Conjecture on the primes $S(n)+S(n+1)-1$ where $S(n)$ is a term in Smarandache-Wellin sequence

Marius Coman

Abstract

In this paper I make the following conjecture: There exist an infinity of primes $S(n)+S(n+1)-1$, where $S(n)$ is a term in Smarandache-Wellin sequence (which is defined as the sequence obtained through the concatenation of the first n primes).

Conjecture :

There exist an infinity of primes $S(n)+S(n+1)-1$, where $S(n)$ is a term in Smarandache-Wellin sequence (which is defined as the sequence obtained through the concatenation of the first n primes). I will name this primes "Smarandache-Wellin-Marius primes" or SWM.

The Smarandache-Wellin numbers:

(A019518 in OEIS)

$$
\begin{aligned}
& \text { : 2, 23, 235, 2357, 235711, 23571113, 2357111317, } \\
& \text { 235711131719, 23571113171923, 2357111317192329, } \\
& \text { 235711131719232931, 23571113171923293137, } \\
& \text { 2357111317192329313741, 235711131719232931374143, } \\
& 23571113171923293137414347 \text { (...) }
\end{aligned}
$$

Note: the Smarandache-Wellin numbers which are primes are named Smarandache-Wellin primes. The first three such numbers are 2, 23 si 2357; the fourth is a number with 355 digits and there are known only 8 such primes. The 8 known values of n for which through the concatenation of the first n primes we obtain a prime number are 1, 2, 4, 128, 174, 342, 435, 1429. The computer programs not yet found, until $n=10^{\wedge} 4$, another such a prime. Florentin Smarandache conjectured that there exist an infinity of prime terms of this sequence.

The Smarandache-Wellin-Marius primes:

(A019518 in OEIS)

```
: SWM1 = S(2) + S(3) - 1 = 23 + 235-1 = 257;
: SWM2 = S(3) + S(4) - 1 = 235 + 2357 - 1 = 2591;
: SWM3 = S(5) + S(6) - 1 = 235711 + 23571113 - 1 =
        23806823;
: SWM4 = S(11) + S(12) - 1 = 235711131719232931 +
        23571113171923293137 - 1 = 23806824303642526067;
: SWM5 = S(12) + S(13) - 1 = 23571113171923293137 +
        2357111317192329313741 - 1 =
        23806824303642526068877;
        (...)
```

