Genus Distribution for a Graph

Liangxia Wan
(Department of Mathematics, Beijing Jiaotong University, Beijing 100044, China)
Hong-Jian Lai
(Department of Mathematics, West Virginia University, Morgantown, WV 26506, USA)
Yanpei Liu
(Department of Mathematics, Beijing Jiaotong University, Beijing 100044, China)
E-mail: wanliangxia@126.com

Abstract

In this paper we develop the technique of a distribution decomposition for a graph. A formula is given to determine genus distribution of a cubic graph. Given any connected graph, it is proved that its genus distribution is the sum of those for some cubic graphs by using the technique.

Key Words: Joint tree; genus distribution; embedding distribution; Smarandachely k drawing.

AMS(2000): 05C10.

§1. Introduction

We consider finite connected graphs. Surfaces are orientable 2-dimensional compact manifolds without boundaries. Embeddings of a graph considered are always assumed to be orientable 2-cell embeddings. Given a graph G and a surface S, a Smarandachely k-drawing of G on S is a homeomorphism $\phi: G \rightarrow S$ such that $\phi(G)$ on S has exactly k intersections in $\phi(E(G))$ for an integer k. If $k=0$, i.e., there are no intersections between in $\phi(E(G))$, or in another words, each connected component of $S-\phi(G)$ is homeomorphic to an open disc, then G has an 2-cell embedding on S. If G can be embedded on surfaces S_{r} and S_{t} with genus r and t respectively, then it is shown in [1] that for any k with $r \leqslant k \leqslant t, G$ has an embedding on S_{k}. Naturally, the genus of a graph is defined to be the minimum genus of a surface on which the graph can be embedded. Given a graph, how many distinct embeddings does it have on each surface? This is the genus distribution problem, first investigated by Gross and Furst [4]. As determining the genus of a graph is NP-complete [15], it appears more difficult and significant to determine the genus distribution of a graph.

[^0]There have been results on genus distribution for some particular types of graphs (see [3], [5], [8], [9], [11]-[17], among others). In [6], Liu discovered the joint trees of a graph which provide a substantial foundation for us to solve the genus distribution of a graph. For a given embedding G_{σ} of a graph G, one can find the surface, embedding surface or associate surface, which G_{σ} embeds on by applying the associated joint tree. In fact, genus distribution of G is that of the set of all of its embedding surfaces. This paper first study genus distributions of some sets of surfaces and then investigate the genus distribution of a generic graph by using the surface sorting method developed in [16].

Preliminaries will be briefed in the next section. In Section 3, surfaces Q_{j}^{i} will be introduced. We shall investigate the genus distribution of surface sets Q_{j}^{0} and Q_{j}^{1} for $1 \leqslant j \leqslant 24$, and derive the related recursive formulas. In Section 4, a recursion formula of the genus distribution for a cubic graph is given. In the last section, we show that the genus distribution of a general graph can be transformed into genus distribution of some cubic graphs by using a technique we develop in this paper.

§2. Preliminaries

For a graph G, a rotation at a vertex v is a cyclic permutation of edges incident with v. A rotation system of G is obtained by giving each vertex of G a rotation. Let ρ_{v} denote the valence of vertex v which is the number of edges incident with v. The number of rotations systems of G is $\prod_{v \in V(G)}\left(\rho_{v}-1\right)!$. Edmonds found that there is a bijection between the rotations systems of a graph and its embeddings [2]. Youngs provided the first proof published [18]. Thus, the number of embeddings of G is $\prod_{v \in V(G)}\left(\rho_{v}-1\right)$!. Let $g_{i}(G)$ denote the number of embeddings of G with the genus $i(i \geq 0)$. Then, the genus distribution of G is the sequence $g_{0}(G), g_{1}(G), g_{2}(G), \cdots$. The genus polynomial of G is $f_{G}(x)=\sum_{i \geq 0} g_{i}(G) x^{i}$.

Given a spanning tree T of G, the joint trees of G are obtained by splitting each non-tree edge e into two semi-edges e and e^{-}. Given a rotation system σ of $G, G_{\sigma}, \widetilde{T}_{\sigma}$ and $\mathcal{P}_{\widetilde{T}}^{\sigma}$ denote the associated embedding, joint tree and embedding surface which G_{σ} embedded on respectively. There is a bijection btween embeddings and joint trees of G such that G_{σ} corresponds to \widetilde{T}_{σ}. Given a joint tree \widetilde{T}, a sub-joint tree \widetilde{T}_{1} of \widetilde{T} is a graph consisting of T_{1} and semi-edges incident with vertices of T_{1} where T_{1} is a tree and $V\left(T_{1}\right) \subseteq V(T)$. A sub-joint tree \widetilde{T}_{1} of \widetilde{T} is called maximal if there is not a tree T_{2} such that $V\left(T_{1}\right) \subset V\left(T_{2}\right) \subseteq V(T)$.

A linear sequence $S=a b c \cdots z$ is a sequence of letters satisfying with a relation $a \prec b \prec$ $c \prec \cdots \prec z$. Given two linear sequences S_{1} and S_{2}, the difference sequence S_{1} / S_{2} is obtained by deleting letters of S_{2} in S_{1}. Since a surface is obtained by identifying a letter with its inverse letter on a special polygon along the direction, a surface is regarded as that polygon such that a and a^{-}occur only once for each $a \in S$ in this sense.

Let \mathcal{S} be the collection of surfaces. Let $\gamma(S)$ be the genus of a surface S. In order to determine $\gamma(S)$, an equivalence is defined by Op1, Op2 and Op3 on \mathcal{S} as follows:

Op 1. $A B \sim(A e)\left(e^{-} B\right)$ where $e \notin A B$;

Op 2. $A e_{1} e_{2} B e_{2}^{-} e_{1}^{-} \sim A e B e^{-}=A e^{-} B e$ where $e \notin A B$;
Op 3. $A e e^{-} B \sim A B$ where $A B \neq \emptyset$
where $A B$ is a surface.
Thus, S is equivalent to one, and only one of the canonical forms of surfaces $a_{0} a_{0}^{-}$and $\prod_{k=1}^{i} a_{k} b_{k} a_{k}^{-} b_{k}^{-}$which are the sphere and orientable surfaces of genus $i(i \geq 1)$.
Lemma 2.1 ([6]) Let A and B be surfaces. If $a, b \notin B$, and if $A \sim B a b a^{-} b^{-}$, then $\gamma(A)=$ $\gamma(B)+1$.

Lemma $2.2([7])$ Let A, B, C, D and E be linear sequences and let $A B C D E$ be a surface. If $a, b \notin A B C D E$, then $A a B b C a^{-} D b^{-} E \sim A D C B E a b a^{-} b^{-}$.

Lemma 2.3 ([13],[16]) Let A, B, C and D be linear sequences and let $A B C D$ be a surface. If $a \neq b \neq c \neq a^{-} \neq b^{-} \neq c^{-}$and if $a, b, c \notin A B C D$, then each of the following holds.
(i) $a A B a^{-} C D \sim a B A a^{-} C D \sim a A B a^{-} D C$.
(ii) $A a B a^{-} b C b^{-} c D c^{-} \sim a B a^{-} A b C b^{-} c D c^{-} \sim a B a^{-} b C b^{-} A c D c^{-}$.
(iii) $A a B a^{-} b C b^{-} c D c^{-} \sim B a A a^{-} b C b^{-} c D c^{-} \sim C a A a^{-} b B b^{-} c D c^{-} \sim D a A a^{-} b B b^{-} c C c^{-}$.

For a set of surfaces M, let $g_{i}(M)$ denote the number of surfaces with the genus i in M. Then, the genus distribution of M is the sequence $g_{0}(M), g_{1}(M), g_{2}(M), \cdots$. The genus polynomial is $f_{M}(x)=\sum_{i \geq 0} g_{i}(M) x^{i}$.

§3. Genus Distribution for Q_{j}^{1}

Let $a, b, c, d, a^{-}, b^{-}, c^{-}, d^{-}$be distinct letters and let A_{0}, B_{0}, C, D_{0} be linear sequences. Then, surface sets Q_{j}^{k} are defined as follows for $j=1,2,3, \cdots, 24$:

$$
\begin{array}{lll}
Q_{1}^{k}=\left\{A_{k} B_{k} C D_{k}\right\} & Q_{2}^{k}=\left\{A_{k} C D_{k} a B_{k} a^{-}\right\} & Q_{3}^{k}=\left\{A_{k} B_{k} C a D_{k} a^{-}\right\} \\
Q_{4}^{k}=\left\{A_{k} B_{k} a C D_{k} a^{-}\right\} & Q_{5}^{k}=\left\{A_{k} D_{k} a B_{k} C a^{-}\right\} & Q_{6}^{k}=\left\{A_{k} D_{k} C B_{k}\right\} \\
Q_{7}^{k}=\left\{B_{k} C D_{k} a A_{k} a^{-}\right\} & Q_{8}^{k}=\left\{B_{k} D_{k} C a A_{k} a^{-}\right\} & Q_{9}^{k}=\left\{A_{k} B_{k} D_{k} C\right\} \\
Q_{10}^{k}=\left\{A_{k} D_{k} C a B_{k} a^{-}\right\} & Q_{11}^{k}=\left\{A_{k} B_{k} D_{k} a C a^{-}\right\} & Q_{12}^{k}=\left\{A_{k} D_{k} B_{k} a C a^{-}\right\} \\
Q_{13}^{k}=\left\{A_{k} C B_{k} D_{k}\right\} & Q_{14}^{k}=\left\{A_{k} C B_{k} a D_{k} a^{-}\right\} & Q_{15}^{k}=\left\{A_{k} C D_{k} B_{k}\right\} \\
Q_{16}^{k}=\left\{A_{k} C a B_{k} D_{k} a^{-}\right\} & Q_{17}^{k}=\left\{A_{k} D_{k} B_{k} C\right\} & Q_{18}^{k}=\left\{C D_{k} a A_{k} a^{-} b B_{k} b^{-}\right\} \\
Q_{19}^{k}=\left\{B_{k} D_{k} a A_{k} a^{-} b C b^{-}\right\} & Q_{20}^{k}=\left\{B_{k} C a A_{k} a^{-} b D_{k} b^{-}\right\} & Q_{21}^{k}=\left\{A_{k} D_{k} a B_{k} a^{-} b C b^{-}\right\} \\
Q_{22}^{k}=\left\{A_{k} C a B_{k} a^{-} b D_{k} b^{-}\right\} & Q_{23}^{k}=\left\{A_{k} B_{k} a C a^{-} b D_{k} b^{-}\right\} & Q_{24}^{k}=\left\{A_{k} a B_{k} a^{-} b C b^{-} c D_{k} c^{-}\right\}
\end{array}
$$

where $k=0$ and $1, A_{1} \in\left\{d A_{0}, A_{0} d\right\},\left(B_{1}, D_{1}\right) \in\left\{\left(B_{0} d^{-}, D_{0}\right),\left(B_{0}, d^{-} D_{0}\right)\right\}$ and a, a^{-}, b, b^{-}, $c, c^{-}, d, d^{-} \notin A B C D$. Let $f_{Q_{j}^{0}}(x)$ denote the genus polynomial of Q_{j}^{0}. If $A_{1}^{0} A_{0}^{0} D_{0} B_{1} B_{2}^{0} C_{2}^{0} C_{1} D_{1}$ $=\emptyset$, then $f_{Q_{j}^{0}}(x)=1$. Otherwise, suppose that $f_{Q_{j}^{0}}(x)$ are given for $1 \leqslant j \leqslant 24$. Then,

Theorem 3.1 Let $g_{i_{j}}(n)$ be the number of surfaces with genus i in Q_{j}^{n}. Each of the following holds.

$$
g_{i_{j}}(1)=\left\{\begin{array}{l}
g_{i_{2}}(0)+g_{i_{3}}(0)+g_{i_{4}}(0)+g_{i_{5}}(0), \text { if } j=1 \\
g_{i_{21}}(0)+g_{i_{22}}(0)+g_{(i-1)_{1}}(0)+g_{(i-1)_{15}}(0), \text { if } j=2 \\
g_{i_{22}}(0)+g_{i_{23}}(0)+g_{(i-1)_{1}}(0)+g_{(i-1)_{17}}(0), \text { if } j=3 \\
g_{i_{4}}(0)+g_{i_{18}}(0)+g_{(i-1)_{6}}(0)+g_{(i-1)_{9}}(0), \text { if } j=4 \\
g_{i_{5}}(0)+g_{i_{20}}(0)+g_{(i-1)_{6}}(0)+g_{(i-1)_{13}}(0), \text { if } j=5 \\
2 g_{i_{6}}(0)+2 g_{i_{8}}(0), \text { if } j=6 \\
2 g_{(i-1)_{15}}(0)+2 g_{(i-1)_{17}}(0), \text { if } j=7 \text { and } 16 \\
4 g_{(i-1)_{6}}(0), \text { if } j=8 \\
2 g_{i_{4}}(0)+2 g_{i_{10}}(0), \text { if } j=9 \\
g_{i_{10}}(0)+g_{i_{18}}(0)+g_{(i-1)_{6}}(0)+g_{(i-1)_{9}}(0), \text { if } j=10 \\
2 g_{i_{21}}(0)+2 g_{i_{23}}(0), \text { if } j=11 \\
2 g_{i_{12}}(0)+2 g_{i_{19}}(0), \text { if } j=12 \\
2 g_{i_{5}}(0)+2 g_{i_{14}}(0), \text { if } j=13 \\
g_{i_{14}}(0)+g_{i_{20}}(0)+g_{(i-1)_{6}}(0)+g_{(i-1)_{13}}(0), \text { if } j=14 \\
g_{i_{7}}(0)+g_{i_{12}}(0)+g_{i_{15}}(0)+g_{i_{16}}(0), \text { if } j=15 \\
g_{i_{7}}(0)+g_{i_{12}}(0)+g_{i_{16}}(0)+g_{i_{17}}(0), \text { if } j=17 \\
2 g_{(i-1)_{4}}(0)+2 g_{(i-1)_{10}}(0), \text { if } j=18 \\
4 g_{(i-1)_{12}}(0), \text { if } j=19 \\
2 g_{(i-1)_{5}}(0)+2 g_{(i-1)_{14}}(0), \text { if } j=20 \\
g_{i_{21}}(0)+g_{i_{24}}(0)+g_{(i-1)_{11}}(0)+g_{(i-1)_{12}}(0), \text { if } j=21 \\
g_{(i-1)_{2}}(0)+g_{(i-1)_{3}}(0)+g_{(i-1)_{10}}(0)+g_{(i-1)_{14}}(0), \text { if } j=22 \\
g_{i_{23}}(0)+g_{i_{24}}(0)+g_{(i-1)_{11}}(0)+g_{(i-1)_{12}}(0), \text { if } j=23 \\
2 g_{(i-1)_{21}}(0)+2 g_{(i-1)_{23}}(0), \text { if } j=24
\end{array}\right.
$$

Proof We shall prove the equation for $g_{i_{6}}(1)$, and the proofs for others are similar. Let

$$
\begin{array}{ll}
U_{1}=\left\{A_{0} d d^{-} D_{0} C B_{0}\right\} & U_{2}=\left\{d A_{0} D_{0} C B_{0} d^{-}\right\} \\
U_{3}=\left\{A_{0} d D_{0} C B_{0} d^{-}\right\} & U_{4}=\left\{d A_{0} d^{-} D_{0} C B_{0}\right\}
\end{array}
$$

By the definition of Q_{6}^{1}, we have $Q_{6}^{1}=\left\{U_{1}, U_{2}, U_{3}, U_{4}\right\}$. By the definition of g_{i},

$$
g_{i_{6}}(1)=g_{i}\left(U_{1}\right)+g_{i}\left(U_{2}\right)+g_{i}\left(U_{3}\right)+g_{i}\left(U_{4}\right)
$$

By Op3,
$A_{0} d d^{-} D_{0} C B_{0} \sim A_{0} D_{0} C B_{0}$, and $d A_{0} D_{0} C B_{0} d^{-}=A_{0} D_{0} C B_{0} d^{-} d \sim A_{0} D_{0} C B_{0}$.
It follows that

$$
\begin{equation*}
g_{i}\left(U_{1}\right)=g_{i}\left(U_{2}\right)=g_{i_{6}}(0) \tag{8}
\end{equation*}
$$

By Lemma 2.3 (i) and Op2, we have

$$
A_{0} d D_{0} C B_{0} d^{-}=D_{0} C B_{0} d^{-} A_{0} d \sim B_{0} D_{0} C d^{-} A_{0} d \sim B_{0} D_{0} C a A_{0} a^{-}
$$

and

$$
d A_{0} d^{-} D_{0} C B_{0}=B_{0} D_{0} C d A_{0} d^{-} \sim B_{0} D_{0} C a A_{0} a^{-} .
$$

So

$$
\begin{equation*}
g_{i}\left(U_{3}\right)=g_{i}\left(U_{4}\right)=g_{i_{8}}(0) . \tag{9}
\end{equation*}
$$

Combining (1) and (2), we have

$$
g_{i_{6}}(1)=2 g_{i_{6}}(0)+2 g_{i_{8}}(0) .
$$

§4. Embedding Surfaces of a Cubic Graph

Given a cubic graph G with n non-tree edges $y_{l}(1 \leqslant l \leqslant n)$, suppose that T is a spanning tree such that T contains the longest path of G and that \widetilde{T} is an associated joint tree. Let X_{l}, Y_{l}, Z_{l} and F_{l} be linear sequences for $1 \leq l \leq n$ such that $X_{l} \cup Y_{l}=y_{l}, Z_{l} \cup F_{l}=y_{l}^{-}, X_{l} \neq Y_{l}$ and $Z_{l} \neq F_{l}$.

RECORD RULE: Choose a vertex u incident with two semi-edges as a starting vertex and travel \widetilde{T} along with tree edges of \widetilde{T}. In order to write down surfaces, we shall consider three cases below.

Case 1: If v is incident with two semi-edges y_{s} and y_{t}. Suppose that the linear sequence is R when one arrives v. Then, write down $R X_{s} y_{t} Y_{s}$ going away from v.

Case 2: If v is incident with one semi-edge y_{s}. Suppose that R_{1} is the linear sequence when one arrives v in the first time. Then the sequence is $R_{1} X_{s}$ when one leaves v in the first time. Suppose that R_{2} is the linear sequence when one arrives v in the second time. Then the sequence is $R_{2} Y_{s}$ when one leaves v in the second time.

Case 3: If v is not incident with any semi-edge. Suppose that R_{1}, R_{2} and R_{3} are, respectively, the linear sequences when one leaves v in the first time, the second time and the third time. Then, the sequences are $\left(R_{2} / R_{1}\right) R_{1}\left(R_{3} / R_{2}\right)$ and R_{3} when one leaves v in the third time.

Here, $1 \leq s, t \leq n$ and $s \neq t$. If v is incident with a semi-edge y_{s}^{-}, then replace X_{s} with Z_{s} and replace Y_{s} with F_{s}.

Lemma 4.1 There is a bijection between embedding surfaces of a cubic graph and surfaces obtained by the record rule.

Proof Let T be a spanning tree such that \widetilde{T} is a joint tree of G above. Suppose that σ_{v} is
a rotation of v and that R_{1}, R_{2} and R_{3} are given above.

$$
\sigma_{v}=\left\{\begin{array}{c}
\left(y_{s}, y_{t}, e_{r}\right), \text { if } X_{s}=y_{s} \text { or } F_{s}=y_{s}^{-} \\
\text {and } v \text { is incident with } y_{s}, y_{t} \text { and } e_{r} ; \\
\left(y_{t}, y_{s}, e_{r}\right), \text { if } Y_{s}=y_{s} \text { or } Z_{s}=y_{s}^{-} \\
\text {and } v \text { is incident with } y_{s}, y_{t} \text { and } e_{r} ; \\
\left(y_{s}, e_{1}, e_{2}\right), \text { if } X_{s}=y_{s} \text { or } F_{s}=y_{s}^{-} \\
\text {and } v \text { is incident with } y_{s}, e_{p} \text { and } e_{q} ; \\
\left(e_{1}, y_{s}, e_{2}\right), \text { if } Y_{s}=y_{s} \text { or } Z_{s}=y_{s}^{-} \\
\text {and } v \text { is incident with } y_{s}, e_{p} \text { and } e_{q} ; \\
\left(e_{1}, e_{2}, e_{3}\right), \text { if the linear sequence is } R_{3} \\
\text { and } v \text { is incident with } e_{p}, e_{q} \text { and } e_{r} ; \\
\left(e_{2}, e_{1}, e_{3}\right), \text { if the linear sequence is }\left(R_{2} / R_{1}\right) R_{1}\left(R_{3} / R_{2}\right) \\
\text { and } v \text { is incident with } e_{p}, e_{q} \text { and } e_{r}
\end{array}\right.
$$

where e_{p}, e_{q} and e_{r} are tree-edges for $1 \leqslant p, q, r \leqslant 2 n-3$ and $e_{p} \neq e_{q} \neq e_{r}$ for $p \neq q \neq r$. Hence the conclusion holds.

By the definitions for X_{l}, Y_{l}, Z_{l} and F_{l}, we have the following observation:
Observation 4.2 A surface set $H^{(0)}$ of G has properties below.
(1) Either $X_{l}, Y_{l} \in H^{(0)}$ or $X_{l}, Y_{l} \notin H^{(0)}$;
(2) Either $Z_{l}, F_{l} \in H^{(0)}$ or $Z_{l}, F_{l} \notin H^{(0)}$;
(3) If for some l with $1 \leqslant l \leqslant n, X_{l}, Y_{l}, Z_{l}, F_{l} \in H^{(0)}$, then $H^{(0)}$ has one of the following forms $X_{l} A^{(0)} Y_{l} B^{(0)} Z_{l} C^{(0)} F_{l} D^{(0)}, Y_{l} A^{(0)} X_{l} B^{(0)} Z_{l} C^{(0)} F_{l} D^{(0)}, X_{l} A^{(0)} Y_{l} B^{(0)} F_{l} C^{(0)} Z_{l} D^{(0)}$ or $Y_{l} A^{(0)} X_{l} B^{(0)} F_{l} C^{(0)} Z_{l} D^{(0)}$. These forms are regarded to have no difference through this paper.

If either $X_{l} \in H^{(0)}, Z_{l} \notin H^{(0)}$ or $X_{l} \notin H^{(0)}, Z_{l} \in H^{(0)}$, then replace X_{l}, Y_{l}, Z_{l} and F_{l} according to the definition of X_{l}, Y_{l}, Z_{l} and F_{l}.

RECURSION RULE: Given a surface set $H^{(0)}=\left\{X_{l} A^{(0)} Y_{l} B^{(0)} Z_{l} C^{(0)} F_{l} D^{(0)}\right\}$ where $A^{(0)}, B^{(0)}, C^{(0)}$ and $D^{(0)}$ are linear sequences.

Step 1. Let $A_{0}=A^{(0)}, B_{0}=B^{(0)}, C=C^{(0)}$ and $D_{0}=D^{(0)}$. Q_{j}^{1} is obtained for $2 \leqslant j \leqslant 5$. Then $H_{j}^{(1)}$ is obtained by replacing a, a^{-}and Q_{j}^{1} with a_{1}, a_{1}^{-}and $H_{j}^{(1)}$ respectively.
Step 2. Given a surface set $H_{j_{1}, j_{2}, j_{3}, \cdots, j_{k}}^{(k)}$ for a positive integer k and $2 \leqslant j_{1}, j_{2}, j_{3}, \cdots, j_{k} \leqslant 5$, without loss of generality, suppose that $H_{j_{1}, j_{2}, j_{3}, \cdots, j_{k}}^{(k)}=\left\{X_{s} A^{(k)} Y_{s} B^{(k)} Z_{s} C^{(k)} F_{s} D^{(k)}\right\}$ where $A^{(k)}, B^{(k)}, C^{(k)}$ and $D^{(k)}$ are linear sequences for certain $s(1 \leqslant s \leqslant n)$. Let $A_{0}=A^{(k)}$, $B_{0}=B^{(k)}, C=C^{(k)}$ and $D_{0}=D^{(k)} . Q_{j}^{1}$ is obtained for $2 \leqslant j \leqslant 5$. Then $H_{j_{1}, j_{2}, j_{3}, \cdots, j_{k}, j}^{(k+1)}$ is obtained by replacing a, a^{-}and Q_{j}^{1} with a_{k+1}, a_{k+1}^{-}and $H_{j_{1}, j_{2}, j_{3}, \cdots, j_{k}, j}^{(k+1)}$ respectively.

Some surface sets $H_{j_{1}, j_{2}, j_{3}, \cdots, j_{m}}^{(m)}$ which contain $a_{l}, a_{l}^{-}, y_{l}, y_{l}^{-}$can be obtained by using step 2 for a positive integer $m, 2 \leqslant j_{1}, j_{2}, j_{3}, \cdots, j_{m} \leqslant 5$ and $1 \leqslant l \leqslant n$. It is easy to compute $f_{H_{j_{1}, j_{2}, j_{3}, \cdots, j_{m}}^{(m)}}(x)$

By Theorem 3.7,

$$
\begin{align*}
g_{i}\left(H_{j_{1}, j_{2}, j_{3}, \cdots, j_{r}}^{(r)}\right)= & g_{i}\left(H_{j_{1}, j_{2}, j_{3}, \cdots, j_{r}, 2}^{(r+1)}\right)+g_{i}\left(H_{j_{1}, j_{2}, j_{3}, \cdots, j_{r}, 3}^{(r+1)}\right) \\
+ & g_{i}\left(H_{j_{1}, j_{2}, j_{3}, \cdots, j_{r}, 4}^{\left(r_{r}\right)}\right)+g_{i}\left(H_{j_{1}, j_{2}, j_{3}, \cdots, j_{r}, 5}^{(+1)}\right) \tag{1}\\
& \quad \text { if } 0 \leq r \leq m-1,2 \leq j_{1}, j_{2}, j_{3}, \cdots, j_{r} \leq 5 .
\end{align*}
$$

Fig.1: G_{0} and \widetilde{T}_{0}

Example 4.3 The graph G_{0} is given in Fig.1. A joint tree \widetilde{T}_{0} is obtained by splitting non-tree edges $y_{l}(1 \leqslant l \leqslant 6)$. Travel \widetilde{T}_{0} by regarded v_{0} as a starting point. By using record rule we obtain surface sets

$$
\left\{X_{1} y_{2} Y_{1} Z_{1} Z_{2} Z_{3} y_{3} F_{3} Y_{6} Y_{5} Y_{4} Z_{5} Z_{4} y_{6}^{-} F_{4} F_{5} X_{4} X_{5} X_{6} F_{2} F_{1}\right\}
$$

and

$$
\left\{X_{1} y_{2} Y_{1} Z_{1} Z_{2} Y_{6} Y_{5} Y_{4} Z_{5} Z_{4} y_{6}^{-} F_{4} F_{5} X_{4} X_{5} X_{6} F_{2} F_{1} Z_{3} y_{3} F_{3}\right\}
$$

By replacing $Z_{2}, F_{2}, Z_{3}, F_{3}, X_{6}$ and Y_{6} according the definition 16 surface sets $U_{r}(1 \leqslant r \leqslant 16)$ are listed below.

$$
\begin{aligned}
& U_{1}=\left\{X_{1} y_{2} Y_{1} Z_{1} y_{2}^{-} y_{3}^{-} y_{3} y_{6} Y_{5} Y_{4} Z_{5} Z_{4} y_{6}^{-} F_{4} F_{5} X_{4} X_{5} F_{1}\right\} \\
& U_{2}=\left\{X_{1} y_{2} Y_{1} Z_{1} y_{2}^{-} y_{3}^{-} y_{3} Y_{5} Y_{4} Z_{5} Z_{4} y_{6}^{-} F_{4} F_{5} X_{4} X_{5} y_{6} F_{1}\right\} \\
& U_{3}=\left\{X_{1} y_{2} Y_{1} Z_{1} y_{2}^{-} y_{3} y_{3}^{-} y_{6} Y_{5} Y_{4} Z_{5} Z_{4} y_{6}^{-} F_{4} F_{5} X_{4} X_{5} F_{1}\right\} \\
& U_{4}=\left\{X_{1} y_{2} Y_{1} Z_{1} y_{2}^{-} y_{3} y_{3}^{-} Y_{5} Y_{4} Z_{5} Z_{4} y_{6}^{-} F_{4} F_{5} X_{4} X_{5} y_{6} F_{1}\right\} \\
& U_{5}=\left\{X_{1} y_{2} Y_{1} Z_{1} y_{3}^{-} y_{3} y_{6} Y_{5} Y_{4} Z_{5} Z_{4} y_{6}^{-} F_{4} F_{5} X_{4} X_{5} y_{2}^{-} F_{1}\right\} \\
& U_{6}=\left\{X_{1} y_{2} Y_{1} Z_{1} y_{3}^{-} y_{3} Y_{5} Y_{4} Z_{5} Z_{4} y_{6}^{-} F_{4} F_{5} X_{4} X_{5} y_{6} y_{2}^{-} F_{1}\right\} \\
& U_{7}=\left\{X_{1} y_{2} Y_{1} Z_{1} y_{3} y_{3}^{-} y_{6} Y_{5} Y_{4} Z_{5} Z_{4} y_{6}^{-} F_{4} F_{5} X_{4} X_{5} y_{2}^{-} F_{1}\right\} \\
& U_{8}=\left\{X_{1} y_{2} Y_{1} Z_{1} y_{3} y_{3}^{-} Y_{5} Y_{4} Z_{5} Z_{4} y_{6}^{-} F_{4} F_{5} X_{4} X_{5} y_{6} y_{2}^{-} F_{1}\right\} \\
& U_{9}=\left\{X_{1} y_{2} Y_{1} Z_{1} y_{2}^{-} y_{6} Y_{5} Y_{4} Z_{5} Z_{4} y_{6}^{-} F_{4} F_{5} X_{4} X_{5} F_{1} y_{3}^{-} y_{3}\right\}
\end{aligned}
$$

$$
\begin{aligned}
& U_{10}=\left\{X_{1} y_{2} Y_{1} Z_{1} y_{2}^{-} Y_{5} Y_{4} Z_{5} Z_{4} y_{6}^{-} F_{4} F_{5} X_{4} X_{5} y_{6} F_{1} y_{3}^{-} y_{3}\right\} \\
& U_{11}=\left\{X_{1} y_{2} Y_{1} Z_{1} y_{2}^{-} y_{6} Y_{5} Y_{4} Z_{5} Z_{4} y_{6}^{-} F_{4} F_{5} X_{4} X_{5} F_{1} y_{3} y_{3}^{-}\right\} \\
& U_{12}=\left\{X_{1} y_{2} Y_{1} Z_{1} y_{2}^{-} Y_{5} Y_{4} Z_{5} Z_{4} y_{6}^{-} F_{4} F_{5} X_{4} X_{5} y_{6} F_{1} y_{3} y_{3}^{-}\right\} \\
& U_{13}=\left\{X_{1} y_{2} Y_{1} Z_{1} y_{6} Y_{5} Y_{4} Z_{5} Z_{4} y_{6}^{-} F_{4} F_{5} X_{4} X_{5} y_{2}^{-} F_{1} y_{3}^{-} y_{3}\right\} \\
& U_{14}=\left\{X_{1} y_{2} Y_{1} Z_{1} Y_{5} Y_{4} Z_{5} Z_{4} y_{6}^{-} F_{4} F_{5} X_{4} X_{5} y_{6} y_{2}^{-} F_{1} y_{3}^{-} y_{3}\right\} \\
& U_{15}=\left\{X_{1} y_{2} Y_{1} Z_{1} y_{6} Y_{5} Y_{4} Z_{5} Z_{4} y_{6}^{-} F_{4} F_{5} X_{4} X_{5} y_{2}^{-} F_{1} y_{3} y_{3}^{-}\right\} \\
& U_{16}=\left\{X_{1} y_{2} Y_{1} Z_{1} Y_{5} Y_{4} Z_{5} Z_{4} y_{6}^{-} F_{4} F_{5} X_{4} X_{5} y_{6} y_{2}^{-} F_{1} y_{3} y_{3}^{-}\right\} .
\end{aligned}
$$

The genus distribution of U_{r} can be obtained by using the recursion rule. Since the method is similar, we shall calculate the genus distribution of U_{1} and leave the calculation of genus distribution for others to readers.
U_{1} is reduced to $\left\{X_{1} y_{2} Y_{1} Z_{1} y_{2}^{-} y_{6} Y_{5} Y_{4} Z_{5} Z_{4} y_{6}^{-} F_{4} F_{5} X_{4} X_{5} F_{1}\right\}$ by Op2. Let $H^{(0)}=S_{1}$, $A_{0}=y_{2}, C_{0}=y_{2}^{-} y_{6} Y_{5} Y_{4} Z_{5} Z_{4} y_{6}^{-} F_{4} F_{5} X_{4} X_{5}$ and $B_{0}=D_{0}=\emptyset$. Then $H_{2}^{(1)}=H_{3}^{(1)}=$ $\left\{y_{2} y_{2}^{-} y_{6} Y_{5} Y_{4} Z_{5} Z_{4} y_{6}^{-} F_{4} F_{5} X_{4} X_{5}\right\}$ and $H_{4}^{(1)}=H_{5}^{(1)}=\left\{y_{2} a_{1} y_{2}^{-} y_{6} Y_{5} Y_{4} Z_{5} Z_{4} y_{6}^{-} F_{4} F_{5} X_{4} X_{5} a_{1}^{-}\right\}$.
$H_{2}^{(1)}$ is reduced to $\left\{y_{6} Y_{5} Y_{4} Z_{5} Z_{4} y_{6}^{-} F_{4} F_{5} X_{4} X_{5}\right\}$ by Op2. Let $A_{0}=X_{5} y_{6} Y_{5}, B_{0}=Z_{5}$, $C_{0}=y_{6}^{-}$and $D_{0}=F_{5}$. Then $H_{2,2}^{(2)}=\left\{X_{5} y_{6} Y_{5} y_{6}^{-} F_{5} a_{2} Z_{5} a_{2}^{-}\right\}, H_{2,3}^{(2)}=\left\{X_{5} y_{6} Y_{5} Z_{5} y_{6}^{-} a_{2} F_{5} a_{2}^{-}\right\}$, $H_{2,4}^{(2)}=\left\{X_{5} y_{6} Y_{5} Z_{5} a_{2} y_{6}^{-} F_{5} a_{2}^{-}\right\}$and $H_{2,5}^{(2)}=\left\{X_{5} y_{6} Y_{5} F_{5} a_{2} Z_{5} y_{6}^{-} a_{2}^{-}\right\} . H_{4,2}^{(2)}=\left\{X_{5} a_{1}^{-} y_{2} a_{1} y_{2}^{-} y_{6} Y_{5}\right.$ $\left.y_{6}^{-} F_{5} a_{2} Z_{5} a_{2}^{-}\right\}, H_{4,3}^{(2)}=\left\{X_{5} a_{1}^{-} y_{2} a_{1} y_{2}^{-} y_{6} Y_{5} Z_{5} y_{6}^{-} a_{2} F_{5} a_{2}^{-}\right\}, H_{4,4}^{(2)}=\left\{X_{5} a_{1}^{-} y_{2} a_{1} y_{2}^{-} y_{6} Y_{5} Z_{5} a_{2} y_{6}^{-} F_{5}\right.$ $\left.a_{2}^{-}\right\}$and $H_{4,5}^{(2)}=\left\{X_{5} a_{1}^{-} y_{2} a_{1} y_{2}^{-} y_{6} Y_{5} F_{5} a_{2} Z_{5} y_{6}^{-} a_{2}^{-}\right\}$by letting $A_{0}=X_{5} a_{1}^{-} y_{2} a_{1} y_{2}^{-} y_{6} Y_{5}, B_{0}=Z_{5}$, $C_{0}=y_{6}^{-}$and $D_{0}=F_{5}$.

Similarly, $H_{2,2,2}^{(3)}=\left\{y_{6} a_{2} a_{2}^{-} a_{3} y_{6}^{-} a_{3}^{-}\right\}, H_{2,2,3}^{(3)}=\left\{y_{6} y_{6}^{-} a_{2} a_{3} a_{2}^{-} a_{3}^{-}\right\}, H_{2,2,4}^{(3)}=\left\{y_{6} y_{6}^{-} a_{3} a_{2} a_{2}^{-} a_{3}^{-}\right\}$ and $H_{2,2,5}^{(3)}=\left\{y_{6} a_{2}^{-} a_{3} y_{6}^{-} a_{2} a_{3}^{-}\right\} . H_{2,3,2}^{(3)}=\left\{y_{6} y_{6}^{-} a_{2} a_{2}^{-}\right\}, H_{2,3,3}^{(3)}=\left\{y_{6} y_{6}^{-} a_{2} a_{3} a_{2}^{-} a_{3}^{-}\right\}, H_{2,3,4}^{(3)}=$ $\left\{y_{6} a_{3} y_{6}^{-} a_{2} a_{2}^{-} a_{3}^{-}\right\}$and $H_{2,3,5}^{(3)}=\left\{y_{6} a_{2}^{-} a_{3} y_{6}^{-} a_{2} a_{3}^{-}\right\} . H_{2,4,2}^{(3)}=\left\{y_{6} a_{2} y_{6}^{-} a_{2}^{-}\right\}, H_{2,4,3}^{(3)}=\left\{y_{6} a_{2} y_{6}^{-} a_{3} a_{2}^{-}\right.$ $\left.a_{3}^{-}\right\}, H_{2,4,4}^{(3)}=\left\{y_{6} a_{3} a_{2} y_{6}^{-} a_{2}^{-} a_{3}^{-}\right\}$and $H_{2,4,5}^{(3)}=\left\{y_{6} a_{2}^{-} a_{3} a_{2} y_{6}^{-} a_{3}^{-}\right\} . H_{2,5,2}^{(3)}=\left\{y_{6} a_{2} y_{6}^{-} a_{2}^{-}\right\}, H_{2,5,3}^{(3)}=$ $\left\{y_{6} a_{2} a_{3} y_{6}^{-} a_{2}^{-} a_{3}^{-}\right\}, H_{2,5,4}^{(3)}=\left\{y_{6} a_{3} a_{2} y_{6}^{-} a_{2}^{-} a_{3}^{-}\right\}$and $H_{2,5,5}^{(3)}=\left\{y_{6} y_{6}^{-} a_{2}^{-} a_{3} a_{2} a_{3}^{-}\right\} . H_{4,2,2}^{(3)}=\left\{a_{1}^{-} y_{2} a_{1}\right.$ $\left.y_{2}^{-} y_{6} a_{2} a_{2}^{-} a_{3} y_{6}^{-} a_{3}^{-}\right\}, H_{4,2,3}^{(3)}=\left\{a_{1}^{-} y_{2} a_{1} y_{2}^{-} y_{6} y_{6}^{-} a_{2} a_{3} a_{2}^{-} a_{3}^{-}\right\}, H_{4,2,4}^{(3)}=\left\{a_{1}^{-} y_{2} a_{1} y_{2}^{-} y_{6} y_{6}^{-} a_{3} a_{2} a_{2}^{-} a_{3}^{-}\right\}$ and $H_{4,2,5}^{(3)}=\left\{a_{1}^{-} y_{2} a_{1} y_{2}^{-} y_{6} a_{2}^{-} a_{3} y_{6}^{-} a_{2} a_{3}^{-}\right\} . H_{4,3,2}^{(3)}=\left\{a_{1}^{-} y_{2} a_{1} y_{2}^{-} y_{6} y_{6}^{-} a_{2} a_{2}^{-}\right\}, H_{4,3,3}^{(3)}=\left\{a_{1}^{-} y_{2} a_{1} y_{2}^{-}\right.$ $\left.y_{6} y_{6}^{-} a_{2} a_{3} a_{2}^{-} a_{3}^{-}\right\}, H_{4,3,4}^{(3)}=\left\{a_{1}^{-} y_{2} a_{1} y_{2}^{-} y_{6} a_{3} y_{6}^{-} a_{2} a_{2}^{-} a_{3}^{-}\right\}$and $H_{4,3,5}^{(3)}=\left\{a_{1}^{-} y_{2} a_{1} y_{2}^{-} y_{6} a_{2}^{-} a_{3} y_{6}^{-} a_{2} a_{3}^{-}\right\}$. $H_{4,4,2}^{(3)}=\left\{a_{1}^{-} y_{2} a_{1} y_{2}^{-} y_{6} a_{2} y_{6}^{-} a_{2}^{-}\right\}, H_{4,4,3}^{(3)}=\left\{a_{1}^{-} y_{2} a_{1} y_{2}^{-} y_{6} a_{2} y_{6}^{-} a_{3} a_{2}^{-} a_{3}^{-}\right\}, H_{4,4,4}^{(3)}=\left\{a_{1}^{-} y_{2} a_{1} y_{2}^{-} y_{6} a_{3} a_{2}\right.$ $\left.y_{6}^{-} a_{2}^{-} a_{3}^{-}\right\}$and $H_{4,4,5}^{(3)}=\left\{a_{1}^{-} y_{2} a_{1} y_{2}^{-} y_{6} a_{2}^{-} a_{3} a_{2} y_{6}^{-} a_{3}^{-}\right\} . H_{4,5,2}^{(3)}=\left\{a_{1}^{-} y_{2} a_{1} y_{2}^{-} y_{6} a_{2} y_{6}^{-} a_{2}^{-}\right\}, H_{4,5,3}^{(3)}=$ $\left\{a_{1}^{-} y_{2} a_{1} y_{2}^{-} y_{6} a_{2} a_{3} y_{6}^{-} a_{2}^{-} a_{3}^{-}\right\}, H_{4,5,4}^{(3)}=\left\{a_{1}^{-} y_{2} a_{1} y_{2}^{-} y_{6} a_{3} a_{2} y_{6}^{-} a_{2}^{-} a_{3}^{-}\right\}$and $H_{4,5,5}^{(3)}=\left\{a_{1}^{-} y_{2} a_{1} y_{2}^{-} y_{6}\right.$ $\left.y_{6}^{-} a_{2}^{-} a_{3} a_{2} a_{3}^{-}\right\}$.

By using (1),

$$
f_{U_{1}}(x)=4+32 x+28 x^{2} .
$$

Thus,

$$
f_{G_{0}}(x)=64+512 x+448 x^{2} .
$$

§5. Genus Distribution for a Graph

Theorem 5.1 Given a graph, the genus distribution of G is determined by using the genus distribution of some cubic graphs.

Proof Given a finite graph G_{0}, suppose that u is adjacent to $k+1$ distinct vertices v_{0}, v_{1}, v_{2}, \cdots, v_{k} of G_{0} with $k \geq 3$. Actually, the supposition always holds by subdividing some edges of G.

A distribution decomposition of a graph is defined below: add a vertex u_{s} of valence 3 such that u_{s} is adjacent to u, v_{0} and v_{s} for each s with $1 \leq s \leq k$ and then obtain a graph G_{s} by deleting the edges $u v_{0}$ and $u v_{s}$.

Choose the spanning trees T_{s} of G_{s} such that $u v_{s}, u u_{s}$ and $u_{s} v_{s}$ are tree edges for $0 \leq s \leq k$. Consider a joint tree \widetilde{T}_{0} of G. Let \widetilde{T}_{s}^{*} be the maximal joint tree of \widetilde{T}_{0} such that $v_{s} \in V\left(T_{s}^{*}\right)$ and $v_{t} \notin V\left(T_{s}^{*}\right)$ for $t \neq s$ and $0 \leqslant s, t \leqslant k$.

Let v_{s} be the starting vertex of \widetilde{T}_{s}^{*} for $0 \leqslant s \leqslant k$. Suppose that \mathcal{A}_{s} is the set of all sequences by travelling \widetilde{T}_{s}^{*} and that Q_{s} is the embedding surface set of G_{s}. Then

$$
Q_{0}=\left\{A_{0} A_{r_{1}} A_{r_{2}} A_{r_{3}} \cdots A_{r_{k}} \mid A_{r_{p}} \in \mathcal{A}_{r_{p}}, 1 \leqslant r_{p} \leqslant k, r_{p} \neq r_{q} \text { for } p \neq q\right\}
$$

and for $1 \leqslant s \leqslant k$

$$
\begin{gathered}
Q_{s}=\left\{A_{0} A_{s} A_{r_{1}} A_{r_{2}} A_{r_{3}} \cdots A_{r_{k-1}}, A_{0} A_{r_{1}} A_{r_{2}} A_{r_{3}} \cdots A_{r_{k-1}} A_{s} \mid A_{r_{p}} \in \mathcal{A}_{r_{p}}\right. \\
\left.1 \leqslant r_{p} \leqslant k, r_{p} \neq s, 1 \leqslant p, q \leqslant k-1, \text { and } r_{p} \neq r_{q} \text { for } p \neq q\right\}
\end{gathered}
$$

Let $f_{Q_{s}}(x)$ denote the genus distribution of Q_{s}. It is obvious that

$$
f_{Q_{0}}(x)=\frac{1}{2} \sum_{s=1}^{k} f_{Q_{s}}(x)
$$

Thus,

$$
f_{G_{0}}(x)=\frac{1}{2} \sum_{s=1}^{k} f_{G_{s}}(x)
$$

Since G_{0} has finite vertices, the genus distribution of G_{0} can be transformed into those of some cubic graphs in homeomorphism by using the distribution decomposition.

Next we give a simple application of Theorem 5.1.
Example 5.2 The graph W_{4} is shown in Fig.2. In order to calculate its genus distribution, we use the distribution decomposition and then we obtain three graph G_{s} for $1 \leqslant s \leqslant 3$ (Fig.2). It is obvious that G_{2} are isomorphic to Möbius ladder $M L_{3}$ and G_{s} are isomorphic to Ringel ladder $R L_{2}$ for $s=1$ and 3 . Since (see [8], [15])

$$
f_{M L_{3}}(x)=40 x+24 x^{2}
$$

and since (see [9], [15])

$$
f_{R L_{2}}(x)=2+38 x+24 x^{2}
$$

$$
\begin{aligned}
f_{W_{4}}(x) & =\frac{1}{2} \sum_{s=1}^{3} f_{G_{s}}(x) \\
& =\frac{1}{2}\left[40 x+24 x^{2}+2\left(2+38 x+24 x^{2}\right)\right] \\
& =2+58 x+36 x^{2} .
\end{aligned}
$$

W_{4}

G_{1}

G_{2}

G_{3}

Fig.2: W_{4} and G_{s}

References

[1] R.A. Duke, The genus, regional number, and Betti number of a graph, Canad. J. Math., 18 (1966), 817-822.
[2] J. Edmonds, A combinatorial representtion for polyhedral surfaces, Notices Amer. Math. Soc., 7 (1960), 646.
[3] M.L. Furst, J.L. Gross, R. Statman, Genus distributions for two classes of graphs, J. Combin. Theory (B) 46 (1989), 22-36.
[4] J. L. Gross, M. L. Furst, Hierarcy of imbedding distribution invariants of a graph, J. Graph Theory, 11 (1987), 205-220.
[5] J.L. Gross, D.P. Robbins, T.W. Tucker, Genus distributions for bouquets of circles, J. Combin. Theory (B) 47 (1989), 292-306.
[6] Y.P. Liu, Advances in Combinatorial Maps (in Chinese), Northern Jiaotong University Press, Beijing, 2003.
[7] Y.P. Liu, Embeddability in Graphs, Kluwer Academic Publisher, Dordrecht/Boston/London, 1995.
[8] L.A. McGeoch, Algorithms for two graph problems: computing maximum-genus imbeddings and the two-server problem, Ph.D Thesis, Computer Science Dept., Carnegie Mellon University, PA, 1987.
[9] E.H. Tesar, Genus distribution of Ringel ladders, Discrete Math., 216 (2000), 235-252.
[10] C. Thomassen, The graph genus problem is NP-complete, J. Algorithms, 10 (1989), 568576.
[11] L.X. Wan, Genus distribution of general ladders (in Chinese), Acta Math. Appl. Sinica, 31 (2008), 806-816.
[12] L.X. Wan, K.Q. Feng, Y.P. Liu, D.J. Wang, Genus distribution for ladder type and cross type graphs, Scien. China A, 52 (2009), 1760-1768.
[13] L.X. Wan, Y.P. Liu, Genus distribution of the orientable embeddings for a type of new graphs (in chinese), J. Beijing Jiaotong Univ., 29 (2005), 65-68.
[14] L.X. Wan, Y.P. Liu, Orientable embedding genus distribution for certain types of graphs, J. Combin. Theory, Ser.(B) 98 (2008), 19-32.
[15] L.X. Wan, Y.P. Liu, On embedding genus distribution of ladders and crosses, Applied Math. Letters, 22 (2009), 738-742.
[16] L.X. Wan, Y.P. Liu, Orientable embedding distributions by genus for certain type of nonplanar graphs (I), Ars Combin., 79 (2006) 97-105.
[17] L.X. Wan, Y.P. Liu, Orientable embedding distributions by genus for certain type of nonplanar graphs (II), accepted by Ars Combin..
[18] J.W.T. Youngs, Minimal imbeddings and the genus of a graph, J. Math. Mech., 12 (1963), 303-315.

[^0]: ${ }^{1}$ Partially supported by NNSFC under Grants No. 10871021
 ${ }^{2}$ Received Oct.20, 2009. Accepted Dec. 25, 2009.

