ON SOME DIOPHANTINE EQUATIONS

by

Lucian Tutescu and Emil Burton

Let S(n) be defined as the smallest integer such that (S(n))! is divisible by n (Smarandache Function). We shall assume that $S: N^* \rightarrow N^*$,

S(1) = 1. Our purpose is to study a variety of Diophantine equations involving the Smarandache function. We shall determine all solutions of the equations (1), (3) and (8).

- (1) $\mathbf{x}^{S(x)} = S(x)^{x}$
- (2) $\mathbf{x}^{s(y)} = S(y)^x$
- (3) $x^{S(x)} + S(x) = S(x)^{x} + x$
- (4) $x^{S(y)} + S(y) = S(y)^{x} + x$
- (5) $S(x)^{x} + x^{2} = x^{S(x)} + S(x)^{2}$
- (6) $S(y)^{x} + x^{2} = x^{S(y)} + S(y)^{2}$
- (7) $S(x)^{x} + x^{3} = x^{S(x)} + S(x)^{3}$
- (8) $S(y)^{x} + x^{3} = x^{S(y)} + S(y)^{3}$.

For example, let us solve equation (1): We observe that if x = S(x), then (1) holds. But x = S(x) if and only if $x \in \{1, 2, 3, 4, 5, 7, ...\} = \{x \in \mathbb{N}^*; x \text{-prime }\} \cup \{1, 4\}$. If $x \ge 6$ is not a prime integer, then S(x) < x. We can write x = S(x) + t, $t \in \mathbb{N}^*$, which implies that $S(x)^{S(x)+t} = (S(x) + t)^{S(x)}$. Thus we have $S(x)^t = (1 + \frac{t}{S(t)})^{S(x)}$.

Applying the well = known result $(1 + \frac{k}{n})^n < 3^k$, for n, $k \in N^*$, we have $S(\underline{x})^t < 3^t$ which implies that $S(\underline{x}) < 3$ and consequently $\underline{x} < 3$. This contradicts our choice of \underline{x} .

Thus, the solutions of (1) are $A_1 = \{x \in N^* ; x = prime\} \cup \{1, 4\}$.

Let us denote by A_k the set of all solutions of the equation (k). To find A_s for example, we see that $(S(n), n) \in A_s$ for $n \in N^*$. Now suppose that $x \neq S(y)$. We can show that (x, y) does not belongs to A_s as follows: $1 < S(y) < x \Rightarrow S(y) \ge 2$ and $x \ge 3$. On the other hand, $S(y)^x - x^{s(y)} > S(y)^x - x^x = (S(y) - x)(S(y)^{x-1} + xS(y)^{x-2} + \ldots + x^{x-1}) \ge (S(y) - x)(S(y)^2 + xS(y) + x^2) = S(y)^3 - x^3$. Thus, $A_s = \{(x, y); y = n, x = S(n), n \in N^*\}$. To find A_3 , we se that x = 1 implies S(x) = 1 and (3) holds. If S(x) = x, (3) also holds. If $x \ge 6$ is not a prime number, then x > S(x). Write x = S(x) + t, $t \in N^* = \{1, 2, 3, \ldots \}$. Combining this with (3) yields $S(x)^{S(x)+t} + S(x) + t = (S(x) + t)^{S(x)} + S(x) \Leftrightarrow S(x)^t + t/S(x)^{S(x)} = (1+t/S(x))^{S(x)} < 3^t$

which implies S(x) < 3. This contradicts our choice of x.

Thus $A_3 = \{x \in N^* ; x = prime \} \cup \{1, 4\}.$ Now, we suppose that the reader is able to find A_1, A_4, \ldots, A_7 . We next determine all positive integers x such that $x = \sum k^2$ k² **≰**⊼ $1^2 + 2^2 + \ldots + s^2 = x$ Write (1) $s^2 < x$ (2) $(s+1)^2 \geq x$ (3)(1) implies x = s(s+1)(2s+1)/6. Combining this with (2) and (3) we have $6s^2 < s(s+1)(2s+1)$ and $6(s+1)^2 \ge s(s+1)(2s+1)$. This implies that $s \in \{2, 3\}$. $s=2 \implies x=5$ and $s=3 \implies x=14$. Thus $x \in \{5, 14\}$. In a similar way we can solve the equation $x = \sum k^3$ We find $x \in \{9, 36, 100\}$. We next show that the set $M_p = \{ n \in N^* ; n = \sum k^p , p \ge 2 \}$ has at least k⁰≪n [p/ln2] - 2 elements. Let $m \in N^*$ such that m - 1 < p/ln2(4)and $p/\ln 2 < m$ (5)Write (4) and (5) as: $2 < e^{p/m-1}$ **(ú)** e^{*/=} < 2 (7)Write $x_k = (1 + 1/k)^k$, $y_k = (1 + 1/k)^{k+1}$. It is known that $x_t < c < y_t$ for every $s, t \in N^*$. Combining this with (6) and (7) we have $x_{t}^{p/m} \le e^{p/m} \le 2 \le e^{p/m-1} \le y_{t}^{p/m-1}$ for every $s, t \in N^{*}$. We have $2 < y_t^{p/m-1} = ((t+1)/t)^{(t+1)p/m-1} \le ((t+1)/t)^p$ if $(t+1)/(m-1) \le 1$. So, if $t \le m - 2$ we have $2 < ((t+1)/t)^p \Leftrightarrow 2t^p < (t+1)^p \Leftrightarrow (t+1)^p - t^p > t^p$ (8). Let $A_{\mathbf{s}}(s)$ denote the sum $1^{\mathbf{r}} + 2^{\mathbf{r}} + \ldots + s^{\mathbf{r}}$. Proposition 1. $(t+1)^{*} > A_{t}(t)$ for every $t \le m-2$, $t \in N^{*}$. Proof. Suppose that $A_{p}(t) \ge (t+1)^{p} \iff A_{p}(t-1) \ge (t+1)^{p} - t^{p} \ge t^{p} \iff$ $A_{(t-2)} > t^* - (t-1)^* > (t-1)^* \Leftrightarrow \ldots \Leftrightarrow A_{(1)} > 2^*$ which is not true. It is obvious that $A_t(t) > t^*$ if $t \in N^*$, $2 \le t \le m-2$ which implies $A_t(t) \in M_t$ for every $t \in N^*$ and $2 \le t \le m-2$. Therefore card $M_{p} > m-3 = (m-1) - 2 = [p/ln2] - 2$.

REFERENCES:

- 1. F.Smarandache, A Function in the Number Theory, An.Univ. Timişoara Ser. St. Mat. Vol. XVIII, fasc 1/1980, 9, 79 - 88.
- Smarandache Function Journal.Number Theory Publishin, Co.R. Muller Editor, Phoenix, New York, Lyon. Current Address : Dept. of Math. University of Craiova, Craiova (1100), Romania.