Cycle and Armed Cap Cordial Graphs

A.Nellai Murugan
(Department of Mathematics, V.O.Chidambaram College, Tamil Nadu, India)
P.Iyadurai Selvaraj
(Department of Computer Science, V.O.Chidambaram College, Tamil Nadu, India)
E-mail: anellai.vocc@gmail.com, iyaduraiselvaraj@gmail.com

Abstract

Let $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ be a graph with p vertices and q edges. A Cap (\wedge) cordial labeling of a Graph G with vertex set V is a bijection from V to 0,1 such that if each edge uv is assigned the label $$
f(u v)= \begin{cases}1, & \text { if } \mathrm{f}(\mathrm{u})=\mathrm{f}(\mathrm{v})=1 \\ 0, & \text { otherwise }\end{cases}
$$ with the condition that the number of vertices labeled with 0 and the number of vertices labeled with 1 differ by at most 1 and the number of edges labeled with 0 and the number of edges labeled with 1 differ by at most 1 . Otherwise, it is called a Smarandache \wedge cordial labeling of G. A graph that admits a \wedge cordial labeling is called a \wedge cordial graph (CCG). In this paper, we proved that cycle C_{n} (n is even), bistar $B_{m, n}, P_{m} \odot P_{n}$ and Helm are \wedge cordial graphs.

Key Words: Cap cordial labeling, Smarandache \wedge cordial labeling, Cap cordial graph.
AMS(2010): 05C78.

§1. Introduction

A graph G is a finite non-empty set of objects called vertices together with a set of unordered pairs of distinct vertices of G which is called edges. Each pair $e=\{u v\}$ of vertices in E is called an edge or a line of G . In this paper, we proved that Cycle C_{n} (n : even), Bi-star $\mathrm{B}_{m},{ }_{n}$, $P_{m} \odot P_{n}$ and Helm are \wedge cordial graphs.

§2. Preliminaries

Let $G=(V, E)$ be a graph with p vertices and q edges. $A \wedge(c a p)$ cordial labeling of a Graph G

[^0]with vertex set V is a bijection from V to $(0,1)$ such that if each edge uv is assigned the label
\[

f(u v)= $$
\begin{cases}1, & \text { if } f(u)=f(v)=1 \\ 0, & \text { otherwise }\end{cases}
$$
\]

with the condition that the number of vertices labeled with 0 and the number of vertices labeled with 1 differ by at most 1 and the number of edges labeled with 0 and the number of edges labeled with 1 differ by at most 1 . Otherwise, it is called a Smarandache \wedge cordial labeling of G.

The graph that admits a \wedge cordial labeling is called a \wedge cordial graph (CCG). we proved that cycle C_{n} (n is even), bistar $B_{m, n}, P_{m} \odot P_{n}$ and Helm are \wedge cordial graphs

Definition 2.1 A graph with sequence of vertices $u_{1}, u_{2}, \cdots, u_{n}$ such that successive vertices are joined with an edge, P_{n} is a path of length $n-1$.

The closed path of length n is Cycle C_{n}.
Definition 2.2 A $P_{m} \odot P_{n}$ graph is a graph obtained from a path P_{m} by joining a path of length P_{n} at each vertex of P_{m}.

Definition 2.3 A bistar is a graph obtained from a path P_{2} by joining the root of stars S_{m} and S_{n} at the terminal vertices of P_{2}. It is denoted by B_{m}, n.

Definition 2.4 A Helm graph is a graph obtained from a Cycle C_{n} by joining a pendent vertex at each vertex of on C_{n}. It is denoted by $C_{n} \odot K_{1}$.

§3. Main Results

Theorem 3.1 A cycle $C_{n}(n:$ odd $)$ is $a \wedge$ cordial graph
Proof Let $V\left(C_{n}\right)=\left\{u_{i}: 1 \leq i \leq n\right\}, E\left(C_{n}\right)=\left\{\left[\left(u_{i} u_{i+1}\right): 1 \leq i \leq n-1\right] \bigcup\left(u_{1} u_{n}\right)\right\}$. A vertex labeling $f: V\left(C_{n}\right) \rightarrow\{0,1\}$ is defined by

$$
f\left(u_{i}\right)= \begin{cases}0, & 1 \leq i \leq \frac{n-1}{2} \\ 1, & \frac{n+1}{2} \leq i \leq n\end{cases}
$$

with an induced edge labeling $f^{*}\left(u_{1} u_{n}\right)=0$,

$$
f^{*}\left(u_{i} u_{i+1}\right)= \begin{cases}0, & 1 \leq i \leq \frac{n-1}{2} \\ 1, & \frac{n+1}{2} \leq i \leq n-1\end{cases}
$$

Here $V_{0}(f)+1=V_{1}(f)$ and $E_{0}(f)=E_{1}(f)+1$. It satisfies the condition

$$
\left|V_{0}(f)-V_{1}(f)\right| \leq 1, \quad\left|E_{0}(f)-E_{1}(f)\right| \leq 1
$$

Hence, C_{n} is \wedge cordial graph.

For example, C_{7} is \wedge cordial graph as shown in the Figure 1.

Figure 1 Graph C_{7}

Theorem 3.2 A star S_{n} is $a \wedge$ cordial graph .

Proof Let $V\left(S_{n}\right)=\left\{u, u_{i}: 1 \leq i \leq n\right\}$ and $E\left(S_{n}\right)=\left\{\left(u u_{i}\right): 1 \leq i \leq n\right\}$. Define $f: V\left(S_{n}\right) \rightarrow 0,1$ with vertex labeling as follows:

Case 1. If n is even, then $f(u)=1$,

$$
f\left(u_{i}\right)= \begin{cases}0, & 1 \leq i \leq \frac{n}{2} \\ 1, & \frac{n}{2}+1 \leq i \leq n\end{cases}
$$

and an induced edge labeling

$$
f^{*}\left(u u_{i}\right)= \begin{cases}0, & 1 \leq i \leq \frac{n}{2} \\ 1, & \frac{n}{2}+1 \leq i \leq n\end{cases}
$$

Here $V_{0}(f)+1=V_{1}(f)$ and $E_{0}(f)=E_{1}(f)$. It satisfies the condition

$$
\left|V_{0}(f)-V_{1}(f)\right| \leq 1 \text { and }\left|E_{0}(f)-E_{1}(f)\right| \leq 1
$$

Case 2. If n is odd, then $f(u)=1$,

$$
f\left(u_{i}\right)= \begin{cases}0, & 1 \leq i \leq \frac{n+1}{2} \\ 1, & \frac{n+3}{2} \leq i \leq n\end{cases}
$$

and with an induced edge labeling

$$
f^{*}\left(u u_{i}\right)= \begin{cases}0, & 1 \leq i \leq \frac{n+1}{2} \\ 1, & \frac{n+3}{2} \leq i \leq n\end{cases}
$$

Here $V_{0}(f)=V_{1}(f)$ and $E_{0}(f)=E_{1}(f)+1$. It satisfies the condition

$$
\left|V_{0}(f)-V_{1}(f)\right| \leq 1 \text { and }\left|E_{0}(f)-E_{1}(f)\right| \leq 1 .
$$

Hence, S_{n} is \wedge cordial graph.
For example, S_{5} and S_{6} are cordial graphs as shown in the Figures 2 and 3.

Figure 2 Graph S_{6}

Figure 3 Graph S_{5}

Theorem 3.3 A bistar $B_{m, n}$ is $a \wedge$ cordial graph.
Proof Let $V\left(B_{m, n}\right)=\left\{(u, v),\left(u_{i}: 1 \leq i \leq m\right),\left(v_{j}: 1 \leq j \leq n\right)\right\}$ and $E\left(B_{m, n}\right)=\left\{\left[\left(u u_{i}\right)\right.\right.$: $\left.1 \leq i \leq m] \bigcup\left[\left(v v_{i}\right): 1 \leq i \leq m\right] \bigcup[(u v)]\right\}$. Define $f: V\left(B_{m, n}\right) \rightarrow\{0,1\}$ by two cases.

Case 1. If $m=n$, the vertex labeling is defined by $f(u)=\{0\}, f(v)=\{1\}, f\left(u_{i}\right)=\{0,1 \leq$ $i \leq m\}, f\left(v_{i}\right)=\{1,1 \leq i \leq m\}$ with an induced edge labeling $f^{*}\left(u u_{i}\right)=\{0,1 \leq i \leq m\}$, $f^{*}\left(v v_{i}\right)=\{1,1 \leq i \leq m\}$ and $f^{*}(u v)=0$. Here $V_{0}(f)=V_{1}(f)$ and $E_{0}(f)=E_{1}(f)+1$. It satisfies the condition

$$
\left|V_{0}(f)-V_{1}(f)\right| \leq 1 \text { and }\left|E_{0}(f)-E_{1}(f)\right| \leq 1 .
$$

Case 2. If $m<n$, the vertex labeling is defined by $f(u)=\{0\}, f(v)=\{1\}, f\left(u_{i}\right)=\{0,1 \leq$ $i \leq m\}, f\left(v_{i}\right)=\{1,1 \leq i \leq m\}$,

$$
f\left(v_{m+i}\right)=\left\{\begin{array}{rl}
1, & i \equiv 1 \bmod 2, \\
0, & i \equiv 0 \bmod 2,
\end{array} \quad 1 \leq i \leq n-m,\right.
$$

with an induced edge labeling $f^{*}\left(u u_{i}\right)=\{0,1 \leq i \leq m\}, f^{*}\left(v v_{j}\right)=\{1,1 \leq j \leq m\}, f^{*}(u v)=0$,

$$
f^{*}(v v m+i)= \begin{cases}1, & i \equiv 1 \bmod 2 \\ 0, & i \equiv 0 \bmod 2, \quad 1 \leq i \leq n-m\end{cases}
$$

Here, if $n-m$ is odd, then $V_{0}(f)+1=V_{1}(f)$ and $E_{0}(f)=E_{1}(f)$; if $n-m$ is even, then $V_{0}(f)=V_{1}(f)$ and $E_{0}(f)=E_{1}(f)+1$. It satisfies the condition

$$
\left|V_{0}(f)-V_{1}(f)\right| \leq 1 \text { and }\left|E_{0}(f)-E_{1}(f)\right| \leq 1
$$

Case 3. If $n<m$, by substituting m by n and n by m in Case 2 the result follows.
Hence, $B_{m, n}$ is a \wedge cordial graph.
For example $B_{3,3}, B_{2,6}$ and $B_{6,2}$ are cordial graphs as shown in the Figures 4,5 and 6 .

Figure 4 Graph $B_{3,3}$

Figure 5 Graph $B_{2,6}$

Figure 6 Graph $B_{6,2}$

Theorem 3.4 A graph $P_{m} \ominus P_{n}$ is \wedge cordial.

Proof Let G be the graph $P_{m} \ominus P_{n}$ with $V(G)=\left\{\left[u_{i}: 1 \leqslant i \leqslant m\right],\left[v_{i_{j}}: 1 \leqslant i \leqslant m, 1 \leqslant\right.\right.$ $j \leqslant n-1]\}$ and $E(G)=\left\{\left[\left(u_{i} u_{i+1}\right): 1 \leqslant i \leqslant m-1\right] \bigcup\left[\left(u_{i} v_{i 1}\right): 1 \leqslant i \leqslant m\right] \bigcup\left[\left(v_{i j} v_{i j+1}\right): 1 \leqslant\right.\right.$ $i \leqslant m, 1 \leqslant j \leqslant n-2]\}$. Define $f: V(G) \rightarrow\{0,1\}$ by cases following.

Case 1. If m is even, then the vertex labeling is defined by

$$
f\left(u_{i}\right)=\left\{\begin{array}{ll}
0, & 1 \leq i \leq \frac{m}{2}, \\
1, & \frac{m}{2}+1 \leq i \leq m,
\end{array} \quad f\left(v_{i j}\right)= \begin{cases}0, & 1 \leq i \leq \frac{m}{2}, 1 \leqslant j \leqslant n-1 \\
1, & \frac{m}{2}+1 \leq i \leq m, 1 \leqslant j \leqslant n-1\end{cases}\right.
$$

with an induced edge labeling

$$
\begin{aligned}
f^{*}\left(u_{i} u_{i+1}\right) & =\left\{\begin{array}{ll}
0, & 1 \leq i \leq \frac{m}{2} \\
1, & \frac{m}{2}+1 \leq i \leq m-1,
\end{array} \quad f^{*}\left(u_{i} v_{i 1}\right)= \begin{cases}0, & 1 \leq i \leq \frac{m}{2} \\
1, & \frac{m}{2}+1 \leq i \leq m\end{cases} \right. \\
f^{*}\left(v_{i j} v_{i j+1}\right) & = \begin{cases}0, & 1 \leq i \leq \frac{m}{2}, 1 \leqslant j \leqslant n-2 \\
1, & \frac{m}{2}+1 \leq i \leq m, 1 \leqslant j \leqslant n-2\end{cases}
\end{aligned}
$$

Here $V_{0}(f)=V_{1}(f)$ and $E_{0}(f)=E_{1}(f)+1$. It satisfies the condition

$$
\left|V_{0}(f)-V_{1}(f)\right| \leq 1 \text { and }\left|E_{0}(f)-E_{1}(f)\right| \leq 1
$$

Case 2. If m is odd and n is odd, the vertex labeling is defined by

$$
\begin{aligned}
f\left(u_{i}\right) & =\left\{\begin{array}{ll}
0, & 1 \leq i \leq \frac{m-1}{2}, \\
1, & \frac{m+1}{2} \leq i \leq m
\end{array} \quad f\left(v_{i j}\right)= \begin{cases}0, & t 1 \leq i \leq \frac{m-1}{2}, 1 \leqslant j \leqslant n-1, \\
1, & \frac{m+1}{2} \leq i \leq m, 1 \leqslant j \leqslant n-1,\end{cases} \right. \\
f\left(v_{\frac{m+1}{2} j}\right) & = \begin{cases}1, & 1 \leq j \leq \frac{n}{2} \\
0, & \frac{n}{2}+1 \leqslant j \leqslant n-1\end{cases}
\end{aligned}
$$

with an induced edge labeling

$$
\begin{aligned}
& f^{*}\left(u_{i} u_{i+1}\right)=\left\{\begin{array}{ll}
0, & 1 \leq i \leq \frac{m-1}{2}, \\
1, & \frac{m+1}{2}+1 \leq i \leq m-1,
\end{array} \quad f^{*}\left(u_{i} v_{i 1}\right)= \begin{cases}0, & 1 \leq i \leq \frac{m-1}{2} \\
1, & \frac{m+1}{2}+1 \leq i \leq m\end{cases} \right. \\
& f^{*}\left(v_{i j} v_{i j+1}\right)= \begin{cases}0, & 1 \leq i \leq \frac{m-1}{2}, 1 \leqslant j \leqslant n-2 \\
1, & \frac{m+3}{2} \leq i \leq m, 1 \leqslant j \leqslant n-2\end{cases} \\
& f^{*}\left(v_{\frac{m+1}{2} j} v_{\frac{m+1}{2} j+1}\right)= \begin{cases}1, & 1 \leq j \leq \frac{n-3}{2} \\
0, & \frac{n-1}{2} \leq j \leqslant n-2 .\end{cases}
\end{aligned}
$$

Here $V_{0}(f)+1=V_{1}(f)$ and $E_{0}(f)=E_{1}(f)$. It satisfies the condition

$$
\left|V_{0}(f)-V_{1}(f)\right| \leq 1 \text { and }\left|E_{0}(f)-E_{1}(f)\right| \leq 1
$$

Case 3. If m is odd and n is even, the vertex labeling is defined by

$$
f\left(u_{i}\right)=\left\{\begin{array}{ll}
0, & 1 \leq i \leq \frac{m-1}{2}, \\
1, & \frac{m+1}{2} \leq i \leq m,
\end{array} \quad f\left(v_{i j}\right)= \begin{cases}0, & 1 \leq i \leq \frac{m-1}{2}, 1 \leqslant j \leqslant n-1 \\
1, & \frac{m+1}{2} \leq i \leq m, 1 \leqslant j \leqslant n-1\end{cases}\right.
$$

with an induced edge labeling

$$
\begin{aligned}
& f^{*}\left(u_{i} u_{i+1}\right)=\left\{\begin{array}{ll}
0, & 1 \leq i \leq \frac{m-1}{2} \\
1, & \frac{m+1}{2}+1 \leq i \leq m-1,
\end{array} \quad f^{*}\left(u_{i} v_{i 1}\right)= \begin{cases}0, & 1 \leq i \leq \frac{m-1}{2} \\
1, & \frac{m+1}{2}+1 \leq i \leq m\end{cases} \right. \\
& f^{*}\left(v_{i j} v_{i j+1}\right)= \begin{cases}0, & 1 \leq i \leq \frac{m-1}{2}, 1 \leqslant j \leqslant n-2 \\
1, & \frac{m+1}{2} \leq i \leq m, 1 \leqslant j \leqslant n-2\end{cases} \\
& f^{*}\left(v_{\frac{m+1}{2} j} v_{\frac{m+1}{2} j+1}\right)= \begin{cases}1, & 1 \leq j \leq \frac{n-4}{2} \\
0, & \frac{n-2}{2} \leq j \leqslant n-2 .\end{cases}
\end{aligned}
$$

Here $V_{0}(f)=V_{1}(f)$ and $E_{0}(f)=E_{1}(f)+1$. It satisfies the condition

$$
\left|V_{0}(f)-V_{1}(f)\right| \leq 1 \text { and }\left|E_{0}(f)-E_{1}(f)\right| \leq 1
$$

Hence, the graph $P_{m} \ominus P_{n}$ is \wedge cordial.

For example, $P_{4} \ominus P_{5}, P_{5} \ominus P_{5}$ and $P_{5} \ominus P_{6}$ are \wedge cordial as shown in Figures 7, 8 and 9 .

Figure 7 Graph $P_{4} \ominus P_{5}$

Figure 8 Graph $P_{5} \ominus P_{5}$

Figure 9 Graph $P_{5} \ominus P_{6}$

Theorem 3.5 A Helm $\left(C_{n} \odot K_{1}\right)$ is \wedge cordial.
Proof Let G be the graph $\left(C_{n} \odot K_{1}\right)$ with $V(G)=\left\{u_{i}, v_{i}: 1 \leqslant i \leqslant m\right\}$ and $E(G)=$ $\left\{\left(u_{i} v_{i}\right): 1 \leqslant i \leqslant m\right\}$. A vertex labeling on G is defined by $f\left(u_{i}\right)=\{1,1 \leqslant i \leqslant m\}, f\left(v_{i}\right)=$ $\{0,1 \leqslant i \leqslant m\}$ with an induced edge labeling $f^{*}\left(u_{i} u_{i+1}\right)=\{1,1 \leqslant i \leqslant m-1\}, f^{*}\left(u_{m} u_{1}\right)=1$, $f^{*}\left(u_{i} v_{i}\right)=\{0,1 \leqslant i \leqslant m\}$. Here $V_{0}(f)=V_{1}(f)$ and $E_{0}(f)=E_{1}(f)$. It satisfies the condition

$$
\left|V_{0}(f)-V_{1}(f)\right| \leq 1 \text { and }\left|E_{0}(f)-E_{1}(f)\right| \leq 1
$$

Hence, A Helm is \wedge cordial.
For example, a Helm $\left(C_{6} \odot K_{1}\right)$ is \wedge cordial as shown in the Figure 10.

Figure 10 Graph $\left(C_{6} \odot K_{1}\right)$

References

[1] J.A.Gallian, A Dynamic Survey of graph labeling, The Electronic journal of Combinatorics, 6(2001), \#DS6.
[2] F.Harary, Graph Theory, Addition - Wesley publishing company Inc, USA, 1969.
[3] A.Nellai Murugan and V.Baby Suganya, Cordial labeling of path related splitted graphs, Indian Journal of Applied Research, Vol.4, Issue 3, Mar. 2014, 1-8.
[4] A.Nellai Murugan and M.Taj Nisha, A study on divisor cordial labelling of star attached paths and cycles, Indian Journal of Research, Vol.3, Issue 3, Mar. 2014, 12-17.
[5] A.Nellai Murugan and V.Brinda Devi, A study on path related divisor cordial graphs, International Journal of Scientific Research, Vol.3, Issue 4, April. 2014, 286-291.
[6] A.Nellai Murugan and A.Meenakshi Sundari, On Cordial Graphs, International Journal of Scientific Research, Vol.3, Issue 7, July. 2014, 54-55.
[7] A.Nellai Murugan and P.Iyadurai Selvaraj, Path related cup cordial graphs, Indian Journal of Applied Research, Vol. 4, Issue 8, August 2014.

[^0]: ${ }^{1}$ Received February 10, 2015, Accepted December 15, 2015.

