals in Bi-Near Rings

S. Maharasi ${ }^{1}$, V. Mahalakshmi ${ }^{2}$ \& S. Jayalakshmi ${ }^{3}$
${ }^{1}$ Assistant Professor in Mathematics, V.V College of Engineering, Tisayanvilai. Tamil Nadu627801, India.
${ }^{2,3}$ Sri Parasakthi College for Women, Courtallam.Tamil Nadu-627801, India

Abstract

In this paper, with a new idea, we define weak bi-ideal and investigate some of its properties. We characterize weak bi-ideal by biideals of bi-near ing .In the case of left selfdistributive S-bi-near ring We establish necessary and sufficient condition for weak bi-ideal to be biideal and strong bi-ideal.This concept motivates the study of different kinds of new biregular bi-near rings in algebraic theory especially regularity in quad near ring and fuzzy logic.A bisubgroup B of $(N,+)$ is said to be a weak bi-ideal if $B^{3} \subseteq B$. In the first section, we prove that the two concepts of biideals and weak bi-ideals are equivalent in a left self-distributive S-bi-near ring. In the second section of this paper, we obtain equivalent conditions for a weak bi-ideal to be a bi-near field.

1. Introduction

In mathematics, a bi-near ring is an algebraic structure similar to a near ring but satisfying fewer axioms. Near-rings arise naturally from functions on groups although bi-near-rings are a welldeveloped branch of algebra; little effort has been spent on treating near-rings by the help of a computer. This is most regrettable in the view of the research in both the theory and the applications of near-rings. Since good algorithms for computing with groups, in particular permutation groups, are now available, i.e. invented and implemented, my first approach to computing with near-rings was to reduce the near-ring problems to group-theoretic problems and to solve those using GAP.For basic definition one may refer to Pilz[1].Motivated by the study of bi-idels in " A Study on Regularities in Near-Rings" by S.Jayalakshmi and also motivated by the study of bi-near rings in " Bialgebraic structures and Smarandache bialgebraic Structures, American Research Press, 2003" by W. B. Vasantha Kandasamy, the new concepts 'weak bi-ideal' in bi- near ring is introduced.

2. Preliminaries

Definition: 2.1
Let ($\mathrm{N},+$, .) be a non-empty set. We call N a binear-ring if $\mathrm{N}=\mathrm{N}_{1} \cup \mathrm{~N}_{2}$ where N_{1} and N_{2}
are proper subsets of N i.e. $\mathrm{N}_{1} \not \subset \mathrm{~N}_{2}$ or $\mathrm{N}_{2} \not \subset \mathrm{~N}_{1}$ satisfying the following conditions:
At least one of $\left(\mathrm{N}_{\mathrm{i}},+,.\right)$ is a right near-ring i.e. for preciseness we say
i). ($\mathrm{N}_{1},+,$.) is a near-ring
ii.) $\left(\mathrm{N}_{2},+,.\right)$ is a ring.

We say that even if both $\left(\mathrm{N}_{\mathrm{i}},+,.\right)$ are right nearrings still we call ($\mathrm{N},+$, .) to be a Bi- near ring. By default of notation by binear-ring we mean only right bi-near ring Unless explicitly stated.

Remark 2.1.1:

Throughout this paper, by a bi-near ring, we mean only a right bi-near ring. The symbol N stands for a bi-near ring ($\mathrm{N},+,$.) with at least two elements. 0 denotes the identity element of the bigroup $(\mathrm{N},+) . \mathrm{L}$ and E denotes the set of all nilpotent and idempotent elements of N.C(N) denotes the centre of N. We write xy for x.y for any two elements x, y of N. It can be easily proved that $0 a=0$ and $(-a) b=-a b$ for all $a, b \in N_{1} \cup N_{2}$. N must naturally be bi-regular and zero symmetric.

Definition 2.2:

$\mathrm{N}_{0}=\left\{\forall \mathrm{n} \in N_{1} \cup N_{2} / \mathrm{n} 0=0\right\}$ is called the zero symmetric part of the bi-near ring N . A bi-near ring N is called zero-symmetric, if $\mathrm{N}=\mathrm{N}_{0}$. i.e., $N_{1}=N_{1_{0}}$ and $N_{2}=N_{2_{0}}$

Definition 2.3:

$\mathrm{N}_{\mathrm{d}}=\left\{\forall \mathrm{nx}, \mathrm{y} \in N_{1} \cup N_{2} / \mathrm{n}(\mathrm{x}+\mathrm{y})=\mathrm{nx}+\mathrm{ny}\right\}$ is the set of all distributive elements of a bi-near ring N . A bi-near ring N is called distributive, if $\mathrm{N}=\mathrm{N}_{\mathrm{d}}$ i.e. $N_{1}=N_{1_{d}}$ and $N_{2}=N_{2_{d}}$.

Definition: 2.4
A bi-near ring N is said to be a $\mathbf{S}\left(S^{\prime}\right)$-bi-near ring if $x \in N x(x \in x N)$ for all $x \in N_{1} \cup N_{2}$

Definition: 2.5

A non-empty subset M of a bi-near ring $N=N_{1} \cup N_{2}$ is said to be bisubgroup of $(\mathrm{N},+)$ if
(i)
(ii) $\quad\left(\mathrm{M}_{1},+\right)$ is a subgroup of $\left(\mathrm{N}_{1},+\right)$
(iii) $\quad\left(\mathrm{M}_{2},+\right)$ is a subgroup of $\left(\mathrm{N}_{2},+\right)$.

But M is not a subgroup.
Definition: 2.6

A S-bi near ring N is said to be a \bar{S}-bi near ring if $x \in$ for all $a, b \in N_{1} \cup N_{2}$

Definition: 2.7

A bi-near ring N is said to be a $\mathbf{P}(\mathbf{m}, \mathbf{n})($ $\mathbf{P}^{\prime}(\mathbf{m}, \mathbf{n})$)-bi-near ring if there exist a positive integer m, n such tht $\mathrm{xN}=\mathrm{x}^{\mathrm{m}} \mathrm{Nx}^{\mathrm{n}}\left(\mathrm{Nx}=\mathrm{x}^{\mathrm{m}} \mathrm{Nx}^{\mathrm{n}}\right)$ for all $\mathrm{x} \in \mathrm{N}_{1} \cup \mathrm{~N}_{2}$

Definition: 2.8

A bi-near ring N is said to be a $\mathbf{P}_{\mathbf{k}}\left(\mathbf{P}_{\mathbf{k}}{ }^{\mathbf{}}\right)$-bi-near ring if there exist a positive integer k such that $x^{k} N$ $=x N x\left(N x^{k}=x N x\right)$ for all $x \in N_{1} \cup N_{2}$

Definition: 2.9

A bisubgroup A of a bi-near ring ($\mathrm{N},+,$.) is said to be Left(right)N-bisubgroup of N if $\mathrm{NA} \subseteq \mathrm{A}(\mathrm{AN} \subseteq \mathrm{A})$
Definition: $\mathbf{2 . 1 0}$
A bisubgroup M of a bi-near ring N is called a bi-sub near-ring of N if $\mathrm{MM} \subseteq \mathrm{M}$.
Definition: 2.11
A bi-near ring N is said to have property($\boldsymbol{\alpha}$), if $x N$ is a bisubgroup of $(N,+)$ for every $x \in N_{1} \cup N_{2}$ Definition: $\mathbf{2 . 1 2}$

Let ($\mathrm{N},+$, ,.) be a binear-ring. A bisubgroup B of $(\mathrm{N},+)$ is called bi-ideal of N if $\mathrm{BNB} \subseteq \mathrm{B}$. i.e., $\mathrm{BN}_{1} \mathrm{~B} \subseteq \mathrm{~B}$ (or $\mathrm{BN}_{2} \mathrm{~B} \subseteq \mathrm{~B}$).

Definition: 2.13

A bi-ideal B of a bi-near ring $(\mathrm{N},+)$ is called Strong bi-ideal of N if $\mathrm{NB}^{2} \subseteq$ B.i.e., $\mathrm{N}_{1} \mathrm{~B}^{2} \subseteq \mathrm{~B}$ (or $\mathrm{N}_{2} \mathrm{~B}^{2} \subseteq B$).
Definition: $\mathbf{2 . 1 4}$
A bisubgroup B of $(\mathrm{N},+$) is said to be a Generalized (\mathbf{m}, \mathbf{n}) bi-ideal of N if $\mathrm{B}^{\mathrm{m}} \mathrm{NB}^{\mathrm{n}} \subseteq$ Bi.e., $B^{m} N_{1} B^{n} \subseteq B\left(\right.$ or $B^{m} N_{2} B^{n} \subseteq B$) where m and n are positive integers.

Definition: $\mathbf{2 . 1 5}$

Let ($\mathrm{N},+,$.) be a binear-ring. A bi subgroup Q of $(\mathrm{N},+)$ is called a Quasi-ideal of N if $\mathrm{QN} \cap \mathrm{NQ} \subseteq \mathrm{Q}$ i.e., $\mathrm{QN}_{1} \cap \mathrm{~N}_{1} \mathrm{Q} \subseteq \mathrm{Q}$ (or $\mathrm{QN}_{2} \cap \mathrm{~N}_{2} \mathrm{Q} \subseteq \mathrm{Q}$)
Definition: $\mathbf{2 . 1 0}$
A bi-near ring N is said to be bi-regular if for any $a \in N_{1} \cup N_{2}$ there exists $b \in N_{1} \cup N_{2}$ with $\mathrm{aba}=\mathrm{a}$.
Definition: $\mathbf{2 . 1 6}$
A bi-near ring N is said to be Self distributive bi-near ring if $a b c=a b a c$ for all $\mathrm{a}, \mathrm{b}, \mathrm{c} \in \mathrm{N}_{1} \cup \mathrm{~N}_{2}$

Definition: 2.17

A bi-near ring N is said to be Strict weakly biregular if $\mathrm{A}^{2}=\mathrm{A}$ for every left N -bisubgroup of N.

Definition: 2.18

A bi-near ring N is called strongly biregular if for each $a \in N_{1} \cup N_{2}$, there exists $b \in N_{1} \cup N_{2}$ such that $\mathrm{a}=\mathrm{ba}^{2}$.
Definition: 2.19

A bi-near ring N is called left bi-potent if $\mathrm{Na}^{2}=\mathrm{Na}$ all $\mathrm{a} \in \mathrm{N}_{1} \cup \mathrm{~N}_{2}$
Definition: 2.20
A bi-near ring N is called left simple if $\mathrm{Na}=\mathrm{N}$ all $\mathrm{a} \in \mathrm{N}_{1} \cup \mathrm{~N}_{2}$.

Definition: 2.21

A bi-near-ring N is called CPNS bi-near ring if $\mathrm{NxNy}=\mathrm{NyNx}$ for all $\mathrm{x}, \mathrm{y} \in \mathrm{N}_{1} \cup \mathrm{~N}_{2}$
Definition: 2.22
A bi-near ring N is said to be Sub commutative if $N x=x N$ for all $x \in N_{1} \cup N_{2}$
Definition: 2.23
A bi-near ring N is said to be Stable if $\mathrm{Nx}=$ $x N x=N x$ for all $x \in N_{1} \cup N_{2}$

Definition: 2.24

For $\mathrm{A} \subseteq \mathrm{N}$, we define Radical $\sqrt{\mathrm{A}}$ of A to be $\{$ $\mathrm{x} \in \mathrm{N}_{1} \cup \mathrm{~N}_{2} / \mathrm{x}^{\mathrm{k}} \in \mathrm{A}$ for some positive integer k$\}$. Clearly $A \subseteq \sqrt{\mathrm{~A}}$

Definition: 2.25

A bi-near ring N is called a bi-near field, if the set of all non-zero elements of N is a group under multiplication.

Definition: 2.26

A bi-near ring N is called a Generalized Bi-near-Field (GNF) if for each $a \in N_{1} \cup N_{2}$ there exists a unique $b \in N_{1} \cup N_{2}$ such that $a b a=a$ and $b=$ bab.
Definition 2.27 :
A bi-near ring N is called Boolean if $\mathrm{x}^{2}=\mathrm{x}$ for all $\mathrm{x} \in \mathrm{N}_{1} \cup \mathrm{~N}_{2}$
Lemma 2.28: Let N be a zero-symmetric bi-near ring and if N is strongly bi-regular, then N is a biregular bi-near ring.
Lemma 2.29:
Let N be a bi-regular bi-near ring. Then any left N -bisubgroup M of a bi-near ring N is an idempotent bi-near ring.
Theorem 2.30:
The following conditions are equivalent for a S-bi-near ring N .
(i) N is strict weakly bi-regular.
(ii) For every $a \in N, a \in(N a)^{2}$.
(iii) For any two left N -bi-subgroups S_{1} and S_{2} such that $\mathrm{S}_{1} \subseteq \mathrm{~S}_{2}$ we have $\mathrm{S}_{2} \mathrm{~S}_{1}=\mathrm{S}_{1}$.
Result 2.31:
If $\mathrm{x}^{2}=0 \Rightarrow \mathrm{x}=0$ for all $\mathrm{x} \in N_{1} \cup N_{2}$, then a bi-near ring N has no non-zero nilpotent elements.
Lemma 2.32:
Let N be a zero-symmetric bi-near ring. If $\mathrm{L}=\{0\}$, then en $=$ ene for $0 \neq \mathrm{e} \in \mathrm{E}$ and for all $\mathrm{n} \in N_{1} \cup N_{2}$.
Lemma 2.33:
If a bi-near ring N is a zero-symmetric with $E \subseteq N_{d}$ and $L=\{0\}$, then ne $=$ ene for all $e \in E$ and for all $n \in N_{1} \cup N_{2}$.
Theorem 2.34

The following are equivalent in a bi-near ring.
(i) A bi-near ring N is GNF.
(ii) A bi-near ring N is bi-regular and each idempotent is central.
(iii) N is bi-regular and sub commutative binear ring.

Lemma 2.35:

If a bi-near ring N has the condition, $\mathrm{eN}=$ $e \mathrm{Ne}=\mathrm{Ne}$ for all $\mathrm{e} \in \mathrm{E}$, then $\mathrm{E} \subseteq \mathrm{C}(\mathrm{N})$.

Theorem 2.36:

Let N be a bi-regular bi-near ring. Then N is stable a bi-near ring if and only if it is a sub commutative bi-near ring

Theorem 2.37:

Let N be a bi-regular bi-near ring. Then N is a stable bi-near ring iff $\mathrm{E} \subseteq \mathrm{C}(\mathrm{N})$.

Proposition 2.38:

Let N be a bi-near ring then the following are equivalent.
(i) N is a B -bi-regular bi-near ring
(ii) $\quad \mathrm{RL}=\mathrm{R} \cap \mathrm{L}$ for every left N -bi-subgroup L of N and for every right N -bi-subgroup R of a bi-near ring N
(iii) For every pair of elements a, b of a bi-near ring $N,(a)_{r} \cap(b)_{l}=(a)_{r}(b)_{1}$.
(iv) For any element a of a bi-near ring N, $(a)_{r} \cap(a)_{1}=(a)_{r}(a)_{1}$.

Theorem 2.39:

Let N be a bi-regular bi-near ring. Then if N has (Ps), then $\mathrm{xN}=\mathrm{xNx}$ for all $\mathrm{x}, \mathrm{n} \in N_{1} \cup N_{2}$.

Proposition 2.40:

Every bi-regular bi-near ring is a Bbiregular bi-near ring

Proposition 2.41

Let N be a \bar{S} bi-near ring with property
(α). Then the following are equivalent.
(i) N is a B-biregular bi-near ring
(ii) N is a bi-regular bi-near ring
(iii) For every quasi-ideal $\mathrm{Q}, \mathrm{QPQ}=\mathrm{Q}$ for some subset P of a bi-near ring N .

Theorem 2.42

Let a bi-near ring $\mathrm{N}(=\mathrm{No})$ is bi-regular.
Then the following statements are equivalent.
(i) N is an N.S.I. bi-near ring.
(ii) $\mathrm{xN}=\mathrm{xNx}$ for all x in N .
(iii) For all N -bisubgroups M_{1} and M_{2} of N , $\mathrm{M}_{1} \cap \mathrm{M}_{2}=\mathrm{M}_{1} \mathrm{M}_{2}$
(iv) $\quad \mathrm{N}_{\mathrm{x}} \cap \mathrm{N}_{\mathrm{y}}=\mathrm{Nxy}$ for all x, y in N .
(v) Every N -bisubgroup of a bi-near ring N is a completely semi - prime ideal.
(vi) A bi-near ring N has property P_{4}.
(vii) A bi-near ring N has strong IFP.

Proposition 1.1.66:

A sub commutative S-bi-near ring is left bi-potent if and only if $\mathrm{B}=\mathrm{BNB}$ for every bi-ideal B of N .

3.Weak Bi-ideals

Definition 3.1.1:

A bisubgroup B of a bi-near ring $(N,+)$ is said to be a weak bi-ideal if $\mathrm{B}^{3} \subseteq B$.

Remark 3.1.2:

Every bi-ideal B of a bi-near ring is a weak biideal of a bi-nearr ing, but the converse is not true. For, consider the bi-near ring $N=N_{1} \cup N_{2}$ where $\mathrm{N}_{1}=\{0, \mathrm{a}, \mathrm{b}, \mathrm{c}\}$ according to the scheme $(0,0,2,1)$ (p. 408 Pilz [1]).

$\mathbf{~}$	$\mathbf{0}$	\mathbf{a}	\mathbf{b}	\mathbf{c}
$\mathbf{0}$	0	0	0	0
\mathbf{a}	0	0	a	a
\mathbf{b}	0	0	c	b
\mathbf{c}	0	0	b	c

Or $\mathrm{N}_{2}=\{0, \mathrm{a}, \mathrm{b}, \mathrm{c}\}$ according to the scheme $(0,4,1,1)$ (p. 408 Pilz [1]).

$\mathbf{~}$	$\mathbf{0}$	\mathbf{a}	\mathbf{b}	\mathbf{c}
$\mathbf{0}$	0	0	0	0
\mathbf{a}	0	b	a	a
\mathbf{b}	0	c	b	b
\mathbf{c}	0	a	c	c

In this bi-near ring one can check that $\{0, \mathrm{~b}\}$ and $\{0, \mathrm{c}\}$ are weak bi-ideals of $\mathrm{N}_{1}\left(\right.$ or $\left.\mathrm{N}_{2}\right)$. However $\{0, \mathrm{~b}\} \mathrm{N}_{1}\{0, \mathrm{~b}\}=\{0, \mathrm{c}, \mathrm{b}\} \not \subset\{0, \mathrm{~b}\}\left(\right.$ or $\{0, \mathrm{~b}\} \mathrm{N}_{2}\{0$, $\mathrm{b}\}=\{0, \mathrm{c}, \mathrm{b}\} \not \subset\{0, \mathrm{~b}\})$ and hence $\{0, \mathrm{~b}\}$ is not a biideal of $\mathrm{N}_{1}\left(\right.$ or $\left.\mathrm{N}_{2}\right)$. Therefore $\{0, \mathrm{~b}\}$ is a weak biideal of a bi-near ring N but not a bi-ideal of a binear ring N .

Proposition 3.1.3:

Any homomorphic image of a weak bi-ideal is also a weak bi-ideal of a bi-near ring N

Proof:

Let $\mathrm{f}: \mathrm{N} \rightarrow \mathrm{N}^{\prime}$ be a homomorphism and B a weak bi-ideal of N where $N=N_{1} \cup N_{2}$ and $N^{\prime}=N_{1}^{\prime} \cup N_{2}^{\prime}$. Given B is a weak bi-ideal of a binear ring $N=N_{1} \cup N_{2}$ implies $\mathrm{B}^{3} \subseteq \mathrm{~B}$. Let $\mathrm{B}^{\prime}=\mathrm{f}(\mathrm{B})$. Let $b^{\prime} \in f(B)$. Then $b^{\prime 3}=f(b)^{3}=f\left(b^{3}\right) \in f\left(B^{3}\right) \subseteq f(B)$ $=B^{\prime}$.i.e., $B^{\prime 3} \subseteq B^{\prime}$. Thus every homomorphic image of a weak bi-ideal is also a weak bi-ideal of $N=N_{1} \cup N_{2}$. Hence any homomorphic image of a weak bi-ideal is also a weak bi-ideal of a binear ring N .

Proposition 3.1.4:

The set of all weak bi-ideals of a bi-near ring N form a Moore system on N .

Proof:

Let $\left\{B_{i}\right\}_{i \in I}$ be a weak bi-ideal of a bi-near ring N . To prove $B=\bigcap_{i \in i} B_{i}$ be a weak bi-ideal of N . If B_{i} be a weak bi-ideal of a bi-near ring N implies B_{i} be a weak bi-ideal of $N=N_{1} \cup N_{2}$. Clearly $B \subseteq B_{i}$ implies $\quad B^{3} \subseteq B_{i}^{3} \subseteq B_{i} \subseteq B \Rightarrow B^{3} \subseteq B$. Hence $B=\bigcap_{i \in i} B_{i}$ be a weak bi-ideal of $N=N_{1} \cup N_{2}$ and hence weak bi-ideal of a bi-near ring N .

Proposition 3.1.5:

If B is a weak bi-ideal of a bi-near ring N and S is a sub bi-near ring of N , then $\mathrm{B} \cap \mathrm{S}$ is a weak bi-ideal of a bi-near ring N .

Proof:

Let $\mathrm{C}=\mathrm{B} \cap \mathrm{S}$. To prove C is a weak biideal of a bi-near ring N.Given B is a weak bi-ideal of a bi-near ring $\mathrm{B}^{3} \subseteq \mathrm{~B}$. Now $\mathrm{C}^{3}=(\mathrm{B} \cap S)((\mathrm{B} \cap S)$ $(\mathrm{B} \cap \mathrm{S})) \subseteq(\mathrm{B} \cap \mathrm{S})(\mathrm{BB} \cap \mathrm{SS}) \subseteq(\mathrm{B} \cap \mathrm{S}) \mathrm{BB} \cap(\mathrm{B} \cap \mathrm{S}) \mathrm{SS} \subseteq$ $\mathrm{BBB} \cap \mathrm{SSS}=\mathrm{B}^{3} \cap \mathrm{~S}^{3} \subseteq \mathrm{~B} \cap \mathrm{~S}\left(\because B^{3} \subseteq B \& S S \subseteq S\right)$.
Hence $\mathrm{C}^{3} \subseteq \mathrm{~B} \cap \mathrm{~S}=\mathrm{C}$. i.e. $\mathrm{C}^{3} \subseteq \mathrm{C}$. Therefore C is a weak bi-ideal of N and hence $\mathrm{C}=\mathrm{B} \cap \mathrm{S}$ is a weak bi-ideal of a bi-near ring N .

Proposition 3.1.6:

Let B be a weak bi-ideal of a bi-near ring N .Then Bb and $\mathrm{b}^{\prime} \mathrm{B}$ are the weak bi-ideals of a binear ring N where $b, b^{\prime} \in B$ and b^{\prime} is a distributive element of a bi-near ring N .

Proof :

Let B be a weak bi-ideal of a bi-near ring $N=N_{1} \cup N_{2}$ implies $\mathrm{B}^{3} \subseteq \mathrm{~B}$. Clearly Bb is a bisubgroup of $\left(\mathrm{N},+\right.$).Then $(\mathrm{Bb})^{3}=\mathrm{BbBbBb} \subseteq$ $\mathrm{BBBb} \subseteq \mathrm{B}^{3} \mathrm{~b} \subseteq \mathrm{Bb} .(\mathrm{Bb})^{3} \subseteq \mathrm{Bb}$ then Bb is a weak biideal of $N=N_{1} \cup N_{2}$. Hence Bb is a weak bi-ideal of the bi-near ring N . Now to prove $\mathrm{b}^{\prime} \mathrm{B}$ is a weak bi-ideals of a bi-near ring N . i.e.. to prove $\mathrm{b}^{\prime} \mathrm{B}$ is a weak bi-ideals of $N=N_{1} \cup N_{2}$. i.e.. to prove $\left(\mathrm{b}^{\prime} \mathrm{B}\right)^{3} \subseteq \mathrm{~b}^{\prime} \mathrm{B}$. Since b^{\prime} is distributive, $\mathrm{b}^{\prime} \mathrm{B}$ is a bisubgroup of $(\mathrm{N},+)$. Now $\left(\mathrm{b}^{\prime} \mathrm{B}\right)^{3}=\left(\mathrm{b}^{\prime} \mathrm{B}\right)\left(\mathrm{b}^{\prime} \mathrm{B}\right)\left(\mathrm{b}^{\prime} \mathrm{B}\right)$ $\subseteq \mathrm{b}^{\prime} \mathrm{BBB}=\mathrm{b}^{\prime} \mathrm{B}^{3} \subseteq \mathrm{~b}^{\prime} \mathrm{B}\left(\because B^{3} \subseteq B\right)$. Therefore $\mathrm{b}^{\prime} \mathrm{B}$ are weak bi-ideals of a bi-near ring N and Hence Bb and $\mathrm{b}^{\prime} \mathrm{B}$ are weak bi-ideals of a bi-near ring N .

Corollary 3.1.7:

Let B be a weak bi-ideal of a bi-near ring N. For $b, c \in B$, if b is distributive, then $b B c$ is a weak bi-ideal of a bi-near ring N .

Proof:

Let B be a weak bi-ideal of a bi-near ring N. If $c \in B$ then by the proposition 3.1.6 (Bc) is a weak bi-ideal of a bi-near ring N.Now Bc is a
weak bi-ideal of $N=N_{1} \cup N_{2}$ and $\mathrm{b} \in \mathrm{B}$, if b is distributive then by the proposition $3.1 .6, \mathrm{bBc}$ is a weak bi-ideal of a bi-near ring N.Hence the proof.

Proposition 3.1.8:

Let N be a left self-distributive S -bi-near ring. Then $\mathrm{B}^{3}=\mathrm{B}$ for every weak bi-ideal B of a bi-near ring N if and only if N is a strongly biregular bi-near ring.

Proof:

Let B be a weak bi-ideal of a bi-near ring N implies B be a weak bi-ideal of $N=N_{1} \cup N_{2}$ and hence $\mathrm{B}^{3} \subseteq \mathrm{~B}$.Assume that N is strongly biregular bi-near ring, then by the Lemma $2.28, \mathrm{~N}$ is bi-regular bi-near ring. Now to prove $B \subseteq B^{3}$. Let $\mathrm{b} \in \mathrm{B}$ then $\mathrm{b} \in N_{1} \cup N_{2}$. Since N is a bi-regular binear ring, $\mathrm{b}=\mathrm{bab}$ for some $\mathrm{a} \in N_{1} \cup N_{2}$. By our assumption that N is left self-distributive bi-near ring, we have bab $=$ babb for all $\mathrm{a}, \mathrm{b} \in N=N_{1} \cup N_{2}$. Thus $\mathrm{b}=\mathrm{bab}=\mathrm{babb}=\mathrm{babb}^{2}=$ $b^{2}=b^{3} \in B^{3}$. i.e. $b \in B^{3}$ implies $B \subseteq B^{3}$ Hence $B=$ B^{3} for every weak bi-ideal B of a bi-near ring N.Conversely assume that $B=B^{3}$ for every weak bi-ideal B of a bi-near ring N.To prove N is strongly bi-regular bi-near ring. i.e., To prove for each $\mathrm{a} \in N_{1} \cup N_{2}$, there exist $\mathrm{b} \in N_{1} \cup N_{2}$ such that $\mathrm{a}=\mathrm{ba}^{2}$. let $\mathrm{a} \in N_{1} \cup N_{2}$ then by the proposition 3.1.6, Na is a weak bi-ideal of a bi-near ring N and $(\mathrm{Na})^{3} \subseteq(\mathrm{Na})$. Also N is a S-bi-near ring, we get $\mathrm{a} \in \mathrm{Na}=(\mathrm{Na})^{3}=\mathrm{NaNaNa} \subseteq \mathrm{NaNa}$. That is $a=n_{1} a n_{1} a$. Since N is left self-distributive, $a=$ $\mathrm{n}_{1} \mathrm{an}_{2} \mathrm{a}^{2}=\mathrm{ba}^{2}$ where $\mathrm{b}=\mathrm{n}_{1} \mathrm{an}_{2} \in N_{1} \cup N_{2}$. Hence a $=\mathrm{ba}^{2}$ for $\mathrm{a}, \mathrm{b} \in N_{1} \cup N_{2}$. Hence N is a strongly biregular bi-near ring.

Remark 3.1.9:

Let N be a left self - distributive S-bi-near ring. If $B=B^{3}$ for every weak bi-ideal B of a binear ring N , then $\mathrm{L}=\{0\}$.

Proposition 3.1.10:

Let N be a left self-distributive S-bi-near ring. Then $\mathrm{B}=\mathrm{NB}^{2}$ for every strong bi-ideal B of a bi-near ring N if and only if N is a strongly biregular bi-near ring.

Proof:

Assume that $\mathrm{B}=\mathrm{NB}^{2}$ for every strong biideal B of a bi-near ring N . To prove N is a strongly bi-regular bi-near ring. i.e., To prove for each $\mathrm{a} \in N_{1} \cup N_{2}$, there exist $\mathrm{b} \in N_{1} \cup N_{2}$ such that $\mathrm{a}=\mathrm{ba}^{2}$. let $\mathrm{a} \in N=N_{1} \cup N_{2}$ implies Na is a strong bi-ideal of a bi-near ring N and N is S-bi-near ring, we have $\mathrm{a} \in \mathrm{Na}=\mathrm{N}(\mathrm{Na})^{2}=\mathrm{NNaNa} \subseteq \mathrm{NaNa}$.
i.e. $a=n_{1} \mathrm{an}_{2}$ a. Since N is a left self-distributive binear ring, $a=n_{1} a n_{2} a=n_{1} a n_{2} a^{2} \in N a^{2}$. i.e. $a=n_{1} a n_{2} a^{2}$ $=\mathrm{ba}^{2}$ where $\mathrm{b}=\mathrm{n}_{1} \mathrm{an}_{2} \in N_{1} \cup N_{2}$. Hence $\mathrm{a}=\mathrm{ba}^{2}$ where $\mathrm{a}, \mathrm{b} \in N_{1} \cup N_{2}$. Thus N is strongly bi-regular bi-near ring.Conversely, assume that N is strongly bi-regular bi-near ring. To prove $\mathrm{B}=\mathrm{NB}^{2}$ where B is a strong bi-ideal of a bi-near ring N.By definition of strong bi-ideal $\mathrm{NB}^{2} \subseteq \mathrm{~B}$. Since N is strongly biregular bi-near ring,for $\mathrm{b} \in \mathrm{B}$ then $\mathrm{b} \in N_{1} \cup N_{2}$ there exist $\mathrm{n} \in N_{1} \cup N_{2}$ such that $\mathrm{b}=\mathrm{nb}^{2} \in \mathrm{NB}^{2}$ implies $\mathrm{B} \subseteq$ $N B^{2}$. Hence $N B^{2}=B$ for every strong bi-ideal B of a bi-near ring N .

Theorem 3.1.11:

Let N be a left self-distributive S-bi-near ring. Then $\mathrm{B}^{3}=\mathrm{B}$ for every weak bi-ideal B of N if and only if $\mathrm{NB}^{2}=\mathrm{B}$ for every strong bi-ideal B of a bi-near ring N .

Proof:

Let N be a left self-distributive S-bi-near ring. Assume that $\mathrm{B}^{3}=\mathrm{B}$ for every weak bi-ideal B of a bi-near ring N then by Proposition 3.1.8 N is strongly bi-regular bi-near ring.Now by Proposition 3.1.10 $\mathrm{NB}^{2}=\mathrm{B}$ for every strong bi-ideal B of a binear ring N . Conversely assume that $\mathrm{NB}^{2}=\mathrm{B}$ for every strong bi-ideal B of a bi-near ring N then by Proposition 3.1.10 N is strongly bi-regular bi-near ring.Now by Proposition 3.1.8 $\mathrm{B}^{3}=\mathrm{B}$ for every weak bi-ideal B of a bi-near ring N .

Proposition 3.1.12:

Let N be a left self-distributive S-bi-near ring.Then $\mathrm{B}=\mathrm{BNB}$ for every bi-ideal B of a binear ring N if and only if N is a bi-regular bi-near ring.

Proof :

Assume that $\mathrm{B}=\mathrm{BNB}$ for every bi-ideal B of a bi-near ring N . To prove N is bi-regular binear ring. let $a \in N$ then $N a$ is a bi-ideal of N. Since N is a S-bi-near ring, we get $\mathrm{a} \in \mathrm{Na}=\mathrm{NaNNa}$. i.e., $\mathrm{a}=\mathrm{n}_{1} \mathrm{an}_{2}$ a for some $\mathrm{n}_{1}, \mathrm{n}_{2} \in N_{1} \cup N_{2}$. Since N is a left self-distributive bi-near ring, $a=n_{1} \mathrm{an}_{2} \mathrm{a}^{2} \in$ Na^{2}. Therefore for $\mathrm{a}, \mathrm{b} \in N_{1} \cup N_{2}, \mathrm{a}=\mathrm{n}_{1} \mathrm{an}_{2} \mathrm{a}^{2}=$ ba^{2} where $\mathrm{b}=\mathrm{n}_{1} \mathrm{an}_{2}$. Hence N is a strongly biregular bi-near ring and so by the Lemma 2.28, N is a bi-regular bi-near ring. Conversely, Assume that N is a bi-regular bi-near ring and B is a biideal of a bi-near ring N implies $\mathrm{BNB} \subseteq \mathrm{B}$. Now to prove $\mathrm{B} \subseteq \mathrm{BNB}$. Let $\mathrm{b} \in \mathrm{B}$ then $\mathrm{b} \in N_{1} \cup N_{2}$. Since N is a bi-regular bi-near ring, for each $\mathrm{b} \in N_{1} \cup N_{2}$, there exist $\mathrm{a} \in N_{1} \cup N_{2}$ such that $\mathrm{b}=\mathrm{bab}$ $\in \mathrm{BN}_{1} \mathrm{~B}\left(\right.$ or $\left.\mathrm{BN}_{2} \mathrm{~B}\right)$ implies $\mathrm{b} \in \mathrm{BNB}$.Hence
$\mathrm{B} \subseteq \mathrm{BNB}$ andso $\mathrm{B}=\mathrm{BNB}$ for every bi-ideal B of a bi-near ring N .

Proposition 3.1.13:

Let N be a left self-distributive S-bi-near ring. Then $B=B^{3}$ for every weak bi-ideal B of a binear ring N if and only if $L_{1} \cap L_{2}=L_{1} L_{2}$ for any two left N -bisubgroups of a bi-near ring N .

Proof:

Assume that $B=B^{3}$ for every weak biideal B of a bi-near ring N . By the Proposition 3.1.8, N is a strongly bi-regular bi-near ring.Every bi-ideal B of a bi-near ring is also a weak bi-ideal of a bi-near ring then by proposition 3.1.12 N is a bi-regular bi-near ring. Let L_{1} and L_{2} be any two left N -bisubgroups of a bi-near ring N . Let $\mathrm{x} \in \mathrm{L}_{1} \cap \mathrm{~L}_{2}$ implies $\mathrm{x} \in \mathrm{L}_{1}$ and $\mathrm{x} \in \mathrm{L}_{2}$. Since N is a biregular bi-near ring, for $\mathrm{x} \in N_{1} \cup N_{2}$ there exist some $\mathrm{a} \in N_{1} \cup N_{2}$ such that $\mathrm{x}=\mathrm{xax}$.Therefore $\mathrm{x}=\mathrm{xax} \in \mathrm{L}_{1} \mathrm{NL}_{2} \subseteq \mathrm{~L}_{1} \mathrm{~L}_{2}$ since $\mathrm{NL}_{2} \subseteq \mathrm{~L}_{2}$ which implies that $\mathrm{L}_{1} \cap \mathrm{~L}_{2} \subseteq \mathrm{~L}_{1} \mathrm{~L}_{2}$. On the other hand, let $\mathrm{x} \in \mathrm{L}_{1} \mathrm{~L}_{2}$. Since N is a strongly bi-regular bi-near ring, $\mathrm{L}=\{0\}$ and so en=ene for all $\mathrm{e} \in \mathrm{E}$.Since $x \in L_{1} L_{2}$, trivially $x \in L_{2}$. Then $x=y z \in L_{1} L_{2}$ with $y \in L_{1}$ and $z \in L_{2}$. Now $x=y z=(y b y) z$. Since by is an idempotent $(b y) z=(b y) z(b y)$. Thus $\mathrm{x}=\mathrm{yz}=$ $\mathrm{y}($ by $) \mathrm{z}=\mathrm{y}($ by $) \mathrm{z}($ by $) \in \mathrm{N}_{1} \mathrm{~L}_{1}\left(\right.$ or $\left.\mathrm{N}_{2} \mathrm{~L}_{1}\right) \subseteq \mathrm{L}_{1}$ implies $\mathrm{x} \in \mathrm{L}_{1}$. Thus $\mathrm{x} \in \mathrm{L}_{1} \cap \mathrm{~L}_{2}$. From the two inclusions proved above, we get that $\mathrm{L}_{1} \mathrm{~L}_{2}=\mathrm{L}_{1} \cap \mathrm{~L}_{2}$. Conversely assume that $\mathrm{L}_{1} \cap \mathrm{~L}_{2}=\mathrm{L}_{1} \mathrm{~L}_{2}$ for any two left N -bisubgroups of a bionear ring N.To prove $B=B^{3}$ for every weak bi-ideal B of a bi-near ring N . Let $\mathrm{a} \in N_{1} \cup N_{2}$ then Na is a left N bisubgroup of a bi-near ring N.Now, by our assumption we get that $\mathrm{Na}=\mathrm{Na} \cap \mathrm{Na}=\mathrm{NaNa}$. But $\mathrm{Na}=\mathrm{Na} \cap \mathrm{N}=\mathrm{NaN}$ implies that $\mathrm{Naa}=\mathrm{NaNa}$. Therefore $\mathrm{Na}=\mathrm{NaNa}=\mathrm{Naa}=\mathrm{Na}^{2}$. Since N is a S-bi-near ring, $\mathrm{a} \in \mathrm{Na}=\mathrm{Na}^{2}$. i.e., for $\mathrm{a} \in N_{1} \cup N_{2}$, $\mathrm{a} \in \mathrm{Na}=\mathrm{Na}^{2}$ implies N is a strongly bi-regular binear ring. By the Proposition 3.1.8, $\mathrm{B}=\mathrm{B}^{3}$ for every weak bi-ideal B of a bi-near ring N .

Proposition 3.1.14:

Let N be a left self - distributive S-bi-near ring. Then $B=B^{3}$ for every weak bi-ideal B of a binear ring N if and only if $\sqrt{ } \mathrm{A}=\mathrm{A}$ for a left N bisubgroup A of a bi-near ring N .

Proof :

Assume $B=B^{3}$ for every weak bi-ideal B of a bi-near ring N . By the Proposition 3.1.8, N is a strongly bi-regular bi-near ring. Let A be a left Nbisubgroup of a bi-near ring N. To Prove $\sqrt{ } A=A$. But obviously $A \subseteq \sqrt{ } A$.Its enough to prove $\sqrt{ } A \subseteq A$.Let $a \in \sqrt{ } A$, then $a^{n} \in A$ for some positive integer n . Since N is strongly bi-regular bi-near ring,for each $\mathrm{a} \in N_{1} \cup N_{2}$ there exist $\mathrm{b} \in N_{1} \cup N_{2}$ such that
$\mathrm{a}=\mathrm{ba}^{2}=$ baa. Since N is left self-distributive bi-near ring we get that $a=b a^{2}=b a a=b a b a=b(a b a)=$ $\mathrm{b}(\mathrm{abaa})=\mathrm{baba}^{2}=\ldots=\mathrm{baba}^{\mathrm{n}} \in \mathrm{N}_{1} \mathrm{~A}\left(\right.$ or $\left.\mathrm{N}_{2} \mathrm{~A}\right) \subseteq \mathrm{A}$. i.e., $a \in A$ implies $\sqrt{ } A \subseteq A$.Therefore $A=\sqrt{ } A$ for every left N-bisubgroup A of a bi-near ring N. Conversely assume that $A=\sqrt{ } A$ for every left N bisubgroup A of a bi-near ring N.Let $\mathrm{a} \in N_{1} \cup N_{2}$ then $\mathrm{a}^{3} \in \mathrm{Na}^{2}$ and hence $\mathrm{a} \in \sqrt{ } \mathrm{Na}^{2}=\mathrm{Na}^{2}$. Thus for all $\mathrm{a} \in N_{1} \cup N_{2}, \mathrm{a} \in \mathrm{Na}^{2}$ implies N is a strongly biregular bi-near ring. Therefore by the Proposition 3.1.8, $\mathrm{B}=\mathrm{B}^{3}$ for every weak bi- ideal B of a binear ring N .
§ 3.2 In this section, we prove certain results for left self distributive bi-near ring.

Remark 3.2.1 :

We can see that left permutable and left self - distributive are not equivalent we give the following two examples.

Exam ple 3.2.2 :

For, consider the bi-near ring $N=N_{1} \cup N_{2}$ where $\left(\mathrm{N}_{1},+\right)$ be the group of integers modulo 8 Define ' \because ' as per the (scheme (0,6,4,6,0,6,4,6) p.414, Pilz[1]).

.	0	1	2	3	4	5	6	7
	0	0	0	0	0	0	0	0
0	6	4	6	0	6	4	6	
0	0	4	0	4	0	4	0	4
3	0	2	4	2	0	2	4	2
0	0	0	0	0	0	0	0	
	0	6	4	6	0	6	4	6
0	4	0	4	0	4	0	4	
1	0	2	4	2	0	2	4	2

where $\left(\mathrm{N}_{2},+\right)$ be the group of integers modulo 8 Define '.' as per the (scheme ($0,2,4,2,0,2,4,2$) p.414, Pilz[1]).

$$
\begin{array}{c|cccccccc}
. & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\
\hline 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 2 & 4 & 2 & 0 & 2 & 4 & 2 \\
2 & 0 & 4 & 0 & 4 & 0 & 4 & 0 & 4 \\
3 & 0 & 6 & 4 & 6 & 0 & 6 & 4 & 6 \\
4 & 0 & 0 & 0 & 0 & 0 & 0 & & 0 \\
5 & 0 & 2 & 4 & 2 & 0 & 2 & 4 & 2 \\
6 & 0 & 4 & 0 & 4 & 0 & 4 & & 0
\end{array} 4
$$

One can see that this $N=N_{1} \cup N_{2}$ is left permutable, but not left self-distributive since $135 \neq 1315$ (or $155 \neq 1515$)

Example 3.2.2.1 :

For, consider the bi-near ring $N=N_{1} \cup N_{2}$ where $\left(\mathrm{N}_{1},+\right)$ defined on the Klein's four group ($\mathrm{N}_{1},+$) with $\quad \mathrm{N}_{1}=\{0, \mathrm{a}, \mathrm{b}, \mathrm{c}\}$ where the semigroup operation ' \because ' is defined as follows (scheme (7,7,7,7) p.408, Pilz[1]).

.	0	a	b	c
0	0	0	0	0
a	a	a	a	a
b	0	0	0	0
c	a	a	a	a

Or $\mathrm{N}_{2}=\{0, \mathrm{a}, \mathrm{b}, \mathrm{c}\}$ where the semigroup operation \because ' is defined as follows (scheme ($7,7,1,7$) p.408, Pilz[1]).

.	0	a	b	c
0	0	0	0	0
a	a	a	a	a
b	0	0	b	0
c	a	a	c	a

This is left self- distributive but not left permutable bi-near ring since $a b c \neq b a c$ for $a, b, c \in N_{1} \cup N_{2}$.

Proposition 3.2.3:

Let N be a left self - distributive S-bi-near ring. Then the following conditions are equivalent.
(i) $\quad \mathrm{B}=\mathrm{B}^{3}$ for every weak bi-ideal B of a binear ring N .
(ii) N is a bi-regular and CPNS bi-near ring.
(iii) $\mathrm{Nx} \cap \mathrm{Ny}=\mathrm{Nxy}$ for all $\mathrm{x}, \mathrm{y} \in N=N_{1} \cup N_{2}$.
(iv) N is a left bi-potent bi-near ring.
(v) N is a Boolean bi-near ring.

Proof:
To prove (i) \Rightarrow (ii)
Assume that $\mathrm{B}=\mathrm{B}^{3}$ for every weak bi-ideal B of a bi-near ring N.By the Proposition 3.1.8, N is a strongly bi-regular bi-near ring and so N is a biregular bi-near ring. It is enough to show that N is CPNS bi-near ring.Since N is bi-regular bi-near ring then by the Proposition 3.1.13, $\mathrm{A} \cap \mathrm{B}=\mathrm{AB}$ for two left N -bisub groups A and B of a bi-near ring N . Let $\mathrm{x}, \mathrm{y} \in N_{1} \cup N_{2}$ then Nx and Ny are left N -bisub groups of N . Now by the Proposition 3.1.13, we get that $\mathrm{NxNy}=\mathrm{Nx} \cap \mathrm{Ny}=\mathrm{Ny} \cap \mathrm{Nx}=$ NyNx.Therefore $\mathrm{NxNy}=\mathrm{NyNx}$ for all $\mathrm{x}, \mathrm{y} \in N_{1} \cup N_{2}$. Hence N is a CPNS bi-near ring. Hence N is bi-regular and CPNS bi-near ring.
To prove (ii) \Rightarrow (iii)
Let $\mathrm{x}, \mathrm{y} \in \mathrm{N}$. As N is a bi-regular bi-near ring, by the Lemma $2.29, \mathrm{~A}=\mathrm{A}^{2}$ for every left N bisubgroup A of a bi-near ring N. Since $\mathrm{Nx} \cap \mathrm{Ny}$ is a left N -bisub group of a bi-near ring $\mathrm{N}, \mathrm{Nx} \cap \mathrm{Ny}=$ $(\mathrm{Nx} \cap \mathrm{Ny})^{2} \subseteq \mathrm{NxNy} \subseteq$ Ny.Again since N is a CPNS bi-near ring, $\mathrm{NxNy}=\mathrm{NyNx} \subseteq \mathrm{Nx}$. Therefore $\mathrm{Nx} \cap \mathrm{Ny}=\mathrm{NxNy}$. Now $\mathrm{Nx}=\mathrm{Nx} \cap \mathrm{N}=\mathrm{NxN}$ implies $N x y=N x N y$. Therefore $N x y=N x \cap N y$ for all x,
$\mathrm{y} \in N_{1} \cup N_{2}$. Hence $\mathrm{Nx} \cap \mathrm{Ny}=\mathrm{Nxy}$ for all x, y $\in N=N_{1} \cup N_{2}$.
To prove (iii) \Rightarrow (iv)
Assume that $\mathrm{Nx} \cap \mathrm{Ny}=\mathrm{Nxy}$ for all x, y $\in N=N_{1} \cup N_{2}$. To Prove N is a left bi-potent bi-near ring.i.e. To Prove $\mathrm{Na}=\mathrm{Na}^{2}$ for all $\mathrm{a} \in N_{1} \cup N_{2}$. Let $\mathrm{a} \in N_{1} \cup N_{2}$ then $\mathrm{Na}=\mathrm{Na} \cap \mathrm{Na}=\mathrm{Naa}=\mathrm{Na}^{2}$.i.e., $\mathrm{Na}=\mathrm{Na}^{2}$ for all $\mathrm{a} \in N_{1} \cup N_{2}$. Hence N is a left bipotent bi-near ring.

To prove (iv) \Rightarrow (v)

Assume that N is a left bi-potent bi-near ring. To Prove N is a Boolean bi-near ring. i.e)To Prove $\mathrm{a}^{2}=\mathrm{a}$ for all $\mathrm{a} \in N_{1} \cup N_{2}$. Let $\mathrm{a} \in N_{1} \cup N_{2}$, by the assumption that $a \in N a=\mathrm{Na}^{2}$. Therefore $\mathrm{a} \in \mathrm{Na}$ implies $\mathrm{a} \in \mathrm{Na}^{2}$ for all $\mathrm{a} \in N_{1} \cup N_{2}$. Hence N is a strongly bi-regular bi-near ring and so N is a biregular bi-near ring.Then for $\mathrm{a} \in N_{1} \cup N_{2}$ there exist $\mathrm{b} \in N_{1} \cup N_{2}$ such that $\mathrm{a}=\mathrm{aba}=\mathrm{abaa}=\mathrm{a}^{2}$. i.e., N is a Boolean bi-near ring.

To prove (v) \Rightarrow (i)
Assume that N is a Boolean bi-near ring .Let B be a weak bi-ideal of a bi-near ring N then to prove $B=B^{3}$. B be a weak bi-ideal of a bi-near ring N implies $B^{3} \subseteq B$. Let $x \in B$. By the assumption, $x=$ $x^{2}=x^{3} \in B^{3}$ implies $B \subseteq B^{3}$ hence $B=B^{3}$ for every weak bi-ideal B of a bi-near ring N .

Theorem 3.2.4

Let N be a left self - distributive S-bi-near ring. Then the following conditions are equivalent.
(i) $\mathrm{Q}=\mathrm{QNQ}$ for every quasi-ideal Q of a bi-near ring N .
(ii) $\quad \mathrm{B}^{3}=\mathrm{B}$ for every weak bi-ideal B of a bi-near ring N .
(iii) $\quad \mathrm{NB}^{2}=\mathrm{B}$ for every strong bi-ideal B of a bi-near ring N .
(iv) N is a bi-regular bi-near ring.
(v) $\quad B_{1} \cap B_{2}=B_{1} B_{2} \cap B_{2} B_{1}$ for every pair of bi-ideals $\mathrm{B}_{1}, \mathrm{~B}_{2}$ of a bi-near ring N .
(vi) $\quad \mathrm{Q}_{1} \cap \mathrm{Q}_{2}=\mathrm{Q}_{1} \mathrm{Q}_{2} \cap \mathrm{Q}_{2} \mathrm{Q}_{1}$ for every pair of quasi-ideals $\mathrm{Q}_{1}, \mathrm{Q}_{2}$ of a bi-near ring N
(vii) $\mathrm{Q}^{2}=\mathrm{Q}$ for every quasi-ideal Q of a bi-near ring N .
(viii) $\quad \mathrm{B}^{2}=\mathrm{B}$ for every bi-ideal B of a binear ring N .
(ix) N is strict weakly bi-regular bi-near ring.
(x) $\quad \mathrm{N}$ is a strongly bi-regular bi-near ring.
(xi) $\quad \mathrm{N}$ is a left bi-potent bi-near ring.
(xii) $\mathrm{B}=\mathrm{BNB}$ for every bi-ideal B of a binear ring N .

Proof :

Let N be a left self - distributive S-bi-near ring
To prove (i) \Rightarrow (ii)
Assume that $\mathrm{Q}=\mathrm{QNQ}$ for every quasiideal Q of a bi-near ring N . To prove $\mathrm{B}^{3}=\mathrm{B}$ for every weak bi-ideal B of a bi-near ring N . Let $\mathrm{a} \in N_{1} \cup N_{2}$ then Na is a quasi-ideal of N then by our assumption $\mathrm{Na}=\mathrm{NaNNa}$. Since N is a S-binear ring, we have $\mathrm{a} \in \mathrm{Na}=\mathrm{NaNNa} \subseteq \mathrm{NaNa.i.e}$., $\mathrm{a}=$ $n_{1} \mathrm{an}_{2}$ a. Since N is left self-distributive, $a=n_{1} \mathrm{an}_{2} a=$ $\mathrm{n}_{1} \mathrm{an}_{2} \mathrm{aa}=\mathrm{n}_{1} \mathrm{an}_{2} \mathrm{a}^{2} \in \mathrm{Na}^{2}$. Therefore $\mathrm{a} \in \mathrm{Na}^{2}$ for all $\mathrm{a} \in N_{1} \cup N_{2}$. Hence N is strongly bi-regular bi-near ring. Therefore, by Proposition 3.1.8, $\mathrm{B}^{3}=\mathrm{B}$ for every weak bi-ideal B of a bi-near ring N .
To prove (ii) \Rightarrow (iii)
Assume that $\mathrm{B}^{3}=\mathrm{B}$ for every weak biideal B of a bi-near ring N.Let B be a strong biideal of a bi-near ring N then $\mathrm{NB}^{2} \subseteq \mathrm{~B}$. Every strong bi-ideal of a bi-near ring is a bi-ideal of a bi-near ring and so weak bi-ideal.By the assumption $\mathrm{B}=\mathrm{B}^{3}=\mathrm{BBB}=\mathrm{BB}^{2} \subseteq \mathrm{~N}_{1} \mathrm{~B}^{2}\left(\right.$ or $\left.\mathrm{B} \subseteq \mathrm{N}_{2} \mathrm{~B}^{2}\right) \subseteq \mathrm{NB}^{2}$. i.e., $\mathrm{B} \subseteq \mathrm{NB}^{2}$ and so $\mathrm{B}=\mathrm{NB}^{2}$ for every strong biideal B of a bi-near ring N .
To prove (iii) \Rightarrow (iv)
Assume that $\mathrm{NB}^{2}=\mathrm{B}$ for every strong biideal B of a bi-near ring N.By the Proposition 3.1.10, N is a strongly bi-regular bi-near ring then by Lemma 2.28, N is a bi-regular bi-near ring.
To prove (iv) \Rightarrow (v)
Assume that N is a bi-regular bi-near ring. Let B_{1} and B_{2} be a pair of bi-ideals of a binear ring N. Then prove that $B_{1} \cap B_{2}=B_{1} B_{2} \cap B_{2} B_{1}$ for every pair of bi-ideals $\mathrm{B}_{1}, \mathrm{~B}_{2}$ of a bi-near ring N. Let $x \in B_{1} B_{2} \cap B_{2} B_{1}$. Then $x=b_{1} b_{2}$ and $x=$ $b_{2}{ }^{\prime} b_{1}{ }^{\prime}$. Now $b_{1}=b_{1} a_{1} b_{1}$ and $b_{2}=b_{2} a_{2} b_{2}$ for some $\mathrm{a}_{1}, \mathrm{a}_{2} \in N_{1} \cup N_{2}$. Because N is a bi-regular bi-near ring. From this $x=b_{1} b_{2}=b_{1} a_{1} b_{1} b_{2}=b_{1} a_{1} b_{2}{ }^{\prime} b_{1}{ }^{\prime} \in$ $\mathrm{B}_{1} \mathrm{NB}_{1} \subseteq \mathrm{~B}_{1}$. i.e., $\mathrm{B}_{1} \mathrm{~B}_{2} \cap \mathrm{~B}_{2} \mathrm{~B}_{1} \subseteq \mathrm{~B}_{1}$. Similarly we can prove $\mathrm{B}_{1} \mathrm{~B}_{2} \cap \mathrm{~B}_{2} \mathrm{~B}_{1} \subseteq \mathrm{~B}_{2}$. Hence $\mathrm{B}_{1} \mathrm{~B}_{2} \cap \mathrm{~B}_{2} \mathrm{~B}_{1} \subseteq$ $\mathrm{B}_{1} \cap \mathrm{~B}_{2}$. On the other hand if $\mathrm{x} \in \mathrm{B}_{1} \cap \mathrm{~B}_{2}$, then $\mathrm{x}=\mathrm{b}_{1}$ $=b_{2}$ for some $b_{1} \in B_{1}$ and $b_{2} \in B_{2}$. Since B_{1} is a biideal of a bi-near ring N and N is a bi-regular binear ring which gives $\mathrm{B}_{1}=\mathrm{B}_{1} \mathrm{~N}_{1} \mathrm{~B}_{1}$ (or $\left.B_{1}=B_{1} N_{2} B_{1}\right)=B N B$, and so $b_{1}=b_{1} n b_{1}$ for some $\mathrm{n} \in N_{1} \cup N_{2}$. Since N is a left self- distributive binear ring, $x=b_{1}=b_{1} n b_{1}=b_{1} n b_{1} b_{1}=b_{1} n b_{1} b_{2} \in$ $\mathrm{B}_{1} \mathrm{~N}_{1} \mathrm{~B}_{1} \mathrm{~B}_{2}$ (or $\left.\in \mathrm{B}_{1} \mathrm{~N}_{2} \mathrm{~B}_{1} \mathrm{~B}_{2}\right) \subseteq \mathrm{B}_{1} \mathrm{~B}_{2}$. Therefore $B_{1} \cap B_{2} \subseteq B_{1} B_{2}$. Similarly we can prove that $B_{1} \cap B_{2}$ $\subseteq \mathrm{B}_{2} \mathrm{~B}_{1}$. Hence $\mathrm{B}_{1} \cap \mathrm{~B}_{2}=\mathrm{B}_{1} \mathrm{~B}_{2} \cap \mathrm{~B}_{2} \mathrm{~B}_{1}$ for every pair of bi-ideals $\mathrm{B}_{1}, \mathrm{~B}_{2}$ of a bi-near ring N .
To prove (v) \Rightarrow (vi)
Assume that $B_{1} \cap B_{2}=B_{1} B_{2} \cap B_{2} B_{1}$ for every pair of quasi-ideals B_{1} and B_{2} of a bi-near ring N . Since every quasi-ideal of a bi-near ring is also a bi-ideal of a bi-near ring N , we have $\mathrm{Q}_{1} \cap \mathrm{Q}_{2}$
$=\mathrm{Q}_{1} \mathrm{Q}_{2} \cap \mathrm{Q}_{2} \mathrm{Q}_{1}$ for every pair of quasi-ideals Q_{1} and Q_{2} of a bi-near ring N .
To prove (vi) \Rightarrow (vii)
Assume that $\mathrm{Q}_{1} \cap \mathrm{Q}_{2}=\mathrm{Q}_{1} \mathrm{Q}_{2} \cap \mathrm{Q}_{2} \mathrm{Q}_{1}$ for every pair of quasi-ideals Q_{1} and Q_{2} of a bi-near ring N.Take $\mathrm{Q}_{1}=\mathrm{Q}_{2}=\mathrm{Q}$. By the assumption $\mathrm{Q}=\mathrm{Q} \cap$ $\mathrm{Q}=\mathrm{Q}^{2} \cap \mathrm{Q}^{2}=\mathrm{Q}^{2}$. Hence $\mathrm{Q}^{2}=\mathrm{Q}$ for every quasiideal Q of a bi-near ring N .
To prove (vii) \Rightarrow (viii)
Assume that $\mathrm{Q}^{2}=\mathrm{Q}$ for every quasi-ideal Q of a bi-near ring N.To Prove $\mathrm{B}^{2}=\mathrm{B}$ for every biideal B of a bi-near ring N. Let $x \in B$ then $N x$ is a quasi-ideal of a bi-near ring N . If Nx is a quasiideal of N then $\mathrm{x} \in \mathrm{Nx}=(\mathrm{Nx})^{2}=\mathrm{NxNx}(\because N$ is S-binear ring).i.e., $x=n_{1} x_{2} x$ for some n_{1}, $\mathrm{n}_{2} \in N_{1} \cup N_{2}$. Since N is a left self-distributive binear ring, $x=n_{1} x_{n} x=n_{1} \mathrm{xn}_{2} x^{2} \in N x^{2}$. From this $\mathrm{x} \in \mathrm{Nx}^{2}$ for all $\mathrm{x} \in N_{1} \cup N_{2}$. Hence N is a strongly biregular bi-near ring and so N is a bi-regular bi-near ring.Let $a \in B N \cap N B$. Then $a=x n=n_{1} x_{1}$ for some $\mathrm{x}, \mathrm{x}_{1} \in \mathrm{~B}$ then $\mathrm{x}, \mathrm{x}_{1} \in N_{1} \cup N_{2}$ and $\mathrm{n}, \mathrm{n}_{1} \in N_{1} \cup N_{2}$. Since x is regular, $\mathrm{x}=\mathrm{xyx}$ for some $\mathrm{y} \in N_{1} \cup N_{2}$. Hence $\mathrm{a}=\mathrm{xn}=(\mathrm{xyx}) \mathrm{n}=(\mathrm{xy})\left(\mathrm{n}_{1} \mathrm{x}_{1}\right) \in \mathrm{BN}_{1} \mathrm{~B}\left(\operatorname{orBN}_{2} \mathrm{~B}\right) \subseteq \mathrm{BNB} \subseteq$ B.That is $B N \cap N B \subseteq B$. Therefore B is a quasi-ideal of a bi-near ring N and so $\mathrm{B}^{2}=\mathrm{B}$ for every bi-ideal B of bi-near ring N .
To prove (viii) \Rightarrow (ix)
Assume that $\mathrm{B}^{2}=\mathrm{B}$ for every bi-ideal B of a bi-near ring N.To prove N is a strict weakly bi-regular bi-near ring. Let $\mathrm{x} \in N_{1} \cup N_{2}$ then Nx is a bi-ideal of a bi-near ringN.Since N is a S-bi-near ring $\quad x \in N x=(N x)^{2}$. Therefore $\quad x \in N \quad$ implies $\mathrm{x} \in \mathrm{Nx}=(\mathrm{Nx})^{2}$. Hence by the Theorem 2.30, N is a strict weakly bi-regular bi-near ring.
To prove (ix) \Rightarrow (x)
Assume that N is a strict weakly biregular bi-near ring.Let $\mathrm{a} \in N_{1} \cup N_{2}$ implies $\mathrm{a} \in \mathrm{Na}(\because \mathrm{N}$ is S-bi-near ring). If $\mathrm{a} \in \mathrm{Na}$ then $\mathrm{a} \in \mathrm{Na}=(\mathrm{Na})^{2}=(\mathrm{Na})(\mathrm{Na})$. i.e., $a=n_{1} \mathrm{an}_{2} a$ for some $\mathrm{n}_{1}, \mathrm{n}_{2} \in N_{1} \cup N_{2}$. Since N is a left self-distributive binear ring, $a=n_{1} a_{2} a=n_{1} \mathrm{an}_{2} a^{2} \in N a^{2}$. Hence for all $\mathrm{a} \in N_{1} \cup N_{2}$ implies $\mathrm{a} \in \mathrm{Na}^{2}$. Hence N is a strongly bi-regular bi-near ring.
To prove (x) \Rightarrow (xi)
Assume that N is strongly bi-regular binear ring then N is a bi-regular bi-near ring. Thus for every $\mathrm{a} \in N_{1} \cup N_{2}$ there exist $\mathrm{b} \in N_{1} \cup N_{2}$ such that $\mathrm{a}=\mathrm{aba}$. Let $\mathrm{x} \in \mathrm{Na}$ then $\mathrm{x}=\mathrm{n}_{1} \mathrm{a}=\mathrm{n}_{1} \mathrm{aba}=$ $\mathrm{n}_{1} \mathrm{abaa} \in \mathrm{Na}^{2}$. From this $\mathrm{x} \in \mathrm{Na}$ implies $\mathrm{x} \in \mathrm{Na}^{2}$ for all $\mathrm{x} \in N_{1} \cup N_{2}$. Thus $\mathrm{Na}=\mathrm{Na}^{2}$ for all $\mathrm{a} \in N_{1} \cup N_{2}$ i.e., N is a left bi-potent bi-near ring.

To prove (xi) \Rightarrow (xii)

Assume that N is a left bi-potent bi-near ring.Let $\mathrm{a} \in N_{1} \cup N_{2}$ then $\mathrm{a} \in \mathrm{Na}=\mathrm{Na}^{2}(\because \mathrm{~N}$ is S-binear ring).Hence $\mathrm{a} \in N=N_{1} \cup N_{2}$ implies $\mathrm{a} \in \mathrm{Na}^{2}$ and so N is strongly bi-regular bi-near ring implies N is a bi-regular bi-near ring. Then by proposition 3.1.12 B $=$ BNB for every bi-ideal B of a bi-near ring N .
To prove (xii) \Rightarrow (i)
Let Q be a quasi-ideal of a bi-near ring N . Since every quasi-ideal of a bi-near ring is a biideal of a bi-near ring N, then $\mathrm{Q}=\mathrm{QNQ}$ for every quasi-ideal Q of a bi-near ring N .

Proposition 3.2.5:

Let N be a left self - distributive S-binear ring and $\mathrm{B}=\mathrm{B}^{3}$ for every weak bi-ideal B of a bi-near ring N . Then a bi-near ring N has no nonzero zero-divisors if and only if N is a left simple bi-near ring.

Proof:

Let N be a left self-distributive S-bi-near ring and $\mathrm{B}=\mathrm{B}^{3}$ for every weak bi-ideal B of a binear ring N .Assume that N has no non-zero zero divisors. Since $B=B^{3}$ for every weak bi-ideal B of a bi-near ring N , then by the Proposition 3.1.17, N is a Boolean bi-near ring. i.e., For all $\mathrm{x} \in N_{1} \cup N_{2}$, $\mathrm{Nx}=\mathrm{Nx}^{2}$. Since N has no non-zero divisors, it follows that $\mathrm{N}=\mathrm{Nx}$ for all $\mathrm{x} \in\left(N_{1} \cup N_{2}\right)^{*}$. Hence a bi-near ring N has no non-trivial left N bisubgroup.Therefore a bi-near ring N is simple.Conversely assume that N is a left simple bi-near ring then by remark 2.31, a bi-near ring N has no non-zero zero-divisors.

Proposition 3.2.6:

Let N be a left self - distributive \bar{S} - binear ring. Then $\mathrm{B}=\mathrm{B}^{3}$ for every weak bi-ideal B of a bi-near ring N if and only if $\mathrm{xN}=\mathrm{xNx}$ for all $x \in N$.

Proof :

Assume that $B=B^{3}$ for every weak biideal B of a bi-near ring N then by the Proposition $3.1 .8, \mathrm{~N}$ is a strongly bi-regular bi-near ring and so N is a bi-regular bi-near ring. Hence by the Result 2.31 and by the Lemma 2.32, en $=$ ene for $\mathrm{e} \in \mathrm{E}$ and $\mathrm{n} \in N_{1} \cup N_{2}$. Let $\mathrm{y} \in \mathrm{xN}$ then $\mathrm{y}=\mathrm{xn}_{1}=\operatorname{xaxn}_{1} .(\because \mathrm{N}$ is bi-regular). Since $\mathrm{e}=\mathrm{ax}$ is an idempotent, $\mathrm{axn}_{1}=$ axn_{1} ax for all $\mathrm{n}_{1} \in N_{1} \cup N_{2}$. Thus $\mathrm{y}=\mathrm{xn}_{1}=\operatorname{xaxn}_{1}=$ $x\left(a x n_{1} a x\right) \in x N x$ and so $x N \subseteq x N x$. Hence $y \in x N$ implies $\mathrm{xN} \subseteq \mathrm{xNx}$. But trivially $\mathrm{xNx} \subseteq \mathrm{xN}$ and thus $\mathrm{xN}=\mathrm{xNx}$ for $\mathrm{x} \in \mathrm{N}$.Conversely assume that $\mathrm{xN}=$ xNx for all $\mathrm{x} \in N_{1} \cup N_{2}$. since N is a \bar{S}-bi-near ring, for $\mathrm{x} \in N_{1} \cup N_{2}, \mathrm{x} \in \mathrm{xN}=\mathrm{xNx}$ which implies that x is regular. Therefore N is a bi-regular bi-near
ring. Therefore by the Theorem 3.1.18, $B=B^{3}$ for every weak bi-ideal B of a bi-near ring N .

Theorem 3.2.7:

Let N be a left self-distributive S-bi-near ring. Then the following conditions are equivalent.
(i) $\mathrm{B}=\mathrm{B}^{3}$ for every weak bi-ideal B of a bi-near ring N with $\mathrm{E} \subseteq \mathrm{N}_{\mathrm{d}}$.
(ii) $\quad \mathrm{aNa}=\mathrm{Na}=\mathrm{Na}^{2}$ for every $\mathrm{a} \in$ $N_{1} \cup N_{2}$ 。
(iii) $\quad \mathrm{N}$ is a $\mathrm{S}_{\mathrm{k}}{ }^{\prime}$ and P_{k} bi-near ring for any positive integer k with $\mathrm{E} \subseteq \mathrm{N}_{\mathrm{d}}$.
(iv) N is a stable bi-near ring.
(v) $\quad \mathrm{N}$ is a $\mathrm{P}(1,2)$ bi-near ring and S^{\prime} - binear ring.
(vi) $\quad \mathrm{N}$ is a $\mathrm{P}(\mathrm{m}, \mathrm{n})$ and bi-regular bi-near ring.
(vii) $\quad B=B^{m} \mathrm{NB}^{\mathrm{n}}$ for every generalized(m, n) bi-ideal B of a bi-near ring N .

Proof :

To Prove (i) \Rightarrow (ii)
Assume that $\mathrm{B}=\mathrm{B}^{3}$ for every weak biideal B of a bi-near ring N with $\mathrm{E} \subseteq \mathrm{N}_{\mathrm{d}}$. Then by the Proposition 3.1.8, N is a strongly bi-regular binear ring. From this $\mathrm{L}=\{0\}$. By the Lemma 2.32, en $=$ ene for all $\mathrm{e} \in \mathrm{E} \& \mathrm{n} \in N_{1} \cup N_{2}$. Since $\mathrm{E} \subseteq \mathrm{N}_{\mathrm{d}}$, by the Lemma 2.33,ne=ene for all $\mathrm{e} \in \mathrm{E}$ and $\mathrm{n} \in N_{1} \cup N_{2}$. Hence $\mathrm{E} \subseteq \mathrm{C}(\mathrm{N})$. From this N is a GNF.Let $\mathrm{a} \in N_{1} \cup N_{2}$. Now N is strongly bi-regular bi-near ring then by the Proposition 2.34, N is a sub commutative bi-near ring.Therefore $\mathrm{aNa}=$ $\mathrm{Naa}=\mathrm{Na}^{2}$ for all $\mathrm{a} \in N_{1} \cup N_{2}$. By the Theorem 3.1.18, N is left bi-potent and so $\mathrm{Na}=\mathrm{Na}^{2}$ for all $\mathrm{a} \in N_{1} \cup N_{2}$. Thus $\mathrm{aNa}=\mathrm{Na}=\mathrm{Na}^{2}$ for all a $\epsilon_{N_{1} \cup N_{2}}$. Hence $\mathrm{aNa}=\mathrm{Na}=\mathrm{Na}^{2}$ for all a $\in N_{1} \cup N_{2}$.
To Prove (ii) \Rightarrow (iii)
Assume that $\mathrm{aNa}=\mathrm{Na}=\mathrm{Na}^{2}$ for all $\mathrm{a} \in$ $N_{1} \cup N_{2}$. Since N is a S-bi-near ring, $\mathrm{a} \in \mathrm{Na}=\mathrm{Na}^{2}$ for all $\mathrm{a} \in N_{1} \cup N_{2}$. Therefore N is a strongly bi-regular bi-near ring. Therefore N contains no non-zero nilpotent elements. Thus $\mathrm{eN}=\mathrm{eNe}$. By the assumption $\mathrm{eNe}=\mathrm{Ne}$. Therefore $\mathrm{eN}=\mathrm{eNe}=\mathrm{Ne}$ and so by the Lemma $2.35, \mathrm{E} \subseteq \mathrm{C}(\mathrm{N})$. Therefore by the Theorem 2.36, N is a P_{k} bi-near ring.Since $\mathrm{E} \subseteq$ $\mathrm{C}(\mathrm{N}), \mathrm{E} \subseteq \mathrm{N}_{\mathrm{d}}$. Let $\mathrm{x} \in N_{1} \cup N_{2}$. Since N is bi-regular bi-near ring and left self - distributive $\mathrm{x}=\mathrm{xax}=$ $\mathrm{xax}^{2}=\ldots=\mathrm{x}$ ax ${ }^{\mathrm{k}}$ for all $\mathrm{x} \in N_{1} \cup N_{2} \in \mathrm{Nx}^{\mathrm{k}}$ and so N is a $\mathrm{S}_{\mathrm{k}}{ }^{\prime}$ bi-near ring.

To Prove (iii) \Rightarrow (iv)

Assume that N is a $\mathrm{S}_{\mathrm{k}}{ }^{\prime}$ and P_{k} bi-near ring for any positive integer k with $\mathrm{E} \subseteq \mathrm{N}_{\mathrm{d}}$. Let $\mathrm{x} \in$ $N_{1} \cup N_{2}$. Since N is a $\mathrm{S}_{\mathrm{k}^{\prime}}-\mathrm{P}_{\mathrm{k}}$ bi-near-ring, $\mathrm{x} \in \mathrm{x}^{\mathrm{k}} \mathrm{N}=$
$\mathrm{xNx}, \forall \mathrm{x} \in N_{1} \cup N_{2}$ and so N is a bi-regular binear ring. As in our assumption N is a P_{k} bi-near ring with $\mathrm{E} \subseteq \mathrm{N}_{\mathrm{d}}$, using the Theorem 2.37, and Corollary $2.38, \mathrm{E} \subseteq \mathrm{C}(\mathrm{N})$. Therefore by the Theorem $2.39, \mathrm{~N}$ is a stable bi-near ring.

To Prove (iv) \Rightarrow (v)

Assume that N is a stable bi-near ring. Let $\mathrm{x} \in N_{1} \cup N_{2}$. Since N is stable and a S-bi-near ring, $\mathrm{x} \in \mathrm{Nx}=\mathrm{xNx}$ for all $\mathrm{x} \in N_{1} \cup N_{2}$. i.e., N is a biregular a bi-near ring.Then by the Theorem 2.37, E $\subseteq \mathrm{C}(\mathrm{N})$. Again by Theorem 2.40, we get that N is a $\mathrm{P}(1,2)$ bi-near ring. Since N is a bi-regular bi-near ring, we get that N is a S^{\prime}-bi-near ring.

To Prove (v) \Rightarrow (vi)

Assume that N is a S^{\prime} and a $\mathrm{P}(1,2)$ bi-near ring,then $\mathrm{a} \in \mathrm{aN}=\mathrm{Na}^{2} \forall \mathrm{a} \in N_{1} \cup N_{2}$. Therefore N is a strongly bi-regular bi-near ring and so N is a bi-regular bi-near ring. By the Theorem $2.41, \mathrm{~N}$ is a $\mathrm{P}(\mathrm{m}, \mathrm{n})$ bi-near ring.

To Prove (vi) \Rightarrow (vii)

Assume that N is a bi-regular and $\mathrm{P}(\mathrm{m}, \mathrm{n})$ bi-near ring, Then by the Theorem 2.42, and by the Theorem $2.41, \mathrm{E} \subseteq \mathrm{C}(\mathrm{N})$. Let B be a generalized (m, n) bi-ideal of a bi-near ring N implies $B^{m} N B^{n} \subseteq$ B. Let $x \in B$. Since N is a biregular bi-near ring, then for $\mathrm{x} \in N_{1} \cup N_{2}$ there exist some $\mathrm{y} \in N_{1} \cup N_{2}$ such that $\mathrm{x}=\mathrm{xyx}=\mathrm{xaxyxax}$ $=x a(x y x) a x=(x a)^{m}(x y x)(a x)^{n}=x^{m} a^{m}(x y x) a^{n} x^{n}$ $\in x^{m} N x^{n} \in B^{m} N B^{n}$. i.e., $B \subseteq B^{m} N B^{n}$. Therefore $B=B^{m} N^{n}$ for every generalized (m, n) biideal B of a bi-near ring N .

To Prove (vii) \Rightarrow (i)

Assume that $\mathrm{B}=\mathrm{B}^{\mathrm{m}} \mathrm{NB}^{\mathrm{n}}$ for every generalized $(m, n) b i$ - ideal B of a bi-near ring N. Since every bi-ideal is a generalized (m, n) bi-ideal of a bi-near ring $\mathrm{N}, \mathrm{B}=\mathrm{B}^{\mathrm{m}} \mathrm{NB}^{\mathrm{n}} \subseteq \mathrm{BNB}$. Thus $\mathrm{B}=\mathrm{BNB}$ forevery bi-ideal B of a bi-near ring N.By Proposition 3.1.18, $B=B^{3}$ for every weak bi- ideal B of bi-near ring N .

Proposition 3.2.8:

Let N be a left self - distributive S-bi-near ring and $\mathrm{B}=\mathrm{B}^{3}$ for every weak bi-ideal B of N . Then the following conditions are true.
(i) $\mathrm{B} \cap \mathrm{R}=\mathrm{BR} \cap \mathrm{RB}$ for every bi-ideal B of N and for every right N -bisubgroup R of a bi-near ring N .
(ii) $\mathrm{B} \cap \mathrm{L}=\mathrm{BL} \cap \mathrm{LB}$ for every bi-ideal B of N and for every left N -bisubgroup L of a bi-near ring N .
(iii) $\mathrm{Q} \cap \mathrm{L}=\mathrm{QL} \cap \mathrm{LQ}$ for every quasi-ideal Q of N and for every left N -bisubgroup L of a bi-near ring N .
(iv) $\mathrm{Q} \cap \mathrm{R}=\mathrm{QR} \cap \mathrm{RQ}$ for every quasi-ideal Q of N and for every right N -bisubgroup R of a bi-near ring N .
(v) $R \cap L=R L \cap L R=R L$ for every right and left N -bisubgroups R and L of a bi-near ring N .

Proof:

(i) Let B be a bi-ideal of a bi-near ring N . If $\mathrm{x} \in \mathrm{BR} \cap \mathrm{RB} \subseteq \mathrm{BN} \cap \mathrm{NB}$, then $\mathrm{x}=\mathrm{bn}=$ $\mathrm{n}_{1} \mathrm{~b}_{1}$, where $\mathrm{b}, \mathrm{b}_{1} \in \mathrm{~B}$ and $\mathrm{n}, \mathrm{n}_{1} \in N_{1} \cup N_{2}$. By the Proposition 3.1.8, N is a strongly bi-regular bi-near ring. Therefore N is a bi-regular bi-near ring. Let $\mathrm{b} \in \mathrm{B}$. Then $\mathrm{b}=\mathrm{bab}$ for some $\mathrm{a} \in N_{1} \cup N_{2}$. Therefore $\mathrm{x}=\mathrm{bn}=\mathrm{babn}=\quad \mathrm{ban}_{1} \mathrm{~b}_{1} \in \mathrm{BNB} \subseteq \mathrm{B}$. Also $\mathrm{x} \in$ $B R \cap R B \subseteq N R \cap R N \subseteq R N \subseteq R$. Therefore $B R \cap R B$ $\subseteq \mathrm{B} \cap \mathrm{R}$. On the other hand let $\mathrm{x} \in \mathrm{B} \cap \mathrm{R}$. Then $\mathrm{x}=\mathrm{b}=\mathrm{r}$ where $b \in B$ and $r \in R$. If $b \in B$, then $b=b a b$ for some $\mathrm{a} \in N_{1} \cup N_{2}$ and $\mathrm{r}=\mathrm{rcr}$ for some $\mathrm{c} \in N_{1} \cup N_{2}$. Now $\mathrm{x}=\mathrm{b}=\mathrm{bab}=\mathrm{babr}=\mathrm{br} \in \mathrm{BR}$. Similarly $x=r=r c r=r c r r=r c r b=r b \in R B$ and so $B \cap R \subseteq B R \cap R B$.Therefore $B R \cap R B=B \cap R$ for every bi-ideal B of a bi-near ring N and for every right N -bisubgroup R of a bi-near ring N .
(ii) Proof follows as in (i).
(iii) and (iv) Let Q be a quasi - ideal of a bi-near ring N. Every quasi - ideal a bi-near ring is also a bi - ideal of a bi-near ring N. From (i) and (ii), (iii) and (iv) are true.
(v) Clearly $R L \cap L R \subseteq R \cap L$. If $x \in R \cap L$,then $x=r=$ 1 for some $r \in R$ and $l \in L$. Since N is a bi-regular binear ring $\mathrm{r}=\operatorname{rar}$ and $\mathrm{l}=\mathrm{lbl}$ for some $\mathrm{a}, \mathrm{b} \in N_{1} \cup N_{2}$. Then $\mathrm{x}=\mathrm{r}=\mathrm{rar}=\mathrm{rarr}=\mathrm{rarl}=\mathrm{rl} \in$ RL.Similarly $\mathrm{x} \in \mathrm{LR}$. Therefore $\mathrm{R} \cap \mathrm{L}=\mathrm{RL} \cap \mathrm{LR}$. By the assumption, N is a bi-regular a bi-near ring. Every bi-regular bi-near ring is also B -biregular a bi-near ring. Therefore by the Proposition 2.43, $\mathrm{R} \cap \mathrm{L}=$ RL for every left and right N - bisubgroups L and R of a bi-near ring N .

The biggest application that we can enter now is the building of a large steel rusting bi-nearring near our institute. We think it's cool. It's also the reason that I have used the "open-top" bi-nearring symbol for this collection of pages, since this is the largest (3 metres plus, that's 10 feet for the imperialists) application of nearring. I respect it's orientation. It can become one more religious war, like left-rightness or the existance of hyphens.One element that has appeared recently as an application of nearrings is the use of planar and other nearrings to develop designs and codes. Roland Eggestberger, Gerhard Wagner, Peter Fuchs, Gunter Pilz all worked on some projects in this direction. Other people who have been major movers in this direction are Jim Clay and We.F. Ke.

References

[1] Pilz Gunter, Near-Rings, North Holland, Amsterdam, 1983.
[2] Jat J.L and Choudhary .S.C, On Strict weakly regular near-rings,The mathematics Student, Vol.46, No. 2(1978), 175-182.
[3] Tamil Chelvam and N.Ganesan On Bi -ideals of Near-Rings,indian J.pure appl.Math.18(11), 1002 1005 Nov 1987.
[4] Tamil Chelvam and S.Jayalakshmi On Generalized (m,n) Bi-ideals of a nearrings,Journal of the Indian Math.Soc.

Vol.69, Nos1-4 (2002), 57-60
[5] Jayalakshmi.S A Study on Regularities in near rings, PhD thesis,Manonmaniam Sundaranar University, 2003
[6] Tamizh Chelvam T, Bi-ideals and B-regular nearrings, J. Ramanujam Math. Soc.7(2) (1982) 155-164.
[7] Tamizh Chelvam T and Ganesan.N,On minimal biideals of near-rings,Journal of the Indian Math. Soc.53(1988)161-166
[8]Tamizh Chelvam T and Jayalakshmi .S, On weak biideals of near-rings,, Journal of Korea Soc. Math. Educ. B : Pure

ロ
appl. Math... Vol.14, Number 3 (2007) 153-159.
[9] Von Neumann On regular rings-Proc. Nat. Acad. USA 22(1936), 707-713
[10] W. B. Vasantha Kandasamy, Bialgebraic structures and Smarandache bialgebraic Structures, American Research Press, 2003.

