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Abstract In this paper, we use the elementary methods to study the properties of the con-

structive set S, and obtain some interesting properties for it.
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§1. Introduction and Results

The generalized constructive set S is defined as: numbers formed by digits d1, d2, · · · , dm

only, all di being different each other, 1 ≤ m ≤ 9. That is to say,

(1) d1, d2, · · · , dm belongs to S;

(2) If a, b belong to S, then ab belongs to S too;

(3) Only elements obtained by rules (1) and (2) applied a finite number of times belongs
to S.

For example, the constructive set (of digits 1, 2) is: 1, 2, 11, 12, 21, 22, 111, 112, 121, 122, 211,

212, 221, 222, 1111, 1112, 1121 · · · . And the constructive set (of digits 1, 2, 3) is: 1, 2, 3, 11, 12, 13, 21,

22, 23, 31, 32, 33, 111, 112, 113, 121, 122, 123, 131, 132, 133, 211, 212, 213, 221, 222, 223, 231, 232, 233,

311, 312, 313, 321, 322, 323, 331, 332, 333, 1111, · · · . In problem 6, 7 and 8 of reference [1], Pro-
fessor F.Smarandache asked us to study the properties of this sequence. In [2], Gou Su had
studied the convergent properties of the series

+∞∑
n=1

1
aα

n

,

and proved that the series is convergent if α > log m, and divergent if α ≤ log m, where {an}
denotes the sequence of the constructive set S, formed by digits d1, d2, · · · , dm only, all di being
different each other, 1 ≤ m ≤ 9.

In this paper, we shall use the elementary methods to study the summation
n∑

k=1

Sk and

n∑

k=1

Tk, where Sk denotes the summation of all k digits numbers in S, Tk denotes the summation

of each digits of all k digits numbers in S.

That is, we shall prove the following
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Theorem 1. For the generalized constructive set S of digits d1, d2, · · · , dm (1 ≤ m ≤ 9),
we have

n∑

k=1

Sk =
d1 + d2 + · · ·+ dm

9

(
10× (10m)n − 1

10m− 1
− mn − 1

m− 1

)
,

where Sk denotes the summation of all k digits numbers in S.
Taking m = 2, d1 = 1 and d2 = 2 in Theorem 1, we may immediately get
Corollary 1. For the generalized constructive set S of digits 1 and 2, we have

n∑

k=1

Sk =
1
3

(
10× 20n − 1

19
− 2n + 1

)
.

Taking m = 3, d1 = 1, d2 = 2 and d3 = 3 in Theorem 1, we may immediately get the
following:

Corollary 2. For the generalized constructive set S of digits 1, 2 and 3, we have

n∑

k=1

Sk =
2
3

(
10× 30n − 1

29
− 3n

2
+

1
2

)
.

Theorem 2. For the generalized constructive set S of digits d1, d2, · · · , dm (1 ≤ m ≤ 9),
we have

n∑

k=1

Tk = (d1 + d2 + · · ·+ dm) · nmn+1 − (n + 1)mn + 1
(m− 1)2

,

where Tk denotes the summation of each digits of all k digits numbers in S.
Taking m = 2, d1 = 1 and d2 = 2 in Theorem 2, we may immediately get the following:
Corollary 3. For the the generalized constructive set S of digits 1 and 2, we have

n∑

k=1

Tk = 3n · 2n+1 − 3(n + 1)2n + 3.

Taking m = 3, d1 = 1, d2 = 2 and d3 = 3 in Theorem 2, we may immediately get
Corollary 4. For the the generalized constructive set S of digits 1, 2 and 3, we have

n∑

k=1

Tk =
3
2
n · 3n+1 − 3

2
(n + 1)3n +

3
2
.

§2. Proof of the theorems

In this section, we shall complete the proof of the theorems. First we prove Theorem 1.
Let Sk denotes the summation of all k digits numbers in the generalized constructive set S.
Note that for k = 1, 2, 3, · · · , there are mk numbers of k digits in S. So we have

Sk = 10k−1mk−1(d1 + d2 + · · ·+ dm) + mSk−1. (1)

Meanwhile, we have

Sk−1 = 10k−2mk−2(d1 + d2 + · · ·+ dm) + mSk−2. (2)
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Combining (1) and (2), we can get the following recurrence equation

Sk − 11mSk−1 + 10m2Sk−2 = 0.

Its characteristic equation
x2 − 11mx + 10m2 = 0

have two different real solutions
x = m, 10m.

So we let
Sk = A ·mk + B · (10m)k.

Note that
S0 = 0, S1 = d1 + d2 + · · ·+ dm,

we can get

A = −d1 + d2 + · · ·+ dm

9m
, B =

d1 + d2 + · · ·+ dm

9m
.

So
Sk =

d1 + d2 + · · ·+ dm

9m

(
(10m)k −mk

)
.

Then
n∑

k=1

Sk =
d1 + d2 + · · ·+ dm

9

(
10× (10m)n − 1

10m− 1
− mn − 1

m− 1

)
.

This completes the proof of Theorem 1.
Now we come to prove Theorem 2. Let Tk is denotes the summation of each digits of all k

digits numbers in the generalized constructive set S.
Similarly, note that for k = 1, 2, 3, · · · , there are mk numbers of k digits in S, so we have

Tk = mk−1(d1 + d2 + · · ·+ dm) + mTk−1 (3)

Meanwhile, we have

Tk−1 = mk−2(d1 + d2 + · · ·+ dm) + mTk−2 (4)

Combining (3) and (4), we can get the following recurrence equation

Tk − 2mTk−1 + m2Tk−2 = 0,

its characteristic equation
x2 − 2mx + m2 = 0

have two solutions
x1 = x2 = m.

So we let
Tk = A ·mk + k ·B ·mk.

Note that
T0 = 0, T1 = d1 + d2 + · · ·+ dm.



94 Qianli Yang No. 2

We may immediately deduce that

A = 0, B =
d1 + d2 + · · ·+ dm

m
.

So
Tk = (d1 + d2 + · · ·+ dm) · kmk−1.

Then
n∑

k=1

Tk = (d1 + d2 + · · ·+ dm)
n∑

k=1

k ·mk−1

= (d1 + d2 + · · ·+ dm)

(
n∑

k=1

mk

)′

= (d1 + d2 + · · ·+ dm) · nmn+1 − (n + 1)mn + 1
(m− 1)2

.

This completes the proof of Theorem 2.
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