Enumeration of k-Fibonacci Paths Using Infinite Weighted Automata

Rodrigo De Castro ${ }^{1}$ and José L. Ramírez ${ }^{1,2}$
1. Departamento de Matemáticas, Universidad Nacional de Colombia, AA 14490, Bogotá, Colombia
2. Instituto de Matemáticas y sus Aplicaciones, Universidad Sergio Arboleda, Bogotá, Colombia
E-mail: rdcastrok@unal.edu.co, jlramirezr@unal.edu.co

Abstract

In this paper, we introduce a new family of generalized colored Motzkin paths, where horizontal steps are colored by means of $F_{k, l}$ colors, where $F_{k, l}$ is the l-th k-Fibonacci number. We study the enumeration of this family according to the length. For this, we use infinite weighted automata.

Key Words: Fibonacci sequence, Generalized colored Motzkin path, k-Fibonacci path, infinite weighted automata, generating function.

AMS(2010): 52B05, 11B39, 05A15

§1. Introduction

A lattice path of length n is a sequence of points $P_{1}, P_{2}, \ldots, P_{n}$ with $n \geqslant 1$ such that each point P_{i} belongs to the plane integer lattice and each two consecutive points P_{i} and P_{i+1} connect by a line segment. We will consider lattice paths in $\mathbb{Z} \times \mathbb{Z}$ using three step types: a rise step $U=(1,1)$, a fall step $D=(1,-1)$ and a $F_{k, l}$-colored length horizontal step $H_{l}=(l, 0)$ for every positive integer l, such that H_{l} is colored by means of $F_{k, l}$ colors, where $F_{k, l}$ is the l-th k-Fibonacci number.

Many kinds of generalizations of the Fibonacci numbers have been presented in the literature $[10,11]$ and the corresponding references. Such as those of k-Fibonacci numbers $F_{k, n}$ and the k-Smarandache-Fibonacci numbers $S_{k, n}$. For any positive integer number k, the k-Fibonacci sequence, say $\left\{F_{k, n}\right\}_{n \in \mathbb{N}}$, is defined recurrently by

$$
F_{k, 0}=0, \quad F_{k, 1}=1, \quad F_{k, n+1}=k F_{k, n}+F_{k, n-1}, \text { for } n \geqslant 1
$$

The generating function of the k-Fibonacci numbers is $f_{k}(x)=\frac{x}{1-k x-x^{2}},[4,6]$. This sequence was studied by Horadam in [9]. Recently, Falcón and Plaza [6] found the k-Fibonacci numbers by studying the recursive application of two geometrical transformations used in the four-triangle longest-edge (4TLE) partition. The interested reader is also referred to $[1,3,4,5$, $6,12,13,16]$ for further information about this.

[^0]A generalized $F_{k, l}$-colored Motzkin path or simply k-Fibonacci path is a sequence of rise, fall and $F_{k, l}$-colored length horizontal steps $(l=1,2, \cdots)$ running from $(0,0)$ to $(n, 0)$ that never pass below the x-axis. We denote by $\mathcal{M}_{F_{k, n}}$ the set of all k-Fibonacci paths of length n and $\mathcal{M}_{k}=\bigcup_{n=0}^{\infty} \mathcal{M}_{F_{k, n}}$. In Figure 1 we show the set $\mathcal{M}_{F_{2,3}}$.

Figure $1 k$-Fibonacci Paths of length $3,\left|\mathcal{M}_{F_{2,3}}\right|=13$
A grand k-Fibonacci path is a k-Fibonacci path without the condition that never going below the x-axis. We denote by $\mathcal{M}_{F_{k, n}}^{*}$ the set of all grand k-Fibonacci paths of length n and $\mathcal{M}_{k}^{*}=\bigcup_{n=0}^{\infty} \mathcal{M}_{F_{k, n}}^{*}$. A prefix k-Fibonacci path is a k-Fibonacci path without the condition that ending on the x-axis. We denote by $\mathcal{P} \mathcal{M}_{F_{k, n}}$ the set of all prefix k-Fibonacci paths of length n and $\mathcal{P} \mathcal{M}_{k}=\bigcup_{n=0}^{\infty} \mathcal{P} \mathcal{M}_{F_{k, n}}$. Analogously, we have the family of prefix grand k-Fibonacci paths. We denote by $\mathcal{P} \mathcal{M}_{F_{k, n}}^{*}$ the set of all prefix grand k-Fibonacci paths of length n and $\mathcal{P} \mathcal{M}_{k}^{*}=\bigcup_{n=0}^{\infty} \mathcal{P} \mathcal{M}_{F_{k, n}}^{*}$.

In this paper, we study the generating function for the k-Fibonacci paths, grand k Fibonacci paths, prefix k-Fibonacci paths, and prefix grand k-Fibonacci paths, according to the length. We use Counting Automata Methodology (CAM) [2], which is a variation of the methodology developed by Rutten [14] called Coinductive Counting. Counting Automata Methodology uses infinite weighted automata, weighted graphs and continued fractions. The main idea of this methodology is find a counting automaton such that there exist a bijection between all words recognized by an automaton \mathcal{M} and the family of combinatorial objects. From the counting automaton \mathcal{M} is possible find the ordinary generating function (GF) of the family of combinatorial objects [4].

§2. Counting Automata Methodology

The terminology and notation are mainly those of Sakarovitch [13]. An automaton \mathcal{M} is a 5 -tuple $\mathcal{M}=\left(\Sigma, Q, q_{0}, F, E\right)$, where Σ is a nonempty input alphabet, Q is a nonempty set of states of $\mathcal{M}, q_{0} \in Q$ is the initial state of $\mathcal{M}, \emptyset \neq F \subseteq Q$ is the set of final states of \mathcal{M} and $E \subseteq Q \times \Sigma \times Q$ is the set of transitions of \mathcal{M}. The language recognized by an automaton \mathcal{M} is denoted by $L(\mathcal{M})$. If Q, Σ and E are finite sets, we say that \mathcal{M} is a finite automaton [15].

Example 2.1 Consider the finite automaton $\mathcal{M}=\left(\Sigma, Q, q_{0}, F, E\right)$ where $\Sigma=\{a, b\}, Q=$ $\left\{q_{0}, q_{1}\right\}, F=\left\{q_{0}\right\}$ and $E=\left\{\left(q_{0}, a, q_{1}\right),\left(q_{0}, b, q_{0}\right),\left(q_{1}, a, q_{0}\right)\right\}$. The transition diagram of \mathcal{M} is as shown in Figure 2. It is easy to verify that $L(\mathcal{M})=(b \cup a a)^{*}$.

Figure 2 Transition diagram of \mathcal{M}, Example 1

Example 2.2 Consider the infinite automaton $\mathcal{M}_{\mathcal{D}}=\left(\Sigma, Q, q_{0}, F, E\right)$, where $\Sigma=\{a, b\}$, $Q=\left\{q_{0}, q_{1}, \cdots\right\}, F=\left\{q_{0}\right\}$ and $E=\left\{\left(q_{i}, a, q_{i+1}\right),\left(q_{i+1}, b, q_{i}\right): i \in \mathbb{N}\right\}$. The transition diagram of $\mathcal{M}_{\mathcal{D}}$ is as shown in Figure 3.

Figure 3 Transition diagram of $\mathcal{M}_{\mathcal{D}}$
The language accepted by $\mathcal{M}_{\mathcal{D}}$ is

$$
L\left(\mathcal{M}_{\mathcal{D}}\right)=\left\{w \in \Sigma^{*}:|w|_{a}=|w|_{b} \text { and for all prefix } v \text { of } w,|v|_{b} \leq|v|_{a}\right\} .
$$

An ordinary generating function $F=\sum_{n=0}^{\infty} f_{n} z^{n}$ corresponds to a formal language L if $f_{n}=|\{w \in L:|w|=n\}|$, i.e., if the n-th coefficient f_{n} gives the number of words in L with length n.

Given an alphabet Σ and a semiring \mathbb{K}. A formal power series or formal series S is a function $S: \Sigma^{*} \rightarrow \mathbb{K}$. The image of a word w under S is called the coefficient of w in S and is denoted by s_{w}. The series S is written as a formal sum $S=\sum_{w \in \Sigma^{*}} s_{w} w$. The set of formal power series over Σ with coefficients in \mathbb{K} is denoted by $\mathbb{K}\left\langle\left\langle\Sigma^{*}\right\rangle\right\rangle$.

An automaton over Σ^{*} with weights in \mathbb{K}, or \mathbb{K}-automaton over Σ^{*} is a graph labelled with elements of $\mathbb{K}\left\langle\left\langle\Sigma^{*}\right\rangle\right\rangle$, associated with two maps from the set of vertices to $\mathbb{K}\left\langle\left\langle\Sigma^{*}\right\rangle\right\rangle$. Specifically, a weighted automaton \mathcal{M} over Σ^{*} with weights in \mathbb{K} is a 4-tuple $\mathcal{M}=(Q, I, E, F)$ where Q is a nonempty set of states of \mathcal{M}, E is an element of $\mathbb{K}\left\langle\left\langle\Sigma^{*}\right\rangle\right\rangle^{Q \times Q}$ called transition matrix. I is an element of $\mathbb{K}\left\langle\left\langle\Sigma^{*}\right\rangle\right\rangle^{Q}$, i.e., I is a function from Q to $\mathbb{K}\left\langle\left\langle\Sigma^{*}\right\rangle\right\rangle . I$ is the initial function of \mathcal{M} and can also be seen as a row vector of dimension Q, called initial vector of \mathcal{M} and F is an element of $\mathbb{K}\left\langle\left\langle\Sigma^{*}\right\rangle\right\rangle^{Q}$. F is the final function of \mathcal{M} and can also be seen as a column vector of dimension Q, called final vector of \mathcal{M}.

We say that \mathcal{M} is a counting automaton if $\mathbb{K}=\mathbb{Z}$ and $\Sigma^{*}=\{z\}^{*}$. With each automaton, we can associate a counting automaton. It can be obtained from a given automaton replacing every transition labelled with a symbol $a, a \in \Sigma$, by a transition labelled with z. This transition is called a counting transition and the graph is called a counting automaton of \mathcal{M}. Each transition
from p to q yields an equation

$$
L(p)(z)=z L(q)(z)+[p \in F]+\cdots
$$

We use L_{p} to denote $L(p)(z)$. We also use Iverson's notation, $[P]=1$ if the proposition P is true and $[P]=0$ if P is false.

2.1 Convergent Automata and Convergent Theorems

We denote by $L^{(n)}(\mathcal{M})$ the number of words of length n recognized by the automaton \mathcal{M}, including repetitions.

Definition 2.3 We say that an automaton \mathcal{M} is convergent if for all integer $n \geqslant 0, L^{(n)}(\mathcal{M})$ is finite.

The proof of following theorems and propositions can be found in [2].

Theorem 2.4(First Convergence Theorem) Let \mathcal{M} be an automaton such that each vertex (state) of the counting automaton of \mathcal{M} has finite degree. Then \mathcal{M} is convergent.

Example 2.5 The counting automaton of the automaton $\mathcal{M}_{\mathcal{D}}$ in Example 2 is convergent.
The following definition plays an important role in the development of applications because it allows to simplify counting automata whose transitions are formal series.

Definition 2.6 Let \mathcal{M} be an automaton, and let $f(z)=\sum_{n=0}^{\infty} f_{n} z^{n}$ be a formal power series with $f_{n} \in \mathbb{N}$ for all $n \geqslant 0$ and $f_{0}=0$. In a counting automaton of \mathcal{M} the set of counting transitions from state p to state q, without intermediate final states, see Figure 4 (left), is represented by a graph with a single edge labeled by $f(z)$, see Figure 4(right).

Figure 4 Transitions from the state p to q and its transition in parallel

This kind of transition is called a transition in parallel. The states p and q are called visible states and the intermediate states are called hidden states.

Example 2.7 In Figure 5 (left) we display a counting automaton \mathcal{M}_{1} without transitions in parallel, i.e., every transition is label by z. The transitions from state q_{1} to q_{2} correspond to the series $\frac{1-\sqrt{1-4 z}}{2}=z+z^{2}+2 z^{3}+5 z^{4}+14 z^{5}+\cdots$. However, this automaton can also be represented using transitions in parallel. Figure 5 (right) displays two examples.

Figure 5 Counting automata with transitions in parallel

Theorem 2.8(Second Convergence Theorem) Let \mathcal{M} be an automaton, and let $f_{1}^{q}(z), f_{2}^{q}(z), \cdots$, be transitions in parallel from state $q \in Q$ in a counting automaton of \mathcal{M}. Then \mathcal{M} is convergent if the series

$$
F^{q}(z)=\sum_{k=1}^{\infty} f_{k}^{q}(z)
$$

is a convergent series for each visible state $q \in Q$ of the counting automaton.
Proposition 2.9 If $f(z)$ is a polynomial transition in parallel from state p to q in a finite counting automaton \mathcal{M}, then this gives rise to an equation in the system of GFs equations of M

$$
L_{p}=f(z) L_{q}+[p \in F]+\cdots
$$

Proposition 2.10 Let \mathcal{M} be a convergent automaton such that a counting automaton of \mathcal{M} has a finite number of visible states $q_{0}, q_{1}, \cdots, q_{r}$, in which the number of transitions in parallel starting from each state is finite. Let $f_{1}^{q_{t}}(z), f_{2}^{q_{t}}(z), \cdots, f_{s(t)}^{q_{t}}(z)$ be the transitions in parallel from the state $q_{t} \in Q$. Then the $G F$ for the language $L(\mathcal{M})$ is $L_{q_{0}}(z)$. It is obtained by solving
the system of $r+1$ GFs equations

$$
L\left(q_{t}\right)(z)=f_{1}^{q_{t}}(z) L\left(q_{t_{1}}\right)(z)+f_{2}^{q_{t}}(z) L\left(q_{t_{2}}\right)(z)+\cdots+f_{s(t)}^{q_{t}}(z) L\left(q_{t_{s(t)}}\right)(z)+\left[q_{t} \in F\right]
$$

with $0 \leq t \leq r$, where $q_{t_{k}}$ is the visible state joined with q_{t} through the transition in parallel $f_{k}^{q_{t}}$, and $L\left(q_{t_{k}}\right)$ is the $G F$ for the language accepted by \mathcal{M} if $q_{t_{k}}$ is the initial state.

Example 2.11 The system of GFs equations associated with \mathcal{M}_{2}, see Example 2.7, is

$$
\begin{cases}L_{0} & =\left(2 z+z^{2}\right) L_{1}+1 \\ L_{1} & =\frac{1-\sqrt{1-4 z}}{2} L_{2} \\ L_{2} & =2 z L_{0}\end{cases}
$$

Solving the system for L_{0}, we find the GF for the language \mathcal{M}_{2} and therefore of \mathcal{M}_{1} and \mathcal{M}_{3}

$$
L_{0}=\frac{1}{1-\left(2 z^{2}+z^{3}\right)(1-\sqrt{1-4 z})}=1+4 z^{3}+6 z^{4}+10 z^{5}+40 z^{6}+114 z^{7}+\cdots
$$

2.2 An Example of the Counting Automata Methodology (CAM)

A counting automaton associated with an automaton \mathcal{M} can be used to model combinatorial objects if there is a bijection between all words recognized by the automaton \mathcal{M} and the combinatorial objects. Such method, along with the previous theorems and propositions constitute the Counting Automata Methodology (CAM), see [2].

We distinguish three phases in the CAM:
(1) Given a problem of enumerative combinatorics, we have to find a convergent automaton \mathcal{M} (see Theorems 2.4 and 2.8), whose GF is the solution of the problem.
(2) Find a general formula for the GF of \mathcal{M}^{\prime}, where \mathcal{M}^{\prime} is an automaton obtained from \mathcal{M} truncating a set of states or edges see Propositions 2.9 and 2.10. Sometimes we find a relation of iterative type, such as a continued fraction.
(3) Find the GF $f(z)$ to which converge the GFs associated to each \mathcal{M}^{\prime}, which is guaranteed by the convergences theorems.

Example 2.12 A Motzkin path of length n is a lattice path of $\mathbb{Z} \times \mathbb{Z}$ running from $(0,0)$ to $(n, 0)$ that never passes below the x-axis and whose permitted steps are the up diagonal step $U=(1,1)$, the down diagonal step $D=(1,-1)$ and the horizontal step $H=(1,0)$. The number of Motzkin paths of length n is the n-th Motzkin number m_{n}, sequence A001006 ${ }^{1}$. The number of words of length n recognized by the convergent automaton $\mathcal{M}_{\text {Mot }}$, see Figure 6, is the nth Motzkin number and its GF is

$$
M(z)=\sum_{i=0}^{\infty} m_{i} z^{i}=\frac{1-z-\sqrt{1-2 z-3 z^{2}}}{2 z^{2}}
$$

[^1]

Figure 6 Convergent automaton associated with Motzkin paths
In this case the edge from state q_{i} to state q_{i+1} represents a rise, the edge from the state q_{i+1} to q_{i} represents a fall and the loops represent the level steps, see Table 1.

Table 1 Bijection between $\mathcal{M}_{\text {Mot }}$ and Motzkin paths
Moreover, it is clear that a word is recognized by $\mathcal{M}_{\text {Mot }}$ if and only if the number of steps to the right and to the left coincide, which ensures that the path is well formed. Then

$$
m_{n}=\left|\left\{w \in L\left(\mathcal{M}_{\mathrm{Mot}}\right):|w|=n\right\}\right|=L^{(n)}\left(\mathcal{M}_{\mathrm{Mot}}\right)
$$

Let $\mathcal{M}_{\mathrm{Mot} s}, s \geq 1$ be the automaton obtained from $\mathcal{M}_{\mathrm{Mot}}$, by deleting the states q_{s+1}, q_{s+2}, \ldots. Therefore the system of GFs equations of $\mathcal{M}_{\text {Mots }}$ is

$$
\left\{\begin{array}{l}
L_{0}=z L_{0}+z L_{1}+1 \\
L_{i}=z L_{i-1}+z L_{i}+z L_{i+1}, \quad 1 \leq i \leq s-1 \\
L_{s}=z L_{s-1}+z L_{s}
\end{array}\right.
$$

Substituting repeatedly into each equation L_{i}, we have

$$
\left.L_{0}=\frac{H}{1-\frac{F^{2}}{1-\frac{F^{2}}{\vdots}}}\right\} s \text { times }
$$

where $F=\frac{z}{1-z}$ and $H=\frac{1}{1-z}$. Since $\mathcal{M}_{\mathrm{Mot}}$ is convergent, then as $s \rightarrow \infty$ we obtain a convergent continued fraction M of the GF of $\mathcal{M}_{\mathrm{Mot}}$. Moreover,

$$
M=\frac{H}{1-F^{2}\left(\frac{M}{H}\right)}
$$

Hence $z^{2} M^{2}-(1-z) M+1=0$ and

$$
M(z)=\frac{1-z \pm \sqrt{1-2 z-3 z^{2}}}{2 z^{2}}
$$

Since $\epsilon \in L\left(\mathcal{M}_{\mathrm{Mot}}\right), M \rightarrow 0$ as $z \rightarrow 0$. Hence, we take the negative sign for the radical in $M(z)$.

§3. Generating Function for the k-Fibonacci Paths

In this section we find the generating function for k-Fibonacci paths, grand k-Fibonacci paths, prefix k-Fibonacci paths and prefix grand k-Fibonacci paths, according to the length.
Lemma 3.1([2]) The GF of the automaton $\mathcal{M}_{\text {Lin }}$, see Figure 7, is

$$
E(z)=\frac{1}{1-h_{0}(z)-\frac{f_{0}(z) g_{0}(z)}{1-h_{1}(z)-\frac{f_{1}(z) g_{1}(z)}{\ddots}}}
$$

where $f_{i}(z), g_{i}(z)$ and $h_{i}(z)$ are transitions in parallel for all integer $i \geqslant 0$.

Figure 7 Linear infinite counting automaton $\mathcal{M}_{\text {Lin }}$
The last lemma coincides with Theorem 1 in [7] and Theorem 9.1 in [14]. However, this presentation extends their applications, taking into account that $f_{i}(z), g_{i}(z)$ and $h_{i}(z)$ are GFs, which can be GFs of several variables.

Corollary 3.2 If for all integers $i \geq 0, f_{i}(z)=f(z), g_{i}(z)=g(z)$ and $h_{i}(z)=h(z)$ in $\mathcal{M}_{\text {Lin }}$, then the GF is

$$
\begin{align*}
B(z) & =\frac{1-h(z)-\sqrt{(1-h(z))^{2}-4 f(z) g(z)}}{2 f(z) g(z)} \tag{1}\\
& =\sum_{n=0}^{\infty} \sum_{m=0}^{\infty} C_{n}\binom{m+2 n}{m}(f(z) g(z))^{n}(h(z))^{m} \tag{2}\\
& =\frac{1}{1-h(z)-\frac{f(z) g(z)}{1-h(z)-\frac{f(z) g(z)}{1-h(z)-\frac{f(z) g(z)}{\ddots}}}}, \tag{3}
\end{align*}
$$

where C_{n} is the nth Catalan number, sequence A000108.

Theorem 3.3 The generating function for the k-Fibonacci paths according to the their length is

$$
\begin{align*}
T_{k}(z) & =\sum_{i=0}^{\infty}\left|\mathcal{M}_{F_{k, i}}\right| z^{i} \tag{4}\\
& =\frac{1-(k+1) z-z^{2}-\sqrt{\left(1-(k+1) z-z^{2}\right)^{2}-4 z^{2}\left(1-k z-z^{2}\right)^{2}}}{2 z^{2}\left(1-k z-z^{2}\right)} \tag{5}\\
& =\frac{1}{1-\frac{z}{1-k z-z^{2}}-\frac{z^{2}}{1-\frac{z}{1-k z-z^{2}}-\frac{z^{2}}{1-\frac{z}{1-k z-z^{2}}-\frac{z^{2}}{\ddots}}}} \tag{6}
\end{align*}
$$

and

$$
\left[z^{t}\right] T_{k}(z)=\sum_{n=0}^{t} \sum_{m=0}^{t-2 n}\binom{m+2 n}{m} C_{n} F_{k, t-2 n-m+1}^{(m)}
$$

where C_{n} is the n-th Catalan number and $F_{k, j}^{(r)}$ is a convolved k-Fibonacci number.
Convolved k-Fibonacci numbers $F_{k, j}^{(r)}$ are defined by

$$
f_{k}^{(r)}(x)=\left(1-k x-x^{2}\right)^{-r}=\sum_{j=0}^{\infty} F_{k, j+1}^{(r)} x^{j}, \quad r \in \mathbb{Z}^{+}
$$

Note that

$$
F_{k, m+1}^{(r)}=\sum_{j_{1}+j_{2}+\cdots+j_{r}=m} F_{k, j_{1}+1} F_{k, j_{2}+1} \cdots F_{k, j_{r}+1}
$$

Moreover, using a result of Gould[8, p.699] on Humbert polynomials (with $n=j, m=2, x=$ $k / 2, y=-1, p=-r$ and $C=1$), we have

$$
F_{k, j+1}^{(r)}=\sum_{l=0}^{\lfloor j / 2\rfloor}\binom{j+r-l-1}{j-l}\binom{j-l}{l} k^{j-2 l}
$$

Ramírez [13] studied some properties of convolved k-Fibonacci numbers.

Proof Equations (5) and (6) are clear from Corollary 3.2 taking $f(z)=z=g(z)$ and $h(z)=\frac{z}{1-k z-z^{2}}$. Note that $h(z)$ is the GF of k-Fibonacci numbers. In this case the edge from state q_{i} to state q_{i+1} represents a rise, the edge from the state q_{i+1} to q_{i} represents a fall and the loops represent the $F_{k, l}$-colored length horizontal steps $(l=1,2, \cdots)$. Moreover, from

Equation (2), we obtain

$$
\begin{aligned}
T_{k}(z) & =\sum_{n=0}^{\infty} \sum_{m=0}^{\infty} C_{n}\binom{m+2 n}{m} z^{2 n}\left(\frac{z}{1-k z-z^{2}}\right)^{m} \\
& =\sum_{n=0}^{\infty} \sum_{m=0}^{\infty} C_{n}\binom{m+2 n}{m} z^{2 n+m}\left(\frac{1}{1-k z-z^{2}}\right)^{m} \\
& =\sum_{n=0}^{\infty} \sum_{m=0}^{\infty} C_{n}\binom{m+2 n}{m} z^{2 n+m} \sum_{i=0}^{\infty} F_{k, i+1}^{(m)} z^{i} \\
& =\sum_{n=0}^{\infty} \sum_{m=0}^{\infty} \sum_{i=0}^{\infty} C_{n} F_{k, i+1}^{(m)}\binom{m+2 n}{m} z^{2 n+m+i}
\end{aligned}
$$

taking $s=2 n+m+i$

$$
T_{k}(z)=\sum_{n=0}^{\infty} \sum_{m=0}^{\infty} \sum_{s=2 n+m}^{\infty} C_{n} F_{k, s-2 n-m+1}^{(m)}\binom{m+2 n}{m} z^{s}
$$

Hence

$$
\left[z^{t}\right] T_{k}(z)=\sum_{n=0}^{t} \sum_{m=0}^{t-2 m} C_{n} F_{k, t-2 n-m+1}^{(m)}\binom{m+2 n}{m}
$$

In Table 2 we show the first terms of the sequence $\left|\mathcal{M}_{F_{k, i}}\right|$ for $k=1,2,3,4$.

k	Sequence
1	$1,1,3,8,23,67,199,600,1834,5674,17743, \ldots$
2	$1,1,4,13,47,168,610,2226,8185,30283,112736, \cdots$
3	$1,1,5,20,89,391,1735,7712,34402,153898,690499, \cdots$
4	$1,1,6,29,155,820,4366,23262,124153,663523,3551158, \cdots$

Table 2 Sequences $\left|\mathcal{M}_{F_{k, i}}\right|$ for $k=1,2,3,4$

Definition 3.4 For all integers $i \geq 0$ we define the continued fraction $E_{i}(z)$ by:

$$
E_{i}(z)=\frac{1}{1-h_{i}(z)-\frac{f_{i}(z) g_{i}(z)}{1-h_{i+1}(z)-\frac{f_{i+1}(z) g_{i+1}(z)}{\ddots}}},
$$

where $f_{i}(z), g_{i}(z), h_{i}(z)$ are transitions in parallel for all integers positive i.

Lemma 3.5([2]) The GF of the automaton $\mathcal{M}_{\text {BLin }}$, see Figure 8, is

$$
E_{b}(z)=\frac{1}{1-h_{0}(z)-f_{0}(z) g_{0}(z) E_{1}(z)-f_{0}^{\prime}(z) g_{0}^{\prime}(z) E_{1}^{\prime}(z)}
$$

where $f_{i}(z), f_{i}^{\prime}(z), g_{i}(z), g_{i}^{\prime}(z), h_{i}(z)$ and $h_{i}^{\prime}(z)$ are transitions in parallel for all $i \in \mathbb{Z}$.
$\mathcal{M}_{\text {BLin }}:$

Figure 8 Linear infinite counting automaton $\mathcal{M}_{B L i n}$

Corollary 3.6 If for all integers $i, f_{i}(z)=f(z)=f_{i}^{\prime}(z), g_{i}(z)=g(z)=g_{i}^{\prime}(z)$ and $h_{i}(z)=$ $h(z)=h_{i}^{\prime}(z)$ in $\mathcal{M}_{\text {BLin }}$, then the GF

$$
\begin{align*}
B_{b}(z) & =\frac{1}{\sqrt{(1-h(z))^{2}-4 f(z) g(z)}} \tag{7}\\
& =\frac{1}{1-h(z)-\frac{2 f(z) g(z)}{1-h(z)-\frac{f(z) g(z)}{1-h(z)-\frac{f(z) g(z)}{\ddots}}}}, \tag{8}
\end{align*}
$$

where $f(z), g(z)$ and $h(z)$ are transitions in parallel. Moreover, if $f(z)=g(z)$, then the $G F$

$$
\begin{equation*}
B_{b}(z)=\frac{1}{1-h(z)}+\sum_{n=1}^{\infty} \sum_{k=0}^{\infty} \sum_{l=0}^{\infty} 2^{n} \frac{n}{n+2 k}\binom{n+2 k}{k}\binom{l+2 n+2 k}{l} f(z)^{2 n+2 k} h(z)^{l} \tag{9}
\end{equation*}
$$

Theorem 3.7 The generating function for the grand k-Fibonacci paths according to the their length is

$$
\begin{align*}
T_{k}^{*}(z) & =\sum_{i=0}^{\infty}\left|\mathcal{M}_{F_{k, i}}^{*}\right| z^{i}=\frac{1-k z-z^{2}}{\sqrt{\left(1-(k+1) z-z^{2}\right)^{2}-4 z^{2}\left(1-k z-z^{2}\right)^{2}}} \tag{10}\\
& =\frac{1}{1-\frac{z}{1-k z-z^{2}}-\frac{2 z^{2}}{1-\frac{z}{1-k z-z^{2}}-\frac{z^{2}}{1-\frac{z}{1-k z-z^{2}}-\frac{z^{2}}{\ddots}}}} \tag{11}
\end{align*}
$$

and

$$
\begin{equation*}
\left[z^{t}\right] T_{k}^{*}(z)=F_{k+1, t}^{(1)}+\sum_{n=1}^{t} \sum_{m=0}^{t} \sum_{l=0}^{t-2 n-2 m} 2^{n} \frac{n}{n+2 m}\binom{n+2 m}{m}\binom{l+2 n+2 m}{l} F_{k, t-2 n-2 m-l+1}^{(l)} \tag{12}
\end{equation*}
$$

with $t \geqslant 1$.
Proof Equations (10) and (11) are clear from Corollary 3.6, taking $f(z)=z=g(z)$ and $h(z)=\frac{z}{1-k z-z^{2}}$. Moreover, from Equation (9), we obtain

$$
\begin{aligned}
T_{k}^{*}(z) & =\frac{1}{1-\frac{z}{1-k z-z^{2}}}+\sum_{n=1}^{\infty} \sum_{m=0}^{\infty} \sum_{l=0}^{\infty} 2^{n} \frac{n}{n+2 m}\binom{n+2 m}{m}\binom{l+2 n+2 m}{l} z^{2 n+2 m}\left(\frac{z}{1-k z-z^{2}}\right)^{l} \\
& =1+\sum_{j=0}^{\infty} F_{k+1, j}^{(1)} z^{j}+\sum_{n=1}^{\infty} \sum_{m=0}^{\infty} \sum_{l=0}^{\infty} \sum_{u=0}^{\infty} 2^{n} \frac{n}{n+2 m}\binom{n+2 m}{m}\binom{l+2 n+2 m}{l} F_{k, u}^{(l)} z^{2 n+2 m+u+1}
\end{aligned}
$$

taking $s=2 n+2 m+l+u$

$$
\begin{aligned}
T_{k}^{*}(z)=1+ & \sum_{j=0}^{\infty} F_{k+1, j}^{(1)} z^{j}+ \\
& \sum_{n=1}^{\infty} \sum_{m=0}^{\infty} \sum_{l=0}^{\infty} \sum_{s=2 n+2 m+l}^{\infty} 2^{n} \frac{n}{n+2 m}\binom{n+2 m}{m}\binom{l+2 n+2 m}{l} F_{k, s-2 n-2 m-l}^{(l)} z^{s} .
\end{aligned}
$$

Therefore, Equation (12) is clear.
In Table 3 we show the first terms of the sequence $\left|\mathcal{M}_{F_{k, i}}^{*}\right|$ for $k=1,2,3,4$.

k	Sequence
1	$1,4,11,36,115,378,1251,4182,14073,47634, \cdots$
2	$1,5,16,63,237,920,3573,14005,55156,218359, \cdots$
3	$1,6,23,108,487,2248,10371,48122,223977,1046120, \cdots$
4	$1,7,32,177,949,5172,28173,153963,842940,4624581, \cdots$

Table 3 Sequences $\left|\mathcal{M}_{F_{k, i}}^{*}\right|$ for $k=1,2,3,4$ and $i \geqslant 1$
In Figure 9 we show the set $\mathcal{M}_{F_{2,3}}^{*}$.

Figure 9 Grand k-Fibonacci Paths of length $3,\left|\mathcal{M}_{F_{2,3}}^{*}\right|=16$

Lemma 3.8([2]) The GF of the automaton $\operatorname{FiN}_{\mathbb{N}}\left(\mathcal{M}_{\text {Lin }}\right)$, see Figure 10, is

$$
G(z)=E(z)+\sum_{j=1}^{\infty}\left(\prod_{i=0}^{j-1}\left(f_{i}(z) E_{i}(z)\right) E_{j}(z)\right)
$$

where $E(z)$ is the GF in Lemma 3.1.

Figure 10 Linear infinite counting automaton $\operatorname{Fin}_{\mathbb{N}}\left(\mathcal{M}_{\text {Lin }}\right)$

Corollary 3.9 If for all integer $i \geqslant 0, f_{i}(z)=f(z), g_{i}(z)=g(z)$ and $h_{i}(z)=h(z)$ in $\operatorname{FiN}_{\mathbb{N}}\left(\mathcal{M}_{\text {Lin }}\right)$, then the GF is:

$$
\begin{align*}
G(z) & =\frac{1-2 f(z)-h(z)-\sqrt{(1-h(z))^{2}-4 f(z) g(z)}}{2 f(z)(f(z)+g(z)+h(z)-1)} \tag{13}\\
& =\frac{1}{1-f(z)-h(z)-\frac{f(z) g(z)}{1-h(z)-\frac{f(z) g(z)}{1-h(z)-\frac{f(z) g(z)}{\ddots}}}}, \tag{14}
\end{align*}
$$

where $f(z), g(z)$ and $h(z)$ are transitions in parallel and $B(z)$ is the $G F$ in Corollary 3.2. Moreover, if $f(z)=g(z)$ and $h(z) \neq 0$, then we obtain the $G F$

$$
\begin{equation*}
G(z)=\sum_{n=0}^{\infty} \sum_{k=0}^{\infty} \sum_{l=0}^{\infty} \frac{n+1}{n+k+1}\binom{n+2 k+l}{k, l, k+n} f^{2 k+n}(z) h^{l}(z) . \tag{15}
\end{equation*}
$$

Theorem 3.10 The generating function for the prefix k-Fibonacci paths according to the their length is

$$
\begin{aligned}
P T_{k}(z) & =\sum_{i=0}^{\infty}\left|\mathcal{P} \mathcal{M}_{F_{k, i}}\right| z^{i} \\
& =\frac{(1-2 z)\left(1-k z-z^{2}\right)-z-\sqrt{\left(1-z(k+1)-z^{2}\right)^{2}+4 z^{2}\left(1-k z-z^{2}\right)^{2}}}{2 z\left(\left(1-k z-z^{2}\right)(2 z-1)+z\right)}
\end{aligned}
$$

and

$$
\left[z^{t}\right] P T_{k}(z)=\sum_{n=0}^{t} \sum_{m=0}^{t} \sum_{l=0}^{t-2 m-n} \frac{n+1}{n+m+1}\binom{n+2 m+l}{m, l, m+n} F_{k, t-2 m-n-l+1}^{(l)}, t \geqslant 0
$$

Proof The proof is analogous to the proof of Theorem 3.3 and 3.7.
In Table 4 we show the first terms of the sequence $\left|\mathcal{P} \mathcal{M}_{F_{k, i}}\right|$ for $k=1,2,3,4$.

k	Sequence
1	$1,2,6,19,62,205,684,2298,7764,26355,89820, \cdots$
2	$1,2,7,26,101,396,1564,6203,24693,98605,394853, \cdots$
3	$1,2,8,35,162,757,3558,16766,79176,374579,1775082, \cdots$
4	$1,2,9,46,251,1384,7668,42555,236463,1315281,7322967, \cdots$

Table 4 Sequences $\left|\mathcal{P} \mathcal{M}_{F_{k, i}}\right|$ for $k=1,2,3,4$
In Figure 11 we show the set $\mathcal{M} \mathcal{P}_{F_{2,3}}$.

Figure 11 Prefix k-Fibonacci paths of length $3,\left|\mathcal{P} \mathcal{M}_{F_{2,3}}\right|=26$

Lemma 3.11 The GF of the automaton $\operatorname{Fin}_{\mathbb{Z}}\left(\mathcal{M}_{\text {BLin }}\right)$, see Figure 12, is

$$
\begin{aligned}
H(z) & =\frac{E E^{\prime}}{E+E^{\prime}-E E^{\prime}\left(1-h_{0}\right)}\left(1+\sum_{j=1}^{\infty} \prod_{k=1}^{j-1} f_{k} E_{k} f_{0} E_{j}+\sum_{j=1}^{\infty} \prod_{k=1}^{j-1} g_{k}^{\prime} E_{k}^{\prime} g_{0}^{\prime} E_{j}^{\prime}\right) \\
& =\frac{E^{\prime}(z) G(z)+E(z) G^{\prime}(z)-E(z) E^{\prime}(z)}{E(z)+E^{\prime}(z)-E(z) E^{\prime}(z)\left(1-h_{0}(z)\right)}
\end{aligned}
$$

where $G(z)$ is the $G F$ in Lemma 3.8 and $G^{\prime}(z), E^{\prime}(z)$ are the $G F s$ obtained from $G(z)$ and $E(z)$ changing $f(z)$ to $g^{\prime}(z)$ and $g(z)$ to $f^{\prime}(z)$.

Figure 12 Linear infinite counting automaton $\operatorname{Fin}_{\mathbb{Z}}\left(\mathcal{M}_{\text {BLin }}\right)$
Moreover, if for all integer $i \geqslant 0, f_{i}(z)=f(z)=f_{i}^{\prime}(z), g_{i}(z)=g(z)=g_{i}^{\prime}(z)$ and $h_{i}(z)=$ $h(z)=h_{i}^{\prime}(z)$ in $\operatorname{Fin}_{\mathbb{Z}}\left(\mathcal{M}_{\text {BLin }}\right)$, then the GF is

$$
\begin{equation*}
H(z)=\frac{1}{1-f(z)-g(z)-h(z)} \tag{16}
\end{equation*}
$$

Theorem 3.12 The generating function for the prefix grand k-Fibonacci paths according to the their length is

$$
\operatorname{PT}_{k}^{*}(z)=\sum_{i=0}^{\infty}\left|\mathcal{P} \mathcal{M}_{F_{k, i}^{*}}\right| z^{i}=\frac{1-k z-z^{2}}{1-(k+3) z-(1-2 k) z^{2}+2 z^{3}}
$$

it Proof The proof is analogous to the proof of Theorem 3.3 and 3.7.
In Table 5 we show the first terms of the sequence $\left|\mathcal{P} \mathcal{M}_{F_{k, i}}^{*}\right|$ for $k=1,2,3,4$.

k	Sequence
1	$1,3,10,35,124,441,1570,5591,19912,70917,252574, \ldots$
2	$1,3,11,44,181,751,3124,13005,54151,225492,938997, \ldots$
3	$1,3,12,55,264,1285,6280,30727,150392,736157,3603528, \ldots$
4	$1,3,13,68,379,2151,12268,70061,400249,2286780,13065595 \ldots$

Table 4 Sequences $\left|\mathcal{P} \mathcal{M}_{F_{k, i}}^{*}\right|$ for $k=1,2,3,4$

Acknowledgments

The second author was partially supported by Universidad Sergio Arboleda under Grant No. DII- 262.

References

[1] C.Bolat and H. Köse, On the properties of k-Fibonacci numbers, International Journal of Contemporary Mathematical Sciences, 5(22)(2010), 1097-1105.
[2] R.De Castro, A. Ramírez and J. Ramírez, Applications in enumerative combinatorics of infinite weighted automata and graphs, Scientific Annals of Computer Science, accepted, (2014).
[3] S.Falcón, The k-Fibonacci matrix and the Pascal matrix, Central European Journal of Mathematics, 9(6)(2011), 1403-1410.
[4] S.Falcón and A. Plaza, The k-Fibonacci sequence and the Pascal 2-triangle, Chaos Solitons and Fractals, 33(1)(2007), 38-49.
[5] S.Falcón and A. Plaza, On k-Fibonacci sequences and polynomials and their derivatives, Chaos Solitons and Fractals, 39(3)(2009), 1005-1019.
[6] S.Falcón and A. Plaza, On the Fibonacci k-numbers, Chaos Solitons and Fractals, 32(5)(2007), 1615-1624.
[7] P.Flajolet, Combinatorial aspects of continued fractions, Discrete Mathematics, 32(2)(1980), 125-161.
[8] H.W.Gould, Inverse series relations and other expansions involving Humbert polynomials, Duke Mathematical Journal, 32(4)(1965), 697-711.
[9] A.F.Horadam, A generalized Fiboncci sequence, American Mathematical Monthly, 68(1961), 455-459.
[10] T.Koshy, Fibonacci and Lucas Numbers with Applications, A Wiley-Interscience Publication, 2001.
[11] P.Larcombe, O.Bagdasar and E.Fennessey, Horadam sequences: a survey, Bulletin of the Institute of Combinatorics and its Applications, 67(2013), 49-72.
[12] J.Ramírez, Incomplete k-Fibonacci and k-Lucas numbers, Chinese Journal of Mathematics, (2013).
[13] J.Ramírez, Some properties of convolved k-Fibonacci numbers, ISRN Combinatorics, 2013.
[14] J.Rutten, Coinductive counting with weighted automata, Journal of Automata, Languages and Combinatorics, 8(2)(2003), 319-352.
[15] J.Sakarovitch, Elements of Automata Theory, Cambridge University Press, Cambridge, 2009.
[16] A.Salas, About k-Fibonacci numbers and their associated numbers, International Mathematical Forum, 50(6)(2011), 2473-2479.
[17] N. J. A. Sloane, The On-Line Encyclopedia of Integer Sequences. https://oeis.org/.

[^0]: ${ }^{1}$ Received November 14, 2013, Accepted May 20, 2014.

[^1]: ${ }^{1}$ Many integer sequences and their properties are found electronically on the On-Line Encyclopedia of Sequences [17].

