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§1. Introduction

We consider finite connected graphs. Surfaces are orientable 2-dimensional compact manifolds

without boundaries. Embeddings of a graph considered are always assumed to be orientable

2-cell embeddings. Given a graph G and a surface S, a Smarandachely k-drawing of G on S is

a homeomorphism φ: G → S such that φ(G) on S has exactly k intersections in φ(E(G)) for

an integer k. If k = 0, i.e., there are no intersections between in φ(E(G)), or in another words,

each connected component of S − φ(G) is homeomorphic to an open disc, then G has an 2-cell

embedding on S. If G can be embedded on surfaces Sr and St with genus r and t respectively,

then it is shown in [1] that for any k with r � k � t, G has an embedding on Sk. Naturally, the

genus of a graph is defined to be the minimum genus of a surface on which the graph can be

embedded. Given a graph, how many distinct embeddings does it have on each surface? This is

the genus distribution problem, first investigated by Gross and Furst [4]. As determining the

genus of a graph is NP-complete [15], it appears more difficult and significant to determine the

genus distribution of a graph.
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There have been results on genus distribution for some particular types of graphs (see [3],

[5], [8], [9], [11]-[17], among others). In [6], Liu discovered the joint trees of a graph which

provide a substantial foundation for us to solve the genus distribution of a graph. For a given

embedding Gσ of a graph G, one can find the surface, embedding surface or associate surface,

which Gσ embeds on by applying the associated joint tree. In fact, genus distribution of G is

that of the set of all of its embedding surfaces. This paper first study genus distributions of

some sets of surfaces and then investigate the genus distribution of a generic graph by using

the surface sorting method developed in [16].

Preliminaries will be briefed in the next section. In Section 3, surfaces Qi
j will be intro-

duced. We shall investigate the genus distribution of surface sets Q0
j and Q1

j for 1 � j � 24, and

derive the related recursive formulas. In Section 4, a recursion formula of the genus distribution

for a cubic graph is given. In the last section, we show that the genus distribution of a general

graph can be transformed into genus distribution of some cubic graphs by using a technique we

develop in this paper.

§2. Preliminaries

For a graph G, a rotation at a vertex v is a cyclic permutation of edges incident with v. A

rotation system of G is obtained by giving each vertex of G a rotation. Let ρv denote the valence

of vertex v which is the number of edges incident with v. The number of rotations systems of G

is
∏

v∈V (G)

(ρv − 1)!. Edmonds found that there is a bijection between the rotations systems of a

graph and its embeddings [2]. Youngs provided the first proof published [18]. Thus, the number

of embeddings of G is
∏

v∈V (G)

(ρv − 1)!. Let gi(G) denote the number of embeddings of G with

the genus i (i ≥ 0). Then, the genus distribution of G is the sequence g0(G), g1(G), g2(G), · · · .

The genus polynomial of G is fG(x) =
∑
i≥0

gi(G)xi.

Given a spanning tree T of G, the joint trees of G are obtained by splitting each non-tree

edge e into two semi-edges e and e−. Given a rotation system σ of G, Gσ, T̃σ and Pσ
T̃

denote the

associated embedding, joint tree and embedding surface which Gσ embedded on respectively.

There is a bijection btween embeddings and joint trees of G such that Gσ corresponds to T̃σ.

Given a joint tree T̃ , a sub-joint tree T̃1 of T̃ is a graph consisting of T1 and semi-edges incident

with vertices of T1 where T1 is a tree and V (T1) ⊆ V (T ). A sub-joint tree T̃1 of T̃ is called

maximal if there is not a tree T2 such that V (T1) ⊂ V (T2) ⊆ V (T ).

A linear sequence S = abc · · · z is a sequence of letters satisfying with a relation a ≺ b ≺
c ≺ · · · ≺ z. Given two linear sequences S1 and S2, the difference sequence S1/S2 is obtained

by deleting letters of S2 in S1. Since a surface is obtained by identifying a letter with its inverse

letter on a special polygon along the direction, a surface is regarded as that polygon such that

a and a− occur only once for each a ∈ S in this sense.

Let S be the collection of surfaces. Let γ(S) be the genus of a surface S. In order to

determine γ(S), an equivalence is defined by Op1, Op2 and Op3 on S as follows:

Op 1. AB ∼ (Ae)(e−B) where e /∈ AB;
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Op 2. Ae1e2Be−2 e−1 ∼ AeBe− = Ae−Be where e /∈ AB;

Op 3. Aee−B ∼ AB where AB 	= ∅
where AB is a surface.

Thus, S is equivalent to one, and only one of the canonical forms of surfaces a0a
−
0 and

i∏
k=1

akbka−k b−k which are the sphere and orientable surfaces of genus i(i ≥ 1).

Lemma 2.1 ([6]) Let A and B be surfaces. If a, b /∈ B, and if A ∼ Baba−b−, then γ(A) =

γ(B) + 1.

Lemma 2.2 ([7]) Let A, B, C, D and E be linear sequences and let ABCDE be a surface. If

a, b /∈ ABCDE, then AaBbCa−Db−E ∼ ADCBEaba−b−.

Lemma 2.3 ([13],[16]) Let A, B, C and D be linear sequences and let ABCD be a surface. If

a 	= b 	= c 	= a− 	= b− 	= c− and if a, b, c /∈ ABCD, then each of the following holds.

(i) aABa−CD ∼ aBAa−CD ∼ aABa−DC.

(ii) AaBa−bCb−cDc− ∼ aBa−AbCb−cDc− ∼ aBa−bCb−AcDc−.

(iii) AaBa−bCb−cDc− ∼ BaAa−bCb−cDc− ∼ CaAa−bBb−cDc− ∼ DaAa−bBb−cCc−.

For a set of surfaces M , let gi(M) denote the number of surfaces with the genus i in

M . Then, the genus distribution of M is the sequence g0(M), g1(M), g2(M), · · · . The genus

polynomial is fM (x) =
∑
i≥0

gi(M)xi.

§3. Genus Distribution for Q1
j

Let a, b, c, d, a−, b−, c−, d− be distinct letters and let A0, B0, C, D0 be linear sequences. Then,

surface sets Qk
j are defined as follows for j = 1, 2, 3, · · · , 24:

Qk
1 = {AkBkCDk} Qk

2 = {AkCDkaBka−} Qk
3 = {AkBkCaDka−}

Qk
4 = {AkBkaCDka−} Qk

5 = {AkDkaBkCa−} Qk
6 = {AkDkCBk}

Qk
7 = {BkCDkaAka−} Qk

8 = {BkDkCaAka−} Qk
9 = {AkBkDkC}

Qk
10 = {AkDkCaBka−} Qk

11 = {AkBkDkaCa−} Qk
12 = {AkDkBkaCa−}

Qk
13 = {AkCBkDk} Qk

14 = {AkCBkaDka−} Qk
15 = {AkCDkBk}

Qk
16 = {AkCaBkDka−} Qk

17 = {AkDkBkC} Qk
18 = {CDkaAka−bBkb−}

Qk
19 = {BkDkaAka−bCb−} Qk

20 = {BkCaAka−bDkb−} Qk
21 = {AkDkaBka−bCb−}

Qk
22 = {AkCaBka−bDkb−} Qk

23 = {AkBkaCa−bDkb−} Qk
24 = {AkaBka−bCb−cDkc−}

where k = 0 and 1, A1 ∈ {dA0, A0d}, (B1, D1) ∈ {(B0d
−, D0), (B0, d

−D0)} and a, a−, b, b−,

c, c−, d, d− /∈ ABCD. Let fQ0
j
(x) denote the genus polynomial of Q0

j . If A0
1A

0
0D0B1B

0
2C0

2C1D1

= ∅, then fQ0
j
(x) = 1. Otherwise, suppose that fQ0

j
(x) are given for 1 � j � 24. Then,

Theorem 3.1 Let gij
(n) be the number of surfaces with genus i in Qn

j . Each of the following

holds.
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gij
(1) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

gi2(0) + gi3(0) + gi4(0) + gi5(0), if j = 1

gi21(0) + gi22(0) + g(i−1)1(0) + g(i−1)15(0), if j = 2

gi22(0) + gi23(0) + g(i−1)1(0) + g(i−1)17(0), if j = 3

gi4(0) + gi18(0) + g(i−1)6(0) + g(i−1)9(0), if j = 4

gi5(0) + gi20(0) + g(i−1)6(0) + g(i−1)13(0), if j = 5

2gi6(0) + 2gi8(0), if j = 6

2g(i−1)15(0) + 2g(i−1)17(0), if j = 7 and 16

4g(i−1)6(0), if j = 8

2gi4(0) + 2gi10(0), if j = 9

gi10(0) + gi18(0) + g(i−1)6(0) + g(i−1)9(0), if j = 10

2gi21(0) + 2gi23(0), if j = 11

2gi12(0) + 2gi19(0), if j = 12

2gi5(0) + 2gi14(0), if j = 13

gi14(0) + gi20(0) + g(i−1)6(0) + g(i−1)13(0), if j = 14

gi7(0) + gi12(0) + gi15(0) + gi16(0), if j = 15

gi7(0) + gi12(0) + gi16(0) + gi17(0), if j = 17

2g(i−1)4(0) + 2g(i−1)10(0), if j = 18

4g(i−1)12(0), if j = 19

2g(i−1)5(0) + 2g(i−1)14(0), if j = 20

gi21(0) + gi24(0) + g(i−1)11(0) + g(i−1)12(0), if j = 21

g(i−1)2(0) + g(i−1)3(0) + g(i−1)10(0) + g(i−1)14(0), if j = 22

gi23(0) + gi24(0) + g(i−1)11(0) + g(i−1)12(0), if j = 23

2g(i−1)21(0) + 2g(i−1)23(0), if j = 24

Proof We shall prove the equation for gi6(1), and the proofs for others are similar. Let

U1 = {A0dd−D0CB0} U2 = {dA0D0CB0d
−}

U3 = {A0dD0CB0d
−} U4 = {dA0d

−D0CB0}.
By the definition of Q1

6, we have Q1
6 = {U1, U2, U3, U4}. By the definition of gi,

gi6(1) = gi(U1) + gi(U2) + gi(U3) + gi(U4).

By Op3,

A0dd−D0CB0 ∼ A0D0CB0, and dA0D0CB0d
− = A0D0CB0d

−d ∼ A0D0CB0.

It follows that

gi(U1) = gi(U2) = gi6(0). (8)

By Lemma 2.3 (i) and Op2, we have

A0dD0CB0d
− = D0CB0d

−A0d ∼ B0D0Cd−A0d ∼ B0D0CaA0a
−
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and

dA0d
−D0CB0 = B0D0CdA0d

− ∼ B0D0CaA0a
−.

So

gi(U3) = gi(U4) = gi8(0). (9)

Combining (1) and (2), we have

gi6(1) = 2gi6(0) + 2gi8(0).

§4. Embedding Surfaces of a Cubic Graph

Given a cubic graph G with n non-tree edges yl (1 � l � n), suppose that T is a spanning tree

such that T contains the longest path of G and that T̃ is an associated joint tree. Let Xl, Yl, Zl

and Fl be linear sequences for 1 ≤ l ≤ n such that Xl ∪ Yl = yl, Zl ∪ Fl = y−l , Xl 	= Yl and

Zl 	= Fl.

RECORD RULE: Choose a vertex u incident with two semi-edges as a starting vertex and

travel T̃ along with tree edges of T̃ . In order to write down surfaces, we shall consider three

cases below.

Case 1: If v is incident with two semi-edges ys and yt. Suppose that the linear sequence is

R when one arrives v. Then, write down RXsytYs going away from v.

Case 2: If v is incident with one semi-edge ys. Suppose that R1 is the linear sequence

when one arrives v in the first time. Then the sequence is R1Xs when one leaves v in the first

time. Suppose that R2 is the linear sequence when one arrives v in the second time. Then the

sequence is R2Ys when one leaves v in the second time.

Case 3: If v is not incident with any semi-edge. Suppose that R1, R2 and R3 are, respectively,

the linear sequences when one leaves v in the first time, the second time and the third time.

Then, the sequences are (R2/R1)R1(R3/R2) and R3 when one leaves v in the third time.

Here, 1 ≤ s, t ≤ n and s 	= t. If v is incident with a semi-edge y−s , then replace Xs with Zs

and replace Ys with Fs.

Lemma 4.1 There is a bijection between embedding surfaces of a cubic graph and surfaces

obtained by the record rule.

Proof Let T be a spanning tree such that T̃ is a joint tree of G above. Suppose that σv is
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a rotation of v and that R1, R2 and R3 are given above.

σv =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(ys, yt, er), if Xs = ys or Fs = y−s
and v is incident with ys, yt and er;

(yt, ys, er), if Ys = ys or Zs = y−s
and v is incident with ys, yt and er;

(ys, e1, e2), if Xs = ys or Fs = y−s
and v is incident with ys, ep and eq;

(e1, ys, e2), if Ys = ys or Zs = y−s
and v is incident with ys, ep and eq;

(e1, e2, e3), if the linear sequence is R3

and v is incident with ep, eq and er;

(e2, e1, e3), if the linear sequence is (R2/R1)R1(R3/R2)

and v is incident with ep, eq and er

where ep, eq and er are tree-edges for 1 � p, q, r � 2n−3 and ep 	= eq 	= er for p 	= q 	= r. Hence

the conclusion holds. �

By the definitions for Xl, Yl, Zl and Fl, we have the following observation:

Observation 4.2 A surface set H(0) of G has properties below.

(1) Either Xl, Yl ∈ H(0) or Xl, Yl /∈ H(0);

(2) Either Zl, Fl ∈ H(0) or Zl, Fl /∈ H(0);

(3) If for some l with 1 � l � n, Xl, Yl, Zl, Fl ∈ H(0), then H(0) has one of the follow-

ing forms XlA
(0)YlB

(0)ZlC
(0)Fl D(0), YlA

(0)XlB
(0)ZlC

(0)FlD
(0), XlA

(0)YlB
(0)FlC

(0)ZlD
(0) or

YlA
(0)XlB

(0)FlC
(0)ZlD

(0). These forms are regarded to have no difference through this paper.

If either Xl ∈ H(0), Zl /∈ H(0) or Xl /∈ H(0), Zl ∈ H(0), then replace Xl, Yl, Zl and Fl

according to the definition of Xl, Yl, Zl and Fl.

RECURSION RULE: Given a surface set H(0) = {XlA
(0)YlB

(0)ZlC
(0)FlD

(0)} where

A(0), B(0), C(0) and D(0) are linear sequences.

Step 1. Let A0 = A(0), B0 = B(0), C = C(0) and D0 = D(0). Q1
j is obtained for 2 � j � 5.

Then H
(1)
j is obtained by replacing a, a− and Q1

j with a1, a
−
1 and H

(1)
j respectively.

Step 2. Given a surface set H
(k)
j1,j2,j3,··· ,jk

for a positive integer k and 2 � j1, j2, j3, · · · , jk � 5,

without loss of generality, suppose that H
(k)
j1,j2,j3,··· ,jk

= {XsA
(k)YsB

(k)ZsC
(k)FsD

(k)} where

A(k), B(k), C(k) and D(k) are linear sequences for certain s (1 � s � n). Let A0 = A(k),

B0 = B(k), C = C(k) and D0 = D(k). Q1
j is obtained for 2 � j � 5. Then H

(k+1)
j1,j2,j3,··· ,jk,j is

obtained by replacing a, a− and Q1
j with ak+1, a

−
k+1 and H

(k+1)
j1,j2,j3,··· ,jk,j respectively.

Some surface sets H
(m)
j1,j2,j3,··· ,jm

which contain al, a
−
l , yl, y

−
l can be obtained by using step

2 for a positive integer m, 2 � j1, j2, j3, · · · , jm � 5 and 1 � l � n. It is easy to compute

f
H

(m)
j1,j2,j3,··· ,jm

(x).
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By Theorem 3.7,

gi(H
(r)
j1,j2,j3,··· ,jr

) = gi(H
(r+1)
j1,j2,j3,··· ,jr ,2) + gi(H

(r+1)
j1,j2,j3,··· ,jr ,3)

+ gi(H
(r+1)
j1,j2,j3,··· ,jr ,4) + gi(H

(r+1)
j1,j2,j3,··· ,jr ,5), (1)

if 0 ≤ r ≤ m− 1, 2 ≤ j1, j2, j3, · · · , jr ≤ 5.
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Fig.1: G0 and T̃0

Example 4.3 The graph G0 is given in Fig.1. A joint tree T̃0 is obtained by splitting non-tree

edges yl (1 � l � 6). Travel T̃0 by regarded v0 as a starting point. By using record rule we

obtain surface sets

{X1y2Y1Z1Z2Z3y3F3Y6Y5Y4Z5Z4y
−
6 F4F5X4X5X6F2F1}

and

{X1y2Y1Z1Z2Y6Y5Y4Z5Z4y
−
6 F4F5X4X5X6F2F1Z3y3F3}.

By replacing Z2, F2, Z3, F3, X6 and Y6 according the definition 16 surface sets Ur (1 � r � 16)

are listed below.

U1 = {X1y2Y1Z1y
−
2 y−3 y3y6Y5Y4Z5Z4y

−
6 F4F5X4X5F1}

U2 = {X1y2Y1Z1y
−
2 y−3 y3Y5Y4Z5Z4y

−
6 F4F5X4X5y6F1}

U3 = {X1y2Y1Z1y
−
2 y3y

−
3 y6Y5Y4Z5Z4y

−
6 F4F5X4X5F1}

U4 = {X1y2Y1Z1y
−
2 y3y

−
3 Y5Y4Z5Z4y

−
6 F4F5X4X5y6F1}

U5 = {X1y2Y1Z1y
−
3 y3y6Y5Y4Z5Z4y

−
6 F4F5X4X5y

−
2 F1}

U6 = {X1y2Y1Z1y
−
3 y3Y5Y4Z5Z4y

−
6 F4F5X4X5y6y

−
2 F1}

U7 = {X1y2Y1Z1y3y
−
3 y6Y5Y4Z5Z4y

−
6 F4F5X4X5y

−
2 F1}

U8 = {X1y2Y1Z1y3y
−
3 Y5Y4Z5Z4y

−
6 F4F5X4X5y6y

−
2 F1}

U9 = {X1y2Y1Z1y
−
2 y6Y5Y4Z5Z4y

−
6 F4F5X4X5F1y

−
3 y3}
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U10 = {X1y2Y1Z1y
−
2 Y5Y4Z5Z4y

−
6 F4F5X4X5y6F1y

−
3 y3}

U11 = {X1y2Y1Z1y
−
2 y6Y5Y4Z5Z4y

−
6 F4F5X4X5F1y3y

−
3 }

U12 = {X1y2Y1Z1y
−
2 Y5Y4Z5Z4y

−
6 F4F5X4X5y6F1y3y

−
3 }

U13 = {X1y2Y1Z1y6Y5Y4Z5Z4y
−
6 F4F5X4X5y

−
2 F1y

−
3 y3}

U14 = {X1y2Y1Z1Y5Y4Z5Z4y
−
6 F4F5X4X5y6y

−
2 F1y

−
3 y3}

U15 = {X1y2Y1Z1y6Y5Y4Z5Z4y
−
6 F4F5X4X5y

−
2 F1y3y

−
3 }

U16 = {X1y2Y1Z1Y5Y4Z5Z4y
−
6 F4F5X4X5y6y

−
2 F1y3y

−
3 }.

The genus distribution of Ur can be obtained by using the recursion rule. Since the method

is similar, we shall calculate the genus distribution of U1 and leave the calculation of genus

distribution for others to readers.

U1 is reduced to {X1y2Y1Z1y
−
2 y6Y5Y4Z5Z4y

−
6 F4F5X4X5F1} by Op2. Let H(0) = S1,

A0 = y2, C0 = y−2 y6Y5Y4Z5Z4y
−
6 F4F5X4X5 and B0 = D0 = ∅. Then H

(1)
2 = H

(1)
3 =

{y2y
−
2 y6Y5Y4Z5Z4y

−
6 F4F5X4X5} and H

(1)
4 = H

(1)
5 = {y2a1y

−
2 y6Y5Y4Z5Z4y

−
6 F4F5X4X5a

−
1 }.

H
(1)
2 is reduced to {y6Y5Y4Z5Z4y

−
6 F4F5X4X5} by Op2. Let A0 = X5y6Y5, B0 = Z5,

C0 = y−6 and D0 = F5. Then H
(2)
2,2 = {X5y6Y5y

−
6 F5a2Z5a

−
2 }, H

(2)
2,3 = {X5y6Y5Z5y

−
6 a2F5a

−
2 },

H
(2)
2,4 = {X5y6Y5Z5a2y

−
6 F5a

−
2 } and H

(2)
2,5 = {X5y6Y5F5a2Z5y

−
6 a−2 }. H

(2)
4,2 = {X5a

−
1 y2a1y

−
2 y6Y5

y−6 F5a2Z5a
−
2 }, H

(2)
4,3 = {X5a

−
1 y2a1y

−
2 y6Y5Z5y

−
6 a2F5a

−
2 }, H

(2)
4,4 = {X5a

−
1 y2a1y

−
2 y6Y5Z5a2y

−
6 F5

a−2 } and H
(2)
4,5 = {X5a

−
1 y2a1y

−
2 y6Y5F5a2Z5y

−
6 a−2 } by letting A0 = X5a

−
1 y2a1y

−
2 y6Y5, B0 = Z5,

C0 = y−6 and D0 = F5.

Similarly, H
(3)
2,2,2 = {y6a2a

−
2 a3y

−
6 a−3 }, H

(3)
2,2,3 = {y6y

−
6 a2a3a

−
2 a−3 }, H

(3)
2,2,4 = {y6y

−
6 a3a2a

−
2 a−3 }

and H
(3)
2,2,5 = {y6a

−
2 a3y

−
6 a2a

−
3 }. H

(3)
2,3,2 = {y6y

−
6 a2a

−
2 }, H

(3)
2,3,3 = {y6y

−
6 a2a3a

−
2 a−3 }, H

(3)
2,3,4 =

{y6a3y
−
6 a2a

−
2 a−3 } and H

(3)
2,3,5 = {y6a

−
2 a3y

−
6 a2a

−
3 }. H

(3)
2,4,2 = {y6a2y

−
6 a−2 }, H

(3)
2,4,3 = {y6a2y

−
6 a3a

−
2

a−3 }, H
(3)
2,4,4 = {y6a3a2y

−
6 a−2 a−3 } and H

(3)
2,4,5 = {y6a

−
2 a3a2y

−
6 a−3 }. H

(3)
2,5,2 = {y6a2y

−
6 a−2 }, H

(3)
2,5,3 =

{y6a2a3y
−
6 a−2 a−3 }, H

(3)
2,5,4 = {y6a3a2y

−
6 a−2 a−3 } and H

(3)
2,5,5 = {y6y

−
6 a−2 a3a2a

−
3 }. H

(3)
4,2,2 = {a−1 y2a1

y−2 y6a2a
−
2 a3y

−
6 a−3 }, H

(3)
4,2,3 = {a−1 y2a1y

−
2 y6y

−
6 a2a3a

−
2 a−3 }, H

(3)
4,2,4 = {a−1 y2a1y

−
2 y6y

−
6 a3a2a

−
2 a−3 }

and H
(3)
4,2,5 = {a−1 y2a1y

−
2 y6a

−
2 a3y

−
6 a2a

−
3 }. H

(3)
4,3,2 = {a−1 y2a1y

−
2 y6y

−
6 a2a

−
2 }, H

(3)
4,3,3 = {a−1 y2a1y

−
2

y6y
−
6 a2a3a

−
2 a−3 }, H

(3)
4,3,4 = {a−1 y2a1y

−
2 y6a3y

−
6 a2a

−
2 a−3 } and H

(3)
4,3,5 = {a−1 y2a1y

−
2 y6 a−2 a3y

−
6 a2a

−
3 }.

H
(3)
4,4,2 = {a−1 y2a1y

−
2 y6a2y

−
6 a−2 }, H

(3)
4,4,3 = {a−1 y2a1y

−
2 y6a2y

−
6 a3a

−
2 a−3 }, H

(3)
4,4,4 = {a−1 y2a1y

−
2 y6a3a2

y−6 a−2 a−3 } and H
(3)
4,4,5 = {a−1 y2a1y

−
2 y6a

−
2 a3a2y

−
6 a−3 }. H

(3)
4,5,2 = {a−1 y2a1y

−
2 y6a2 y−6 a−2 }, H

(3)
4,5,3 =

{a−1 y2a1y
−
2 y6a2a3y

−
6 a−2 a−3 }, H

(3)
4,5,4 = {a−1 y2a1y

−
2 y6a3a2y

−
6 a−2 a−3 } and H

(3)
4,5,5 = {a−1 y2a1y

−
2 y6

y−6 a−2 a3a2a
−
3 }.

By using (1),

fU1(x) = 4 + 32x + 28x2.

Thus,

fG0(x) = 64 + 512x + 448x2.
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§5. Genus Distribution for a Graph

Theorem 5.1 Given a graph, the genus distribution of G is determined by using the genus

distribution of some cubic graphs.

Proof Given a finite graph G0, suppose that u is adjacent to k + 1 distinct vertices v0, v1,

v2, · · · , vk of G0 with k ≥ 3. Actually, the supposition always holds by subdividing some edges

of G.

A distribution decomposition of a graph is defined below: add a vertex us of valence 3 such

that us is adjacent to u, v0 and vs for each s with 1 ≤ s ≤ k and then obtain a graph Gs by

deleting the edges uv0 and uvs.

Choose the spanning trees Ts of Gs such that uvs, uus and usvs are tree edges for 0 ≤ s ≤ k.

Consider a joint tree T̃0 of G. Let T̃ ∗s be the maximal joint tree of T̃0 such that vs ∈ V (T ∗s )

and vt /∈ V (T ∗s ) for t 	= s and 0 � s, t � k.

Let vs be the starting vertex of T̃ ∗s for 0 � s � k. Suppose that As is the set of all sequences

by travelling T̃ ∗s and that Qs is the embedding surface set of Gs. Then

Q0 = {A0Ar1Ar2Ar3 · · ·Ark
|Arp

∈ Arp
, 1 � rp � k, rp 	= rq for p 	= q}

and for 1 � s � k

Qs = {A0AsAr1Ar2Ar3 · · ·Ark−1
, A0Ar1Ar2Ar3 · · ·Ark−1

As|Arp
∈ Arp

,

1 � rp � k, rp 	= s, 1 � p, q � k − 1, and rp 	= rq for p 	= q}.
Let fQs

(x) denote the genus distribution of Qs. It is obvious that

fQ0(x) =
1

2

k∑
s=1

fQs
(x).

Thus,

fG0(x) =
1

2

k∑
s=1

fGs
(x).

Since G0 has finite vertices, the genus distribution of G0 can be transformed into those of

some cubic graphs in homeomorphism by using the distribution decomposition. �

Next we give a simple application of Theorem 5.1.

Example 5.2 The graph W4 is shown in Fig.2. In order to calculate its genus distribution, we

use the distribution decomposition and then we obtain three graph Gs for 1 � s � 3 (Fig.2).

It is obvious that G2 are isomorphic to Möbius ladder ML3 and Gs are isomorphic to Ringel

ladder RL2 for s = 1 and 3. Since (see [8], [15])

fML3(x) = 40x + 24x2

and since (see [9], [15])

fRL2(x) = 2 + 38x + 24x2,
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fW4(x) =
1

2

3∑
s=1

fGs
(x)

=
1

2
[40x + 24x2 + 2(2 + 38x + 24x2)]

= 2 + 58x + 36x2.

W4

u
u

u
u

v0 v0 v0 v0v1 v1 v1 v1

v2 v2 v2 v2v3 v3 v3 v3

u1
u2 u3

G1 G2 G3

Fig.2: W4 and Gs
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