Some Remarks on Fuzzy N-Normed Spaces

Sayed Elagan

Department of Mathematics and Statistics Faculty of Science, Taif University Al-Haweiah, Kingdom of Saudi ArabiaEgypt E-mail: sayed_khalil2000@yahoo.com

Abstract: It is shown that every fuzzy *n*-normed space naturally induces a locally convex topology, and that every finite dimensional fuzzy *n*-normed space is complete.

Key Words: Fuzzy *n*-normed spaces, *n*-seminorm, Smarandache space.

AMS(2000): 34A10, 34C10.

§1. Introduction

A Smarandache space is such a space that a straight line passing through a point p may turn an angle $\theta_p \geq 0$. If $\theta_p > 0$, then p is called a non-Euclidean. Otherwise, we call it an Euclidean point. In this paper, normed spaces are considered to be Euclidean, i.e., every point is Euclidean. In [7], S. Gähler introduced *n*-norms on a linear space. A detailed theory of *n*normed linear space can be found in [8], [10], [12]-[13]. In [8], H. Gunawan and M. Mashadi gave a simple way to derive an (n-1)- norm from the *n*-norm in such a way that the convergence and completeness in the *n*-norm is related to those in the derived (n-1)-norm. A detailed theory of fuzzy normed linear space can be found in [1], [3]-[6], [9], [11] and [15]. In [14], A. Narayanan and S. Vijayabalaji have extend *n*-normed linear space to fuzzy *n*-normed linear space. In section 2, we quote some basic definitions, and we show that a fuzzy *n*-norm is closely related to an ascending system of *n*-seminorms. In Section 3, we introduce a locally convex topology in a fuzzy *n*-normed space, and in Section 4 we consider finite dimensional fuzzy *n*-normed linear spaces.

§2. Fuzzy *n*-norms and ascending families of *n*-seminorms

Let n be a positive integer, and let X be a real vector space of dimension at least n. We recall the definitions of an n-seminorm and a fuzzy n-norm [14].

Definition 2.1 A function $(x_1, x_2, ..., x_n) \mapsto ||x_1, ..., x_n||$ from X^n to $[0, \infty)$ is called an *n*-seminorm on X if it has the following four properties:

¹Received April 14, 2009. Accepted May 12, 2009.

- (S1) $\|x_1, x_2, \ldots, x_n\| = 0$ if x_1, x_2, \ldots, x_n are linearly dependent;
- (S2) $||x_1, x_2, \ldots, x_n||$ is invariant under any permutation of x_1, x_2, \ldots, x_n ;
- (S3) $||x_1, \ldots, x_{n-1}, cx_n|| = |c| ||x_1, \ldots, x_{n-1}, x_n||$ for any real c;
- $(S4) ||x_1, \dots, x_{n-1}, y + z|| \leq ||x_1, \dots, x_{n-1}, y|| + ||x_1, \dots, x_{n-1}, z||.$

An n-seminorm is called a n-norm if $||x_1, x_2, \ldots, x_n|| > 0$ whenever x_1, x_2, \ldots, x_n are linearly independent.

Definition 2.2 A fuzzy subset N of $X^n \times \mathbb{R}$ is called a fuzzy n-norm on X if and only if:

(F1) For all $t \leq 0$, $N(x_1, x_2, \dots, x_n, t) = 0$;

(F2) For all t > 0, $N(x_1, x_2, \ldots, x_n, t) = 1$ if and only if x_1, x_2, \ldots, x_n are linearly dependent;

- (F3) $N(x_1, x_2, \ldots, x_n, t)$ is invariant under any permutation of x_1, x_2, \ldots, x_n ;
- (F4) For all t > 0 and $c \in \mathbb{R}$, $c \neq 0$,

$$N(x_1, x_2, \dots, cx_n, t) = N(x_1, x_2, \dots, x_n, \frac{t}{|c|});$$

(F5) For all $s, t \in \mathbb{R}$,

$$N(x_1, \ldots, x_{n-1}, y+z, s+t) \ge \min \left\{ N(x_1, \ldots, x_{n-1}, y, s), N(x_1, \ldots, x_{n-1}z, t) \right\}.$$

(F6) $N(x_1, x_2, \ldots, x_n, t)$ is a non-decreasing function of $t \in \mathbb{R}$ and

$$\lim_{t \to \infty} N(x_1, x_2, \dots, x_n, t) = 1.$$

The following two theorems clarify the relationship between definitions 2.1 and 2.2.

Theorem 2.1 Let N be a fuzzy n-norm on X. As in [14] define for $x_1, x_2, \ldots, x_n \in X$ and $\alpha \in (0, 1)$

(2.1)
$$\|x_1, x_2, \dots, x_n\|_{\alpha} := \inf \left\{ t : N(x_1, x_2, \dots, x_n, t) \ge \alpha \right\}.$$

Then the following statements hold.

(A1) For every $\alpha \in (0, 1)$, $\|\bullet, \bullet, \dots, \bullet\|_{\alpha}$ is an n-seminorm on X; (A2) If $0 < \alpha < \beta < 1$ and $x_1, \dots, x_n \in X$ then

$$||x_1, x_2, \dots, x_n||_{\alpha} \leq ||x_1, x_2, \dots, x_n||_{\beta};$$

(A3) If $x_1, x_2, \ldots, x_n \in X$ are linearly independent then

$$\lim_{\alpha \to 1^{-}} \|x_1, x_2, \dots, x_n\|_{\alpha} = \infty.$$

Proof (A1) and (A2) are shown in Theorem 3.4 in [14]. Let $x_1, x_2, \ldots, x_n \in X$ be linearly independent, and t > 0 be given. We set $\beta := N(x_1, x_2, \ldots, x_n, t)$. It follows from (F2) that $\beta \in [0, 1)$. Then (F6) shows that, for $\alpha \in (\beta, 1)$,

$$||x_1, x_2, \dots, x_n||_{\alpha} \ge t.$$

This proves (A3).

We now prove a converse of Theorem 2.2.

Theorem 2.2 Suppose we are given a family $\|\bullet, \bullet, \dots, \bullet\|_{\alpha}$, $\alpha \in (0, 1)$, of n-seminorms on X with properties (A2) and (A3). We define

(2.2)
$$N(x_1, x_2, \dots, x_n, t) := \inf\{\alpha \in (0, 1) : \|x_1, x_2, \dots, x_n\|_{\alpha} \ge t\}.$$

where the infimum of the empty set is understood as 1. Then N is a fuzzy n-norm on X.

Proof (F1) holds because the values of an *n*-seminorm are nonnegative.

(F2): Let t > 0. If x_1, \ldots, x_n are linearly dependent then $N(x_1, \ldots, x_n, t) = 1$ follows from property (S1) of an *n*-seminorm. If x_1, \ldots, x_n are linearly independent then $N(x_1, \ldots, x_n, t) < 1$ follows from (A3).

(F3) is a consequence of property (S2) of an n-seminorm.

(F4) is a consequence of property (S3) of an *n*-seminorm.

(F5): Let $\alpha \in (0,1)$ satisfy

(2.3)
$$\alpha < \min\{N(x_1, \dots, x_{n-1}, y, s), N(x_1, \dots, x_{n-1}, z, s)\}.$$

It follows that $||x_1, \ldots, x_{n-1}, y||_{\alpha} < s$ and $||x_1, \ldots, x_{n-1}, z||_{\alpha} < t$. Then (S4) gives

$$||x_1, \ldots, x_{n-1}, y + z||_{\alpha} < s + t.$$

Using (A2) we find $N(x_1, \ldots, x_{n-1}, y + z, s + t) \ge \alpha$ and, since α is arbitrary in (2.3), (F5) follows.

(F6): Definition 2.2 shows that N is non-decreasing in t. Moreover, $\lim_{t\to\infty} N(x_1, \ldots, x_n, t) = 1$ because seminorms have finite values.

It is easy to see that Theorems 2.1 and 2.2 establish a one-to-one correspondence between fuzzy *n*-norms with the additional property that the function $t \mapsto N(x_1, \ldots, x_n, t)$ is leftcontinuous for all x_1, x_2, \ldots, x_n and families of *n*-seminorms with properties (A2), (A3) and the additional property that $\alpha \mapsto ||x_1, \ldots, x_n||_{\alpha}$ is left-continuous for all x_1, x_2, \ldots, x_n .

Example 2.3(Example 3.3 in [14]). Let $\|\bullet, \bullet, \dots, \bullet\|$ be a *n*-norm on X. Then define $N(x_1, x_2, \dots, x_n, t) = 0$ if $t \leq 0$ and, for t > 0,

$$N(x_1, x_2, \dots, x_n, t) = \frac{t}{t + \|x_1, x_2, \dots, x_n\|}$$

Then the seminorms (2.1) are given by

$$|x_1, x_2, \dots, x_n||_{\alpha} = \frac{\alpha}{1-\alpha} ||x_1, x_2, \dots, x_n||$$

§3. Locally convex topology generated by a fuzzy *n*-norm

In this section (X, N) is a fuzzy *n*-normed space, that is, X is real vector space and N is fuzzy *n*-norm on X. We form the family of *n*-seminorms $\|\bullet, \bullet, \ldots, \bullet\|_{\alpha}$, $\alpha \in (0, 1)$, according to Theorem 2.1. This family generates a family \mathcal{F} of seminorms

$$||x_1,\ldots,x_{n-1},\bullet||_{\alpha}$$
, where $x_1,\ldots,x_{n-1}\in X$ and $\alpha\in(0,1)$.

The family \mathcal{F} generates a locally convex topology on X; see [2, Def.(37.9)], that is, a basis of neighborhoods at the origin is given by

$$\{x \in X : p_i(x) \leq \epsilon_i \text{ for } i = 1, 2, \dots, n\}$$

where $p_i \in \mathcal{F}$ and $\epsilon_i > 0$ for i = 1, 2..., n. We call this the locally convex topology generated by the fuzzy *n*-norm *N*.

Theorem 3.1 The locally convex topology generated by a fuzzy n-norm is Hausdorff.

Proof Given $x \in X$, $x \neq 0$, choose $x_1, \ldots, x_{n-1} \in X$ such that x_1, \ldots, x_{n-1}, x are linearly independent. By Theorem 2.1(A3) we find $\alpha \in (0, 1)$ such that $||x_1, \ldots, x_{n-1}, x||_{\alpha} > 0$. The desired statement follows; see [2,Theorem (37.21)].

Some topological notions can be expressed directly in terms of the fuzzy-norm N. For instance, we have the following result on convergence of sequences. We remark that the definition of convergence of sequences in a fuzzy *n*-normed space as given in [16, Definition 2.2] is meaningless.

Theorem 3.2 Let $\{x_k\}$ be a sequence in X and $x \in X$. Then $\{x_k\}$ converges to x in the locally convex topology generated by N if and only if

(3.1)
$$\lim_{k \to \infty} N(a_1, \dots, a_{n-1}, x_k - x, t) = 1$$

for all $a_1, \ldots, a_{n-1} \in X$ and all t > 0.

Proof Suppose that $\{x_k\}$ converges to x in (X, N). Then, for every $\alpha \in (0, 1)$ and all $a_1, a_2, \ldots, a_{n-1} \in X$, there is K such that, for all $k \ge K$, $||a_1, a_2, \ldots, a_{n-1}, x_k - x||_{\alpha} < \epsilon$. The latter implies

$$N(a_1, a_2, \dots, a_{n-1}, x_k - x, \epsilon) \ge \alpha$$

Since $\alpha \in (0,1)$ and $\epsilon > 0$ are arbitrary we see that (3.1) holds. The converse is shown in a similar way.

In a similar way we obtain the following theorem.

Theorem 3.3 Let $\{x_k\}$ be a sequence in X. Then $\{x_k\}$ is a Cauchy sequence in the locally convex topology generated by N if and only if

(3.2)
$$\lim_{k,m\to\infty} N(a_1,\ldots,a_{n-1},x_k-x_m,t) = 1$$

for all $a_1, \ldots, a_{n-1} \in X$ and all t > 0.

It should be noted that the locally convex topology generated by a fuzzy *n*-norm is not metrizable, in general. Therefore, in many cases it will be necessary to consider nets $\{x_i\}$ in place of sequences. Of course, Theorems 3.2 and 3.3 generalize in an obvious way to nets.

§4. Fuzzy *n*-norms on finite dimensional spaces

In this section (X, N) is a fuzzy *n*-normed space and X has finite dimension at least *n*. Since the locally convex topology generated by N is Hausdorff by Theorem 3.1. Tihonov's theorem [2, Theorem (23.1)] implies that this locally convex topology is the only one on X. Therefore, all fuzzy *n*-norms on X are equivalent in the sense that they generate the same locally convex topology.

In the rest of this section we will give a direct proof of this fact (without using Tihonov's theorem). We will set $X = \mathbb{R}^d$ with $d \ge n$.

Lemma 4.1 Every n-seminorm on $X = \mathbb{R}^d$ is continuous as a function on X^n with the euclidian topology.

Proof For every j = 1, 2, ..., n, let $\{x_{j,k}\}_{k=1}^{\infty}$ be a sequence in X converging to $x_j \in X$. Therefore, $\lim_{k \to \infty} ||x_{j,k} - x_j|| = 0$, where ||x|| denotes the euclidian norm of x. From property (S4) of an n-seminorm we get

$$|||x_{1,k}, x_{2,k}, \dots, x_{n,k}|| - ||x_1, x_{2,k}, \dots, x_{n,k}||| \le ||x_{1,k} - x_1, x_{2,k}, \dots, x_{n,k}||.$$

Expressing every vector in the standard basis of \mathbb{R}^d we see that there is a constant M such that

$$||y_1, y_2, \dots, y_n|| \le M ||y_1|| \dots ||y_n||$$
 for all $y_j \in X$.

Therefore,

$$\lim_{k \to \infty} \|x_{1,k} - x_1, x_{2,k}, \dots, x_{n,k}\| = 0$$

and so

$$\lim_{k \to \infty} |||x_{1,k}, x_{2,k}, \dots, x_{n,k}|| - ||x_1, x_{2,k}, \dots, x_{n,k}||| = 0.$$

We continue this procedure until we reach

$$\lim_{k \to \infty} \|x_{1,k}, x_{2,k}, \dots, x_{n,k}\| = \|x_1, x_2, \dots, x_n\|.$$

Lemma 4.2 Let (\mathbb{R}^d, N) be a fuzzy *n*-normed space. Then $||x_1, x_2, \ldots, x_n||_{\alpha}$ is an *n*-norm if $\alpha \in (0, 1)$ is sufficiently close to 1.

Proof We consider the compact set

 $S = \{ (x_1, x_2, \dots, x_n) \in \mathbb{R}^{dn} : x_1, x_2, \dots, x_n \text{ is an orthonormal system in } \mathbb{R}^d \}.$

For each $\alpha \in (0, 1)$ consider the set

$$S_{\alpha} = \{ (x_1, x_2, \dots, x_n) \in S : \|x_1, x_2, \dots, x_n\|_{\alpha} > 0 \}.$$

By Lemma 4.1, S_{α} is an open subset of S. We now show that

(4.1)
$$S = \bigcup_{\alpha \in (0,1)} S_{\alpha}.$$

If $(x_1, x_2, \ldots, x_n) \in S$ then (x_1, x_2, \ldots, x_n) is linearly independent and therefore there is β such that $N(x_1, x_2, \ldots, x_n, 1) < \beta < 1$. This implies that $||x_1, x_2, \ldots, x_n||_{\beta} \ge 1$ so (4.1) is proved. By compactness of S, we find $\alpha_1, \alpha_2, \ldots, \alpha_m$ such that

$$S = \bigcup_{i=1}^{m} S_{\alpha_i}.$$

Let $\alpha = \max \{ \alpha_1, \alpha_2, \ldots, \alpha_m \}$. Then $||x_1, x_2, \ldots, x_n||_{\alpha} > 0$ for every $(x_1, x_2, \ldots, x_n) \in S$.

Let $x_1, x_2, \ldots, x_n \in X$ be linearly independent. Construct an orthonormal system e_1, e_2, \ldots, e_n from x_1, x_2, \ldots, x_n by the Gram-Schmidt method. Then there is c > 0 such that

$$||x_1, x_2, \dots, x_n||_{\alpha} = c ||e_1, e_2, \dots, e_n||_{\alpha} > 0.$$

This proves the lemma.

Theorem 4.1 Let N be a fuzzy n-norm on \mathbb{R}^d , and let $\{x_k\}$ be a sequence in \mathbb{R}^d and $x \in \mathbb{R}^d$.

(a) $\{x_k\}$ converges to x with respect to N if and only if $\{x_k\}$ converges to x in the euclidian topology.

(b) $\{x_k\}$ is a Cauchy sequence with respect to N if and only if $\{x_k\}$ is a Cauchy sequence in the euclidian metric.

Proof (a) Suppose $\{x_k\}$ converges to x with respect to euclidian topology. Let $a_1, a_2, \ldots, a_{n-1} \in X$. By Lemma 4.1, for every $\alpha \in (0, 1)$,

$$\lim_{k \to \infty} \|a_1, a_2, \dots, a_{n-1}, x_k - x\|_{\alpha} = 0.$$

By definition of convergence in (\mathbb{R}^d, N) , we get that $\{x_k\}$ converges to x in (\mathbb{R}^d, N) . Conversely, suppose that $\{x_k\}$ converges to x in (\mathbb{R}^d, N) . By Lemma 4.2, there is $\alpha \in (0, 1)$ such that $\|y_1, y_2, \ldots, y_n\|_{\alpha}$ is an *n*-norm. By definition, $\{x_k\}$ converges to x in the *n*-normed space $(\mathbb{R}^d, \|\cdot\|_{\alpha})$. It is known from [8, Proposition 3.1] that this implies that $\{x_k\}$ converges to x with respect to euclidian topology.

(b) is proved in a similar way.

Theorem 4.2 A finite dimensional fuzzy n-normed space (X, N) is complete.

Proof This follows directly from Theorem 3.4.

References

- T. Bag and S. K. Samanta, Finite dimensional fuzzy normed linear spaces, J. Fuzzy Math. 11(2003), No. 3, 687-705.
- [2] S. Berberian, Lectures in Functional Analysis and Operator Theory, Springer-Verlag, New York, 1974.
- [3] S.C. Chang and J. N. Mordesen, Fuzzy linear operators and fuzzy normed linear spaces, Bull. Calcutta Math. Soc. 86 (1994), No. 5, 429-436.
- [4] C. Felbin, Finite- dimensional fuzzy normed linear space, *Fuzzy Sets and Systems*, 48 (1992), No. 2, 239-248.
- [5] C. Felbin, The completion of a fuzzy normed linear space, J. Math. Anal. Appl., 174 (1993), No. 2, 428-440.
- [6] C. Felbin, Finite dimensional fuzzy normed linear space. II., J. Anal., 7 (1999), 117-131.
- [7] S. Gähler, Untersuchungen uber verallgemeinerte *m*-metrische Raume, I, II, III., Math. Nachr., 40 (1969), 165-189.
- [8] H. Gunawan and M. Mashadi, On n-normed spaces, Int. J. Math. Math. Sci., 27 (2001), No. 10, 631-639.
- [9] A. K. Katsaras, Fuzzy topological vector spaces. II., *Fuzzy Sets and Systems*, 12 (1984), No. 2, 143-154.
- [10] S. S. Kim and Y. J. Cho, Strict convexity in linear n- normed spaces, Demonstratio Math., 29 (1996), No. 4, 739-744.
- [11] S. V, Krish and K. K. M. Sarma, Separation of fuzzy normed linear spaces, *Fuzzy Sets and Systems*, 63 (1994), No. 2, 207-217.
- [12] R. Malceski, Strong n-convex n-normed spaces, Math. Bilten, No.21 (1997), 81-102.
- [13] A. Misiak, *n*-inner product spaces, *Math. Nachr.*, 140 (1989), 299-319.
- [14] Al. Narayanan and S. Vijayabalaji, Fuzzy n- normed linear spaces, Int. J. Math. Math. Sci., 27 (2005), No. 24, 3963-3977.
- 15 G. S. Rhie, B. M. Choi, and D. S. Kim, On the completeness of fuzzy normed linear spaces, Math. Japon., 45(1997), No. 1, 33-37.
- [16] S. Vijayabalaji and N. Thilligovindan, Complete fuzzy n-normed space, J. Fund. Sciences, 3 (2007), 119-126 (available online at www.ibnusina.utm.my/jfs)