Conjecture on the primes $S(n+1)+S(n)-1$ where $S(n)$ is a term in the concatenated odd sequence

Marius Coman

Abstract

In this paper I make the following conjecture: There exist an infinity of primes $S(n+1)+S(n)-1$, where $S(n)$ is a term in Smarandache concatenated odd sequence (which is defined as the sequence obtained through the concatenation of the first n odd primes).

Conjecture :

There exist an infinity of primes $S(n+1)+S(n)-1$, where $S(n)$ is a term in Smarandache concatenated odd sequence (which is defined as the sequence obtained through the concatenation of the first n odd primes).

The concatenated odd sequence:
(A089933 in OEIS)
$: \quad 3,35,357,35711,3571113,357111317,3571131719$, 3571113171923, 357111317192329, 35711131719232931, 3571113171923293137, 357111317192329313741, 35711131719232931374143, 3571113171923293137414347 (...)

Note: Florentin Smarandache conjectured that there exist an infinity of prime terms of this sequence. The terms of this sequence are primes for the following values of $\mathrm{n}: ~ 2,10,16,34,49,2570$ (the term corresponding to $\mathrm{n}=2570$ is a number with 9725 digits); there is no other prime term known though where checked the first about 26 thousand terms of this sequence.

The primes of the form $P=S(n+1)+S(n)-1$:

```
: P1 = 37 = S(2) + S(1) - 1 =
    35 + 35 - 1;
: P2 = 36067 = S(4) + S(3) - 1 =
    35711 + 357 - 1;
: P3 = 360682429 = S(6) + S(5) - 1 =
    357111317 + 3571113 - 1;
:P4 = 360682430364251 = S(9) + S(8) - 1 =
    357111317192329 + 3571113171923 - 1;
: P5 = 36068243036425260687883
    = S(14) + S(13) - 1 = 35711131719232931374143
        + 357111317192329313741 - 1;
```

```
: P6 = 360682430364252606878849099 = S(16) + S(15)-1
        = 357111317192329313741434753 +
        3571113171923293137414347 - 1;
: P7 = 3606824303642526068788491011321293943
        = S(21) + S(20) - 1 =
        3571113171923293137414347535961677173 +
        35711131719232931374143475359616771 - 1;
        (...)
    Note that there also exist primes of the form Q =
    S(n+1) - S(n) + 1; I conjecture that there exist an
    infinity of such primes too:
: Q1 = 3535403 = S(4) - S(3) + 1 = 3571113 - 35711 +
    1;
: Q2 = 35354020402040603 = S(10) - S(9) + 1 =
    35711131719232931 - 357111317192329 + 1;
: Q3 = 3535402040204060207 = S(11) - S(10) + 1 =
    3571113171923293137 - 35711131719232931 + 1;
    (...)
```

