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Abstract

AG-groups are a generalisation of Abelian groups. They correspond to groupoids
with a left identity, unique inverses, and satisfy the identity (xy)z = (zy)x. We
present the first enumeration result for AG-groups up to order 11 and give a lower
bound for order 12. The counting is performed with the finite domain enumerator
FINDER using bespoke symmetry breaking techniques. We have also developed
a function in the GAP computer algebra system to check the generated Cayley
tables. This note discusses a few observations obtained from our results, some of
which inspired us to examine and discuss Smaradache AG-group structures.
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1 Introduction

In the study of small algebraic structures more general than groups, many interesting
questions, such as open existence, classification, and counting problems, have been solved
by software tools that enable efficient enumeration of structures. Typically this task
involves identifying and exploiting symmetries in the problem at hand. Loops with inverse
property (IP-loops) up to order 13 have been counted with model generators using hand
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crafted symmetry breaking constraints and post-hoc processing [1]. Monoids up to order
10 and semigroups up to order 9 have been enumerated [3] with off-the-shelf constraint
satisfaction software by employing lexicographic symmetry breaking constraints computed
using a GAP implementation of the methods described in [5]. A similar approach was
more recently used for counting AG-groupoids — groupoids that are left invertive, in
the sense (ab)c = (cb)a — up to order 6 [2]. Finally, also related is the enumeration of
quasigroups and loops up to size 11 using a mixture of combinatorial considerations and
bespoke exhaustive generation software [7].

In this paper we present the enumeration of AG-groups. An AG-group, also called
an LA-group, is an AG-groupoid (G, ·) with left identity, and unique inverses. With a
structure admitting non-associativity, AG-groups lie between quasigroups and Abelian
groups. AG-groups were conceived by M.S. Kamran for his PhD thesis [6], first appeared
in [8] and then more recently have been studied in [12]. AG-groups generalise Abelian
groups. An AG-group satisfies the Lagrange theorem [8]. Moreover, it can easily be
verified that AG-groups satisfy both the medial, i.e. (ab)(cd) = (ac)(bd), and paramedial,
i.e. (ab)(cd) = (db)(ca), laws (see [12, Lemma 1]).

In Sec. 2 we first count the number of non-isomorphic AG-groups of order up to 11
and give a lower bound for order 12. We then discuss some of the observations we have
made when examining the results (Sec. 3) and in particular develop and study a new type
of AG-group structure, Smaradache AG-groups (Sec. 4).

2 Counting AG-groups up to Isomorphism

We counted AG-groups by exhaustive enumeration using the FINDER system. Our start-
ing point is the approach developed for counting IP-loops up to isomorphism in [11, 1].
Here, as in that work, FINDER generates a set of candidate tables which contains one
table for each minimal element given by a lex(icographic) order over each isomorphism
class. A post-processing step — post-hoc processing — is used to reject tables that are
not minimal in their isomorphism class.3 In order to prevent FINDER from generating
an impractical number of candidate tables, further symmetry breaking constraints are
posed. Moreover, the validity of post-hoc processing is dependent on these constraints
being satisfied. In our work we have had to modify those constraints. A summary of
the constraints from [11] in their reduced form for AG-groups is given in the following
definition.

Definition 2.1. (Symmetry Breaking Constraints) Let N be the order of the AG-group,
with elements x, y ∈ {0 . . . , N − 1} and left identity e. Let f(x) abbreviate (e + 1)(e + x)
and let FLAG be a boolean variable that is set if the first six elements of the AG-group
are self-inverse and (e + 1)(e + 2) is not self-inverse. We then define the following 10
constraints:

3We consider it an important item for future work to develop lex-leader constraints that capture the
symmetry breaking that is carried out during this post-hoc step.
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(i) e ≤ x, (ii) x−1 < (x + 2),
(iii) (x−1 = x ∧ x < y) ⇒ y−1 = y.

For odd values of N :
(iv) f(1) < (e + 4), (v) (x > 1 ∧ 2x < N) ⇒ f(x) < (e + 2x).
For even values of N

(vi) f(1) = e,

(vii) (−FLAG ∧ 0 < x < N

2
) ⇒ f(x) < (e + 2x + 1),

(viii) (FLAG) ⇒ (e + 5)−1 = (e + 5),
(ix) (FLAG ∧ x > 1 ∧ (e + x)−1 = (e + x)) ⇒ (f(x)−1) �= f(x),
(x) (FLAG ∧ 1 < x < y ∧ (e + y)−1 = (e + y)) ⇒ f(x) < f(y).

The constraints imply that the Cayley table of the AG-group will be filled in an
ascending order, where e is always the lexicographical minimal element (i.e., 0). They also
have that elements which are self-inverse are ordered first, and otherwise that an element
is adjacent to its inverse in the ordering. We have omitted the constraint x−1 = x ⇔ x = e

from [1], because this is an invalid symmetry breaker for AG-group counting.
Our enumeration yields all Cayley tables explicitly. We can therefore validate the

generated AG-groups using the GAP [4] computer algebra system. Because there was no
functionality present in the GAP loops package [9] to test whether a Cayley table is an
AG-group or not, we have implemented our own function that performs this test. The
results of our enumeration were validated using our GAP function.4 The algorithm is a
straightforward implementation, testing that (1) the Cayley table is a Latin square; i.e., all
elements occur exactly once in every row and every column, (2) the identity (xy)z = (zy)x
holds, and (3) there exists a left identity.

Our validated results are given in Table 1. We report the number of non-isomorphic
AG-groups having order up to 11, and give a lower bound for order 12. In Table 1, for each
order we give the total number of AG-groups up to isomorphism, which is further broken
down into associative and non-associative AG-groups. Note, associative AG-groups are
Abelian groups. For each order we also give the total number of CPU-seconds required to
enumerate all groups and the number of tables generated by FINDER that were tested
for lex-minimality in post-hoc processing. All counting was carried out on an Intel quad
core CPU Q9650 with 4GB of memory. It should be noted that our counting procedure
uses negligible computer memory resources.

In the remainder of the paper we discuss some of the observations we made using our
enumeration results and, in particular, propose a new interesting class of AG-groups.

3 AG-group of Smallest Order

The smallest AG-group which is not a group is of order 3. The Cayley table for that is
given in Example 3.1.

Example 3.1. Smallest AG-group of order 3 :

4Please contact the authors by email for either the GAP source code, or a copy of the enumerated
tables.
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Order AG-groups Assoc Non-Assoc CPU-Time post-hoc tests
1 1 1 0 < .01 0
2 1 1 0 < .01 1
3 2 1 1 < .01 2
4 4 2 2 < .01 6
5 2 1 1 < .01 7
6 2 1 1 < .01 46
7 2 1 1 .47 97
8 10 3 7 8.44 796
9 5 2 3 102.37 3599
10 2 1 1 1, 735.25 16144
11 2 1 1 15, 206.26 86406
12 ≥ 7 ≥ 2 ≥ 5 NA NA

Table 1: Results of AG-group enumeration.

· 0 1 2
0 0 1 2
1 2 0 1
2 1 2 0

Clearly every Abelian group is an AG-group, however the converse is certainly not
always true. We now note a number of contrasts between groups and AG-groups. In
particular, we establish the existence of non-associative AG-groups — i.e. non-Abelian
groups — of order p and p2 where p is a prime. In detail, our observations are:

1. Every group of order p is Abelian. We find that non-associative AG-groups of order
p exist. The AG-group of order 3 in Example 3.1 is not an Abelian group.

2. Every group of order p2 is Abelian. We also have that non-associative AG-groups
of order p2 exist. The AG-group in Example 4.3 is not an Abelian group.

3. Every group which satisfies the squaring property (ab)2 = a2b2 is Abelian. Al-
though every AG-group clearly satisfies the squaring property, an AG-group is not
necessarily Abelian.

4 Smaradache AG-groups

In [10] Padilla Raul introduced the notion of a Smarandache semigroup, here written
S-semigroup. An S-semigroup is a semigroup A such that a proper subset of A is a group
with respect to the same induced operation [15]. Similarly a Smarandache ring, written
S-ring, is defined to be a ring A, such that a proper subset of A is a field with respect to
the operations induced. Many other Smarandache structures have also appeared in the
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literature. The general concept of Smarandache structures is that, if a special structure
happens to be a substructure of a general structure, then that general structure is called
Smarandache. In that spirit we propose Smarandache AG-groups here and study them
with the help of examples generated during the enumeration given in Sec. 2.

Definition 4.1. Let G be an AG-group. G is said to be a Smaradache AG-group (S-
AG-group) if G has a proper subset P such that P is an Abelian group under the the
operation of G.

The AG-groups G in Examples 4.3 and 4.4 are S-AG-groups, whereas the AG-group
G in Examples 3.1 and 4.6 are not.

The following theorem guarantees that an AG-group having a unique nontrivial ele-
ment of order 2 is always an S-AG-group.

Theorem 4.2. If there is a unique nontrivial element a of order 2 in an AG-group G

then {e, a} is an Abelian subgroup of G.

Proof. Take a ∈ G satisfying a2 = e. Now we have to identify an element for the ’?’ cell
in the following table:

· e a

e e a

a ? e

Taking y = ae and using the paramedial law we have y2 = (ae)2 = e2a2 = a2 = e. Thus,
y has order 2. Because G has a single element of order 2, we have y = ae = a. Thus, a is
the required element, and our table can now be completed:

· e a

e e a

a a e

Here {e, a} is an AG-subgroup of G of order 2, and is therefore an Abelian group, hence
G is an S-AG-group.

We illustrate Theorem 4.2, by considering the following example.

Example 4.3. An AG-group of order 8:

· 0 1 2 3 4 5 6 7
0 0 1 2 3 4 5 6 7
1 1 0 3 2 6 7 4 5
2 2 3 1 0 5 6 7 4
3 3 2 0 1 7 4 5 6
4 6 4 7 5 3 0 2 1
5 7 5 4 6 0 2 1 3
6 4 6 5 7 2 1 3 0
7 5 7 6 4 1 3 0 2
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Here 1 has order 2, and 1 is the unique such element of G. Hence {0, 1} is an Abelian
subgroup of G.

The converse of Theorem 4.2 is not true. That is, if an AG-group G has an Abelian
subgroup, then it is not necessary that G will have a unique non-trivial element of order
2. This can be observed with the following example:

Example 4.4. An AG-group of order 9:

· 0 1 2 3 4 5 6 7 8
0 0 1 2 3 4 5 6 7 8
1 2 0 1 5 6 7 8 3 4
2 1 2 0 7 8 3 4 5 6
3 5 3 7 8 0 4 2 6 1
4 6 4 8 0 7 2 3 1 5
5 3 7 5 6 1 8 0 4 2
6 4 8 6 1 5 0 7 2 3
7 7 5 3 4 2 6 1 8 0
8 8 6 4 2 3 1 5 0 7

The AG-group in Example 4.4 has {0, 7, 8} as Abelian subgroup and hence is a Smaran-
dache AG-group. However, the element of order 2 is not unique. In fact, there are two
nontrivial elements of order 2, namely {1, 2}.

Remark 4.5. Because AG-groups satisfy Lagrange’s Theorem, the unique element of
order 2 can exist in AG-groups of even order only.

However, if G has more than one element of order 2, then it is not necessary that
G will have an Abelian subgroup. In Example 4.6 all non-trivial elements of G are of
order 2, however we also see that G has no Abelian subgroup. Note that G has four
proper AG-subgroups, namely {0, 1, 2} , {0, 3, 7} , {0, 4, 6} , and {0, 5, 8}. None of those is
commutative.

Example 4.6. An AG-group order of 9:

· 0 1 2 3 4 5 6 7 8
0 0 1 2 3 4 5 6 7 8
1 2 0 1 4 5 3 7 8 6
2 1 2 0 5 3 4 8 6 7
3 7 6 8 0 2 1 5 3 4
4 6 8 7 1 0 2 4 5 3
5 8 7 6 2 1 0 3 4 5
6 4 3 5 8 6 7 0 2 1
7 3 5 4 7 8 6 1 0 2
8 5 4 3 6 7 8 2 1 0

AG-groups satisfy Lagrange’s Theorem, so AG-groups of prime order cannot have a
proper AG-subgroup, hence cannot have a proper Abelian subgroup. We record this fact
as the following theorem.
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Theorem 4.7. An AG-group G of prime order cannot be an S-AG-group.

The notion of S-AG-group can be generalised to S-AG-groupoid as follows.

Definition 4.8. Let S be an AG-groupoid. S is said to be an Smaradache AG-groupoid
(S-AG-groupoid) if S has a proper subset P such that P is a commutative semigroup under
the operation of S.

The examples given in the case of AG-groups can also be considered for S-AG-
groupoids. We now provide two further examples to show that this notion holds generally.

Example 4.9. An AG-groupoid order 4.

· 0 1 2 3
0 0 0 2 3
1 0 1 2 3
2 3 3 0 2
3 2 2 3 0

Example 4.10. An AG-groupoid order 4.

· 0 1 2 3
0 1 2 0 3
1 3 0 2 1
2 2 1 3 0
3 0 3 1 2

The AG-groupoid S in Example 4.9 has a proper subset {0, 1} which is a commutative
semigroup, and therefore S is an S-AG-groupoid. Although somewhat tedious, one can
check manually that the AG-groupoid S in Example 4.10 has no proper subset having the
desired property, and therefore we have S is not a S-AG-groupoid.

5 Future Work

Due to the obvious limitations of enumerative counting, we have only been able to study
AG-groups of small order here. An important future direction is to pursue counting
algebraically, especially where such work can inform a constructive procedure for larger
AG-groups. We have also begun characterising S-AG-groups here, however that notion
requires significant further study.
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