A functional recurrence to obtain the prime numbers using the Smarandache prime function.

Sebastián Martín Ruiz. Avda de Regla, 43. Chipiona 11550Cádiz Spain.
Theorem: We are considering the function:
For $\mathrm{n} \geq 2$, integer:

$$
\mathrm{F}(n)=n+1+\sum_{m=n+1}^{2 n} \prod_{=n+1}^{m}\left[-E\left[\frac{\sum_{F=1}^{i}\left(E\left(\frac{i}{j}\right)-E\left(\frac{(t-1}{j}\right)\right)-2}{\sum_{F=1}^{i}\left(E\left(\frac{1}{j}\right)-E\left(\frac{(1-1}{\jmath}\right)\right)-1}\right]\right]
$$

one has: $p_{k+1}=\mathrm{F}\left(p_{k}\right)$ for all $k \geq 1$ where $\left\{p_{k}\right\}_{k \geq 1}$ are the prime numbers and $\mathrm{E}(\mathrm{x})$ is the greatest integer less than or equal to x.

Observe that the knowledge of p_{k+1} only depends on knowledge of p_{k} and the knowledge of the fore primes is unnecessary.

Observe that this is a functional recurrence strictly closed too.

Proof:

Suppose that we have found a function $G(i)$ with the following property:

$$
G(i)=\left\{\begin{array}{l}
1 \text { if } i \text { is compound } \\
0 \text { if is isprime }
\end{array}\right.
$$

This function is called Smarandache Prime Function (Reference)
Consider the following product:

$$
\prod_{i=p_{k}+1}^{m} G(i)
$$

If $p_{k}<m<p_{k+1} \prod_{k=p_{k}+1}^{m} G(i)=1$ since $i: p_{k}+1 \leq i \leq m$ are all compounds.

If $m \geq p_{k+1} \prod_{i=p_{k}+1}^{m} G(i)=0$ since the $G\left(p_{k+1}\right)=0$ factor is in the product.

Here is the sum:
$\sum_{m=p_{k}+1}^{2 p_{k}} \prod_{k=p_{k}+1}^{m} G(i)=\sum_{m=p_{k}+1}^{p_{k-1}-1} \prod_{k=p_{k}+1}^{m} G(i)+\sum_{m=p_{k+1}}^{2 p_{k}} \prod_{i=p_{k}+1}^{m} G(i)=\sum_{m=p_{k}+1}^{p_{k-1}-1} 1=$
$=p_{k+1}-1-\left(p_{k}+1\right)+1=p_{k+1}-p_{k}-1$

The second sum is zero since all products have the factor $G\left(p_{k+1}\right)=0$.

Therefore we have the following relation of recurrence:

$$
p_{k+1}=p_{k}+1+\sum_{m=p_{k}+1}^{2 p_{k}} \prod_{=p_{k}+1}^{m} G(i)
$$

Let's now see that we can find $G(i)$ with the asked property. Considerer:
(1) $\quad E\left(\frac{i}{j}\right)-E\left(\frac{i-1}{j}\right)=\left\{\begin{array}{l}1 \text { si } j \mid i \\ 0 \text { si } j \nmid i\end{array} \quad j=1,2, \ldots, i \quad i \geq 1\right.$

We shall deduce this later.

We deduce of this relation:

$$
d(i)=\sum_{j=1}^{i}\left(E\left(\frac{i}{j}\right)-E\left(\frac{i-1}{j}\right)\right) \text { where } d(i) \text { is the number of divisors of } i .
$$

If i is prime $d(i)=2$ therefore:

$$
-E\left[-\frac{d(i)-2}{\partial(i)-1}\right]=0
$$

If i is compound $d(i)>2$ therefore:

$$
0<\frac{\partial(i)-2}{\partial(i)-1}<1 \Rightarrow-E\left[-\frac{\partial(i)-2}{\partial(i)-1}\right]=1
$$

Therefore we have obtained the function $G(i)$ which is:

$$
G(i)=-E\left[-\frac{\sum_{-=1}^{i}\left(E\left(\frac{1}{j}\right)-E\left(\frac{t+1}{J}\right)\right)-2}{\sum_{F=1}^{i}\left(E\left(\frac{j}{j}\right)-E\left(\frac{-1}{J}\right)\right)-\mathbf{1}}\right] \quad i \geq 2 \text { integer }
$$

To finish the demonstration of the theorem it is necessary to prove (1)

$$
\text { If } j=1 \quad j \backslash i \quad E\left(\frac{i}{j}\right)-E\left(\frac{i-1}{j}\right)=i-(i-1)=1
$$

If $j>1$

$$
\begin{array}{cc}
i=j E\left(\frac{1}{j}\right)+r & 0 \leq r<j \\
i-1=j E\left(\frac{i-1}{j}\right)+s & 0 \leq s<j
\end{array}
$$

$$
\begin{aligned}
& \text { If } \left.j \left\lvert\, i \Rightarrow r=0 \Rightarrow j E\left(\frac{i}{j}\right)=j E\left(\frac{i-1}{j}\right)+s+1 \Rightarrow \begin{array}{c}
j \mid s+1 \\
s+1 \leq j
\end{array}\right.\right\} \Rightarrow j=s+1 \\
& \Rightarrow j E\left(\frac{i}{j}\right)=j E\left(\frac{i-1}{j}\right)+j \Rightarrow E\left(\frac{i}{j}\right)=E\left(\frac{i-1}{j}\right)+1 \\
& \text { If } \left.j \nmid i \Rightarrow r>0 \Rightarrow 0=j\left(E\left(\frac{i}{j}\right)-E\left(\frac{i-1}{j}\right)\right)+(r-s)+1 \Rightarrow j \right\rvert\, r-s+1
\end{aligned}
$$

Therefore $r-s+1=0$ or $r-s+1=j$

$$
\begin{aligned}
& \text { If } s \neq 0 \Rightarrow r-s<j-1 \Rightarrow r-s+1=0 \Rightarrow E\left(\frac{i}{j}\right)=E\left(\frac{i-1}{j}\right) \\
& \text { If } s=0 \Rightarrow j \left\lvert\, i-1 \Rightarrow E\left(\frac{i}{j}\right)=E\left(\frac{i-1}{j}+\frac{1}{j}\right)=\frac{i-1}{j}=E\left(\frac{i-1}{j}\right)\right.
\end{aligned}
$$

With this, the theorem is already proved.

Reference:

[1] E. Burton, "Smarandache Prime and Coprime Functions", http://www.gallup. unm.edu/~smarandache/primfnct.txt
[2] F. Smarandache, "Collected Papers", Vol. II, 200 p., p. 137, Kishinev University Press, Kishinev, 1997.

The general term of the prime number sequence and the Smarandache prime function.

Sebastián Martín Ruiz. Avda de Regla, 43 Chipiona 11550 Cádiz Spain.
Let 's consider the function $d(i)=$ number of divisors of the positive integer number i. We have found the following expression for this function:

$$
d(i)=\sum_{k=1}^{i} E\left(\frac{i}{k}\right)-E\left(\frac{l-1}{k}\right)
$$

We proved this expression in the article "A functional recurrence to obtain the prime numbers using the Smarandache Prime Function".

We deduce that the folowing function:

$$
G(i)=-E\left[-\frac{d(i)-2}{i}\right]
$$

This function is called the Smarandache Prime Function (Reference) It takes the next values:

$$
G(i)=\left\{\begin{array}{lll}
0 & \text { if } & i \\
1 & \text { if } i & i \\
\text { is } & \text { compound }
\end{array}\right.
$$

Let is consider now $\pi(n)=$ number of prime numbers smaller or equal than n . It is simple to prove that:

$$
\pi(n)=\sum_{i=1}^{n}(1-G(i))
$$

Let is have too:

$$
\begin{aligned}
& \text { If } 1 \leq k \leq p_{n}-1 \Rightarrow E\left(\frac{n(k)}{n}\right)=0 \\
& \text { If } C_{n} \geq k \geq p_{n} \Rightarrow E\left(\frac{n(k)}{n}\right)=1
\end{aligned}
$$

We will see what conditions have to carry C_{n}.
Therefore we have te following expression for $p_{n} n$-th prime number:

$$
p_{n}=1+\sum_{k=1}^{C_{n}}\left(1-E\left(\frac{\pi k)}{n}\right)\right)
$$

If we obtain C_{n} that only depends on n, this expression will be the general term of the prime numbers sequence, since π is in function with G and G does with $d(i)$ that is expressed in function with i too. Therefore the expression only depends on n.

$$
E[x]=\text { The highest integer equal or less than } n
$$

