Four conjectures on the Smarandache prime partial digital sequence

Abstract

In this paper I make the following four conjectures on the Smarandache prime-partial-digital sequence defined as the sequence of prime numbers which admit a deconcatenation into a set of primes: (I) there exist an infinity of primes p obtained concatenating two primes m and n, both of the form $6 * k+1$, such that $n=$ $m * h-h+1$, where h positive integer; (II) there exist an infinity of primes p obtained concatenating two primes m and n, both of the form $6 * k-1$, such that $n=m * h+h$ - 1 , where h positive integer; (III) there exist an infinity of primes p obtained concatenating two primes m and n, both of the form $6 * k+1$, such that $n+m-1$ is prime or power of prime; (IV) there exist an infinity of primes p obtained concatenating two primes m and n, both of the form $6 * k-1$, such that $n-m+1$ is prime or power of prime. Note that almost all from the first 65 primes obtained concatenating two primes of the form $6 \mathrm{k}+$ 1 (exceptions: 3779, 4373, 6173, 6719, 6779), and all the first 65 primes obtained concatenating two primes of the form $6 \mathrm{k}-1$, belong to one of the four sequences considered by the conjectures above.

The Smarandache prime-partial-digital sequence (see A019549 in OEIS) :

Conjecture 1:

There exist an infinity of primes p obtained concatenating two primes m and n, both of the form $6 * k+$ 1 , such that $n=m * h-h+1$, where h positive integer.

Note that all primes n larger than 7 of the form $6 * k+1$ can be written as $7 * h$ - h +1 , where h positive integer, so all the primes obtained concatenating a prime of the form 6*k +1 with 7 is term of this sequence.

The sequence of primes p:

```
: 137, 197, 317, 617, 677, 719, 743, 761, 773, 797,
```

 977, 1097, 1277, 1361 (61 = 13*5-5 + 1) , 1373 (73
    ```
= 13*6 - 6 + 1), 1637, 1973 (73 = 19*4 - 4 + 1),
1997, 2237, 2297, 2417, 2777, 2837, 3167, 3677, 3719
(37 = 19*2 - 2 + 1), 3797, 4217, 4337, 4637, 5237,
5477, 5717, 5897, 6113 (61 = 13*5 - 5 + 1), 6131 (61
= 31*2 - 2 + 1), 6197, 6317, 6917, 7151, 7229, 7283,
7331, 7349 (...)
```

Example of larger p:

```
: p = 499943 where 4999 = 43*119 - 119 + 1.
```


Conjecture 2:

There exist an infinity of primes p obtained concatenating two primes m and n, both of the form $6 * k$ 1 , such that $\mathrm{n}=\mathrm{m}$ h $+\mathrm{h}-1$, where h positive integer.

Note that all primes n larger than 5 of the form 6*k - 1 can be written as $5 * h+h$ - 1 , where h positive integer, so all the primes obtained concatenating a prime of the form 6*k - 1 with 5 is term of this sequence.

The sequence of primes p:

```
: 541, 547, 571, 1123 (23 = 11*2 + 2 - 1), 1171 (71 =
11*6 + 6 - 1), 1753 (53 = 17*3 + 3 - 1), 1789 (89 =
17*5 + 5 - 1), 2311 (23 = 11*2 + 2 - 1), 2371 (71 =
23*3 + 3 - 1), 4723 (47 = 23*2 + 2 - 1), 5101, 5107,
5113, 5167, 5179, 5197, 5227, 5233, 5347, 5419,
5431, 5443, 5449, 5479, 5503, 5521, 5557, 5641,
5647, 5653, 5659, 5683, 5701, 5743, 5821, 5827,
5839, 5857, 5881, 5953 (...)
```


Conjecture 3:

There exist an infinity of primes p obtained concatenating two primes m and n, both of the form $6 * k+$ 1, such that $n+m-1$ is prime or power of prime.

The sequence of primes p :

```
: 137 (13 + 7 + 1 = 19), 197 (19 + 7 - 1 = 25 = 5^2),
317 (31 + 7 - 1 = 37), 617 (61 + 7 - 1 = 67), 677
    (67 + 7 - 1 = 73), 719 (71 + 9 - 1 = 79), 743 (7 +
    43 - 1 = 49 = 7^2), 761 (7 + 67 - 1 = 73), 773 ( 7 +
    73 - 1 = 79), 797 (7 + 97 - 1 = 103), 977 (97 + 7 -
    1 = 103), 1319 (13 + 9 - 1 = 31), 1361 (13 + 61 - 1
    = 73), 1367 (13 + 67-1 = 79), 1637 (163 + 7 - 1 =
    169 = 13^2), 1913 (19 + 13 - 1 = 31), 1931 (19 + 31
    - 1 = 49 = 7^2), 1979 (19 + 79 - 1 = 97), 2237 (223
    + 7 - 1 = 229), 2777 (277 + 7 - 1 = 283), 2837 (283
```

```
+ 7 - 1 = 289 = 17^2), 3119 (31 + 19 - 1 = 49 =
7^2), 3167 (31 + 67 - 1 = 97), 3677 (367 + 7 - 1 =
373), 3761 (37 + 61 - 1 = 97), 3767 (37 + 67 - 1 =
103), 4397 (43 + 97-1 = 139), 5237 (523 + 7 - 1=
529 = 23^2), 5717 (571 + 7 - 1 = 577), 6113 (61 + 13
-1=73),6143 (61 + 43-1 = 103), 6197 (61 + 97-
1=157),6737 (67 + 37-1 = 103), 6761 (67 + 61 -
1=127),7283(7+283-1=289=17^2), 7331 (73
+ 31-1 = 103 or 7 + 331-1 = 337), 7349 (349 - 7
+1=343=7^3) (...)
```

Example of larger p:
: $\quad \mathrm{p}=499979$ where $4999+79-1=5077$, prime.

Conjecture 4:

There exist an infinity of primes p obtained concatenating two primes m and n, both of the form $6 * k$ 1 , such that $n-m+1$ is prime or power of prime.

The sequence of primes p :

```
: 541 (41-5 + 1 = 37), 547(47 - 5 + 1 = 43), 571
    (71-5 + 1 = 67), 1117 (17 - 11 + 1 = 7), 1123 (23
    -11 + 1 = 13), 1129 (29 - 11 + 1 = 19), 1153 (53 -
    11+1=43), 1171 (71-11 + 1 = 61), 1723 (23 - 17
    +1=7), 1741 (41-17 + 1 = 25 = 5^2), 1747 (47 -
    17 + 1 = 31), 1753 (53 - 17 + 1 = 37), 1759 (59 - 17
    +1=43),1783(83-17 + 1 = 67), 1789 (89 - 17 +
    1=73), 2311 (23-11 + 1 = 13), 2341 (41 - 23 + 1
    = 19), 2347 (47-23 + 1 = 25 = 5^2), 2371 (71 - 23
    +1=49=7^2), 2383(83-23 + 1 = 61), 2389 (89 -
    23+1 = 67), 2971 (71-29 + 1 = 43), 4111 (41 - 11
    +1=31),4129(41-29 + 1 = 13), 4153 (53 - 41 +
    1=13),4159(59-41 + 1 = 19), 4723 (47-23 + 1
    = 25 = 5^2), 4729 (47-29 + 1 = 19), 4759 (59 - 47
    +1=13),4783(83-47 + 1 = 37), 4789 (89 - 47 +
    1=43), 5101 (101 - 5 + 1 = 97), 5107 (107 - 5 + 1
    = 103), 5113 (113 - 5 + 1 = 109), 5167 (167 - 5 + 1
    = 163), 5179 (179 - 5 + 1 = 173), 5197 (197 - 5 + 1
    = 193), 5227 (227-5 + 1 = 223), 5233 (233 - 5 + 1
    = 227), 5323 (53-23 + 1 = 31), 5347 (53-47 + 1 =
    7), 5647 (647-5 + 1 = 643), 5743 (743-5 + 1=
    739), 5827(827-5 + 1 = 823), 5857 (857-5 + 1=
    853), 5881 (881-5 + 1 = 877), 5923 (59 - 23 + 1 =
    37),7129(71-29+1=43), 7159(71-59 + 1=
    13) (...)
```

Example of larger p:
: $\quad \mathrm{p}=499711$ where $4997-11+1=4987$, prime.

Note:

Almost all from the first 65 primes obtained from m = 6*x +1 , prime, concatenated with $\mathrm{n}=6 * \mathrm{y}+1$, prime (exceptions: 3779, 4373, 6173, 6719, 6779), and all the first 65 primes obtained from $m=6 * x$ - 1, prime, concatenated with $\mathrm{n}=6 * y$ - 1, prime, belong to one of the 4 sequences considered by the conjectures above.

Note:

Up to the number 7349 there are 65 primes obtained concatenated two primes of the form $6 * k+1$ and 65 primes obtained concatenated two primes of the form 6*k - 1!

