Genus Distribution for a Graph

Liangxia Wan

(Department of Mathematics, Beijing Jiaotong University, Beijing 100044, China)

Hong-Jian Lai

(Department of Mathematics, West Virginia University, Morgantown, WV 26506, USA)

Yanpei Liu

(Department of Mathematics, Beijing Jiaotong University, Beijing 100044, China)

E-mail: wanliangxia@126.com

Abstract: In this paper we develop the technique of a distribution decomposition for a graph. A formula is given to determine genus distribution of a cubic graph. Given any connected graph, it is proved that its genus distribution is the sum of those for some cubic graphs by using the technique.

Key Words: Joint tree; genus distribution; embedding distribution; Smarandachely *k*-drawing.

AMS(2000): 05C10.

§1. Introduction

We consider finite connected graphs. Surfaces are orientable 2-dimensional compact manifolds without boundaries. Embeddings of a graph considered are always assumed to be orientable 2-cell embeddings. Given a graph G and a surface S, a Smarandachely k-drawing of G on S is a homeomorphism $\phi: G \to S$ such that $\phi(G)$ on S has exactly k intersections in $\phi(E(G))$ for an integer k. If k = 0, i.e., there are no intersections between in $\phi(E(G))$, or in another words, each connected component of $S - \phi(G)$ is homeomorphic to an open disc, then G has an 2-cell embedding on S. If G can be embedded on surfaces S_r and S_t with genus r and t respectively, then it is shown in [1] that for any k with $r \leq k \leq t$, G has an embedding on S_k . Naturally, the genus of a graph is defined to be the minimum genus of a surface on which the graph can be embedded. Given a graph, how many distinct embeddings does it have on each surface? This is the genus distribution problem, first investigated by Gross and Furst [4]. As determining the genus of a graph is NP-complete [15], it appears more difficult and significant to determine the genus distribution of a graph.

¹Partially supported by NNSFC under Grants No. 10871021

²Received Oct.20, 2009. Accepted Dec. 25, 2009.

There have been results on genus distribution for some particular types of graphs (see [3], [5], [8], [9], [11]-[17], among others). In [6], Liu discovered the joint trees of a graph which provide a substantial foundation for us to solve the genus distribution of a graph. For a given embedding G_{σ} of a graph G, one can find the surface, embedding surface or associate surface, which G_{σ} embeds on by applying the associated joint tree. In fact, genus distribution of G is that of the set of all of its embedding surfaces. This paper first study genus distributions of some sets of surfaces and then investigate the genus distribution of a generic graph by using the surface sorting method developed in [16].

Preliminaries will be briefed in the next section. In Section 3, surfaces Q_j^i will be introduced. We shall investigate the genus distribution of surface sets Q_j^0 and Q_j^1 for $1 \leq j \leq 24$, and derive the related recursive formulas. In Section 4, a recursion formula of the genus distribution for a cubic graph is given. In the last section, we show that the genus distribution of a general graph can be transformed into genus distribution of some cubic graphs by using a technique we develop in this paper.

§2. Preliminaries

For a graph G, a rotation at a vertex v is a cyclic permutation of edges incident with v. A rotation system of G is obtained by giving each vertex of G a rotation. Let ρ_v denote the valence of vertex v which is the number of edges incident with v. The number of rotations systems of G is $\prod_{v \in V(G)} (\rho_v - 1)!$. Edmonds found that there is a bijection between the rotations systems of a graph and its embeddings [2]. Youngs provided the first proof published [18]. Thus, the number of embeddings of G is $\prod_{v \in V(G)} (\rho_v - 1)!$. Let $g_i(G)$ denote the number of embeddings of G with the genus i ($i \ge 0$). Then, the genus distribution of G is the sequence $g_0(G), g_1(G), g_2(G), \cdots$. The genus polynomial of G is $f_G(x) = \sum_{i>0} g_i(G)x^i$.

Given a spanning tree T of G, the joint trees of G are obtained by splitting each non-tree edge e into two semi-edges e and e^- . Given a rotation system σ of G, G_{σ} , \tilde{T}_{σ} and $\mathcal{P}_{\tilde{T}}^{\sigma}$ denote the associated embedding, joint tree and embedding surface which G_{σ} embedded on respectively. There is a bijection by embeddings and joint trees of G such that G_{σ} corresponds to \tilde{T}_{σ} . Given a joint tree \tilde{T} , a sub-joint tree \tilde{T}_1 of \tilde{T} is a graph consisting of T_1 and semi-edges incident with vertices of T_1 where T_1 is a tree and $V(T_1) \subseteq V(T)$. A sub-joint tree \tilde{T}_1 of \tilde{T} is called maximal if there is not a tree T_2 such that $V(T_1) \subset V(T_2) \subseteq V(T)$.

A linear sequence $S = abc \cdots z$ is a sequence of letters satisfying with a relation $a \prec b \prec c \prec \cdots \prec z$. Given two linear sequences S_1 and S_2 , the difference sequence S_1/S_2 is obtained by deleting letters of S_2 in S_1 . Since a surface is obtained by identifying a letter with its inverse letter on a special polygon along the direction, a surface is regarded as that polygon such that a and a^- occur only once for each $a \in S$ in this sense.

Let S be the collection of surfaces. Let $\gamma(S)$ be the genus of a surface S. In order to determine $\gamma(S)$, an equivalence is defined by Op1, Op2 and Op3 on S as follows:

Op 1. $AB \sim (Ae)(e^-B)$ where $e \notin AB$;

Op 2. $Ae_1e_2Be_2^-e_1^- \sim AeBe^- = Ae^-Be$ where $e \notin AB$; **Op 3.** $Aee^-B \sim AB$ where $AB \neq \emptyset$

where AB is a surface.

Thus, S is equivalent to one, and only one of the canonical forms of surfaces $a_0a_0^-$ and $\prod_{k=1}^{i} a_k b_k a_k^- b_k^-$ which are the sphere and orientable surfaces of genus $i(i \ge 1)$. **Lemma 2.1** ([6]) Let A and B be surfaces. If $a, b \notin B$, and if $A \sim Baba^-b^-$, then $\gamma(A) = \gamma(B) + 1$.

Lemma 2.2 ([7]) Let A, B, C, D and E be linear sequences and let ABCDE be a surface. If $a, b \notin ABCDE$, then $AaBbCa^-Db^-E \sim ADCBEaba^-b^-$.

Lemma 2.3 ([13],[16]) Let A, B, C and D be linear sequences and let ABCD be a surface. If $a \neq b \neq c \neq a^- \neq b^- \neq c^-$ and if $a, b, c \notin ABCD$, then each of the following holds.

 $\begin{array}{l} (i) \ aABa^-CD \sim aBAa^-CD \sim aABa^-DC. \\ (ii) \ AaBa^-bCb^-cDc^- \sim aBa^-AbCb^-cDc^- \sim aBa^-bCb^-AcDc^-. \\ (iii) \ AaBa^-bCb^-cDc^- \sim BaAa^-bCb^-cDc^- \sim CaAa^-bBb^-cDc^- \sim DaAa^-bBb^-cCc^-. \end{array}$

For a set of surfaces M, let $g_i(M)$ denote the number of surfaces with the genus i in M. Then, the genus distribution of M is the sequence $g_0(M), g_1(M), g_2(M), \cdots$. The genus polynomial is $f_M(x) = \sum_{i>0} g_i(M)x^i$.

§3. Genus Distribution for Q_i^1

Let $a, b, c, d, a^-, b^-, c^-, d^-$ be distinct letters and let A_0, B_0, C, D_0 be linear sequences. Then, surface sets Q_j^k are defined as follows for $j = 1, 2, 3, \cdots, 24$:

$$\begin{array}{ll} Q_1^k = \{A_k B_k C D_k\} & Q_2^k = \{A_k C D_k a B_k a^-\} & Q_3^k = \{A_k B_k C a D_k a^-\} \\ Q_4^k = \{A_k B_k a C D_k a^-\} & Q_5^k = \{A_k D_k a B_k C a^-\} & Q_6^k = \{A_k D_k C B_k\} \\ Q_7^k = \{B_k C D_k a A_k a^-\} & Q_8^k = \{B_k D_k C a A_k a^-\} & Q_9^k = \{A_k B_k D_k C\} \\ Q_{10}^k = \{A_k D_k C a B_k a^-\} & Q_{11}^k = \{A_k B_k D_k a C a^-\} & Q_{12}^k = \{A_k D_k B_k a C a^-\} \\ Q_{13}^k = \{A_k C B_k D_k\} & Q_{14}^k = \{A_k C B_k a D_k a^-\} & Q_{15}^k = \{A_k C D_k B_k\} \\ Q_{16}^k = \{A_k C a B_k D_k a^-\} & Q_{17}^k = \{A_k D_k B_k C\} & Q_{18}^k = \{C D_k a A_k a^- b B_k b^-\} \\ Q_{19}^k = \{B_k D_k a A_k a^- b C b^-\} & Q_{20}^k = \{B_k C a A_k a^- b D_k b^-\} & Q_{21}^k = \{A_k a B_k a^- b C b^- c D_k c^-\} \\ Q_{22}^k = \{A_k C a B_k a^- b D_k b^-\} & Q_{23}^k = \{A_k B_k a C a^- b D_k b^-\} & Q_{24}^k = \{A_k a B_k a^- b C b^- c D_k c^-\} \end{array}$$

where k = 0 and 1, $A_1 \in \{dA_0, A_0d\}$, $(B_1, D_1) \in \{(B_0d^-, D_0), (B_0, d^-D_0)\}$ and $a, a^-, b, b^-, c, c^-, d, d^- \notin ABCD$. Let $f_{Q_j^0}(x)$ denote the genus polynomial of Q_j^0 . If $A_1^0 A_0^0 D_0 B_1 B_2^0 C_2^0 C_1 D_1 = \emptyset$, then $f_{Q_j^0}(x) = 1$. Otherwise, suppose that $f_{Q_j^0}(x)$ are given for $1 \leq j \leq 24$. Then,

Theorem 3.1 Let $g_{i_j}(n)$ be the number of surfaces with genus *i* in Q_j^n . Each of the following holds.

$$g_{i_2}(0) + g_{i_3}(0) + g_{i_4}(0) + g_{i_5}(0), \text{ if } j = 1$$

$$g_{i_{21}}(0) + g_{i_{22}}(0) + g_{(i-1)_1}(0) + g_{(i-1)_{15}}(0), \text{ if } j = 2$$

$$g_{i_{22}}(0) + g_{i_{23}}(0) + g_{(i-1)_1}(0) + g_{(i-1)_{17}}(0), \text{ if } j = 3$$

$$g_{i_4}(0) + g_{i_{18}}(0) + g_{(i-1)_6}(0) + g_{(i-1)_{19}}(0), \text{ if } j = 4$$

$$g_{i_5}(0) + g_{i_{20}}(0) + g_{(i-1)_6}(0) + g_{(i-1)_{13}}(0), \text{ if } j = 5$$

$$2g_{i_6}(0) + 2g_{i_8}(0), \text{ if } j = 6$$

$$2g_{(i-1)_{15}}(0) + 2g_{(i-1)_{17}}(0), \text{ if } j = 7 \text{ and } 16$$

$$4g_{(i-1)_6}(0), \text{ if } j = 8$$

$$2g_{i_4}(0) + 2g_{i_{10}}(0), \text{ if } j = 11$$

$$2g_{i_{21}}(0) + 2g_{i_{23}}(0), \text{ if } j = 12$$

$$2g_{i_{21}}(0) + 2g_{i_{10}}(0), \text{ if } j = 13$$

$$g_{i_{14}}(0) + g_{i_{20}}(0) + g_{(i-1)_6}(0) + g_{(i-1)_{13}}(0), \text{ if } j = 14$$

$$g_{i_7}(0) + g_{i_{12}}(0) + g_{i_{15}}(0) + g_{i_{17}}(0), \text{ if } j = 17$$

$$2g_{(i-1)_4}(0) + 2g_{(i-1)_{10}}(0), \text{ if } j = 18$$

$$4g_{(i-1)_{12}}(0), \text{ if } j = 19$$

$$2g_{(i-1)_5}(0) + 2g_{(i-1)_{14}}(0), \text{ if } j = 20$$

$$g_{i_{21}}(0) + g_{i_{24}}(0) + g_{(i-1)_{11}}(0) + g_{(i-1)_{12}}(0), \text{ if } j = 21$$

$$g_{i_{23}}(0) + g_{i_{24}}(0) + g_{(i-1)_{10}}(0) + g_{(i-1)_{12}}(0), \text{ if } j = 21$$

$$g_{i_{23}}(0) + g_{i_{24}}(0) + g_{(i-1)_{11}}(0) + g_{(i-1)_{12}}(0), \text{ if } j = 23$$

$$2g_{(i-1)_{21}}(0) + 2g_{(i-1)_{23}}(0), \text{ if } j = 24$$

 $\mathit{Proof}\,$ We shall prove the equation for $g_{i_6}(1),$ and the proofs for others are similar. Let

$$U_1 = \{A_0 dd^- D_0 CB_0\} \qquad U_2 = \{dA_0 D_0 CB_0 d^-\} U_3 = \{A_0 dD_0 CB_0 d^-\} \qquad U_4 = \{dA_0 d^- D_0 CB_0\}.$$

By the definition of Q_6^1 , we have $Q_6^1 = \{U_1, U_2, U_3, U_4\}$. By the definition of g_i ,

$$g_{i_6}(1) = g_i(U_1) + g_i(U_2) + g_i(U_3) + g_i(U_4).$$

Ву ОрЗ,

$$A_0 dd^- D_0 CB_0 \sim A_0 D_0 CB_0$$
, and $dA_0 D_0 CB_0 d^- = A_0 D_0 CB_0 d^- d \sim A_0 D_0 CB_0$

It follows that

$$g_i(U_1) = g_i(U_2) = g_{i_6}(0).$$
(8)

By Lemma 2.3 (i) and Op2, we have

$$A_0 dD_0 CB_0 d^- = D_0 CB_0 d^- A_0 d \sim B_0 D_0 C d^- A_0 d \sim B_0 D_0 C a A_0 a^-$$

and

$$dA_0d^-D_0CB_0 = B_0D_0CdA_0d^- \sim B_0D_0CaA_0a^-.$$

So

$$g_i(U_3) = g_i(U_4) = g_{i_8}(0).$$
(9)

Combining (1) and (2), we have

$$g_{i_6}(1) = 2g_{i_6}(0) + 2g_{i_8}(0).$$

§4. Embedding Surfaces of a Cubic Graph

Given a cubic graph G with n non-tree edges y_l $(1 \leq l \leq n)$, suppose that T is a spanning tree such that T contains the longest path of G and that \widetilde{T} is an associated joint tree. Let X_l, Y_l, Z_l and F_l be linear sequences for $1 \leq l \leq n$ such that $X_l \cup Y_l = y_l, Z_l \cup F_l = y_l^-, X_l \neq Y_l$ and $Z_l \neq F_l$.

RECORD RULE: Choose a vertex u incident with two semi-edges as a starting vertex and travel \tilde{T} along with tree edges of \tilde{T} . In order to write down surfaces, we shall consider three cases below.

Case 1: If v is incident with two semi-edges y_s and y_t . Suppose that the linear sequence is R when one arrives v. Then, write down $RX_sy_tY_s$ going away from v.

Case 2: If v is incident with one semi-edge y_s . Suppose that R_1 is the linear sequence when one arrives v in the first time. Then the sequence is R_1X_s when one leaves v in the first time. Suppose that R_2 is the linear sequence when one arrives v in the second time. Then the sequence is R_2Y_s when one leaves v in the second time.

Case 3: If v is not incident with any semi-edge. Suppose that R_1 , R_2 and R_3 are, respectively, the linear sequences when one leaves v in the first time, the second time and the third time. Then, the sequences are $(R_2/R_1)R_1(R_3/R_2)$ and R_3 when one leaves v in the third time.

Here, $1 \le s, t \le n$ and $s \ne t$. If v is incident with a semi-edge y_s^- , then replace X_s with Z_s and replace Y_s with F_s .

Lemma 4.1 There is a bijection between embedding surfaces of a cubic graph and surfaces obtained by the record rule.

Proof Let T be a spanning tree such that \widetilde{T} is a joint tree of G above. Suppose that σ_v is

a rotation of v and that R_1, R_2 and R_3 are given above.

where e_p, e_q and e_r are tree-edges for $1 \leq p, q, r \leq 2n-3$ and $e_p \neq e_q \neq e_r$ for $p \neq q \neq r$. Hence the conclusion holds.

By the definitions for X_l, Y_l, Z_l and F_l , we have the following observation:

Observation 4.2 A surface set $H^{(0)}$ of G has properties below.

(1) Either $X_l, Y_l \in H^{(0)}$ or $X_l, Y_l \notin H^{(0)}$;

(2) Either $Z_l, F_l \in H^{(0)}$ or $Z_l, F_l \notin H^{(0)}$;

(3) If for some l with $1 \leq l \leq n$, $X_l, Y_l, Z_l, F_l \in H^{(0)}$, then $H^{(0)}$ has one of the following forms $X_l A^{(0)} Y_l B^{(0)} Z_l C^{(0)} F_l D^{(0)}, Y_l A^{(0)} X_l B^{(0)} Z_l C^{(0)} F_l D^{(0)}, X_l A^{(0)} Y_l B^{(0)} F_l C^{(0)} Z_l D^{(0)}$ or $Y_l A^{(0)} X_l B^{(0)} F_l C^{(0)} Z_l D^{(0)}$. These forms are regarded to have no difference through this paper.

If either $X_l \in H^{(0)}, Z_l \notin H^{(0)}$ or $X_l \notin H^{(0)}, Z_l \in H^{(0)}$, then replace X_l, Y_l, Z_l and F_l according to the definition of X_l, Y_l, Z_l and F_l .

RECURSION RULE: Given a surface set $H^{(0)} = \{X_l A^{(0)} Y_l B^{(0)} Z_l C^{(0)} F_l D^{(0)}\}$ where $A^{(0)}, B^{(0)}, C^{(0)}$ and $D^{(0)}$ are linear sequences.

Step 1. Let $A_0 = A^{(0)}$, $B_0 = B^{(0)}$, $C = C^{(0)}$ and $D_0 = D^{(0)}$. Q_j^1 is obtained for $2 \le j \le 5$. Then $H_j^{(1)}$ is obtained by replacing a, a^- and Q_j^1 with a_1, a_1^- and $H_j^{(1)}$ respectively.

Step 2. Given a surface set $H_{j_1,j_2,j_3,\cdots,j_k}^{(k)}$ for a positive integer k and $2 \leq j_1, j_2, j_3, \cdots, j_k \leq 5$, without loss of generality, suppose that $H_{j_1,j_2,j_3,\cdots,j_k}^{(k)} = \{X_s A^{(k)} Y_s B^{(k)} Z_s C^{(k)} F_s D^{(k)}\}$ where $A^{(k)}, B^{(k)}, C^{(k)}$ and $D^{(k)}$ are linear sequences for certain s $(1 \leq s \leq n)$. Let $A_0 = A^{(k)},$ $B_0 = B^{(k)}, C = C^{(k)}$ and $D_0 = D^{(k)}$. Q_j^1 is obtained for $2 \leq j \leq 5$. Then $H_{j_1,j_2,j_3,\cdots,j_k,j}^{(k+1)}$ is obtained by replacing a, a^- and Q_j^1 with a_{k+1}, a_{k+1}^- and $H_{j_1,j_2,j_3,\cdots,j_k,j}^{(k+1)}$ respectively.

Some surface sets $H_{j_1,j_2,j_3,\cdots,j_m}^{(m)}$ which contain a_l, a_l^-, y_l, y_l^- can be obtained by using step 2 for a positive integer $m, 2 \leq j_1, j_2, j_3, \cdots, j_m \leq 5$ and $1 \leq l \leq n$. It is easy to compute $f_{H_{j_1,j_2,j_3,\cdots,j_m}^{(m)}}(x)$.

By Theorem 3.7,

$$g_{i}(H_{j_{1},j_{2},j_{3},\cdots,j_{r}}^{(r)}) = g_{i}(H_{j_{1},j_{2},j_{3},\cdots,j_{r},2}^{(r+1)}) + g_{i}(H_{j_{1},j_{2},j_{3},\cdots,j_{r},3}^{(r+1)}) + g_{i}(H_{j_{1},j_{2},j_{3},\cdots,j_{r},4}^{(r+1)}) + g_{i}(H_{j_{1},j_{2},j_{3},\cdots,j_{r},5}^{(r+1)}),$$
(1)
if $0 \le r \le m-1, 2 \le j_{1}, j_{2}, j_{3},\cdots,j_{r} \le 5.$

Fig.1: G_0 and \widetilde{T}_0

Example 4.3 The graph G_0 is given in Fig.1. A joint tree \tilde{T}_0 is obtained by splitting non-tree edges y_l $(1 \leq l \leq 6)$. Travel \tilde{T}_0 by regarded v_0 as a starting point. By using record rule we obtain surface sets

$$\{X_1y_2Y_1Z_1Z_2Z_3y_3F_3Y_6Y_5Y_4Z_5Z_4y_6^-F_4F_5X_4X_5X_6F_2F_1\}$$

 $\quad \text{and} \quad$

$$\{X_1y_2Y_1Z_1Z_2Y_6Y_5Y_4Z_5Z_4y_6^-F_4F_5X_4X_5X_6F_2F_1Z_3y_3F_3\}$$

By replacing Z_2, F_2, Z_3, F_3, X_6 and Y_6 according the definition 16 surface sets U_r $(1 \le r \le 16)$ are listed below.

$$U_{1} = \{X_{1}y_{2}Y_{1}Z_{1}y_{2}^{-}y_{3}^{-}y_{3}y_{6}Y_{5}Y_{4}Z_{5}Z_{4}y_{6}^{-}F_{4}F_{5}X_{4}X_{5}F_{1}\}$$

$$U_{2} = \{X_{1}y_{2}Y_{1}Z_{1}y_{2}^{-}y_{3}^{-}y_{3}Y_{5}Y_{4}Z_{5}Z_{4}y_{6}^{-}F_{4}F_{5}X_{4}X_{5}y_{6}F_{1}\}$$

$$U_{3} = \{X_{1}y_{2}Y_{1}Z_{1}y_{2}^{-}y_{3}y_{3}^{-}Y_{5}Y_{4}Z_{5}Z_{4}y_{6}^{-}F_{4}F_{5}X_{4}X_{5}F_{1}\}$$

$$U_{4} = \{X_{1}y_{2}Y_{1}Z_{1}y_{2}^{-}y_{3}y_{3}^{-}Y_{5}Y_{4}Z_{5}Z_{4}y_{6}^{-}F_{4}F_{5}X_{4}X_{5}y_{6}F_{1}\}$$

$$U_{5} = \{X_{1}y_{2}Y_{1}Z_{1}y_{3}^{-}y_{3}y_{6}Y_{5}Y_{4}Z_{5}Z_{4}y_{6}^{-}F_{4}F_{5}X_{4}X_{5}y_{2}^{-}F_{1}\}$$

$$U_{6} = \{X_{1}y_{2}Y_{1}Z_{1}y_{3}^{-}y_{3}Y_{5}Y_{4}Z_{5}Z_{4}y_{6}^{-}F_{4}F_{5}X_{4}X_{5}y_{6}y_{2}^{-}F_{1}\}$$

$$U_{7} = \{X_{1}y_{2}Y_{1}Z_{1}y_{3}y_{3}^{-}Y_{5}Y_{4}Z_{5}Z_{4}y_{6}^{-}F_{4}F_{5}X_{4}X_{5}y_{6}y_{2}^{-}F_{1}\}$$

$$U_{8} = \{X_{1}y_{2}Y_{1}Z_{1}y_{3}y_{3}^{-}Y_{5}Y_{4}Z_{5}Z_{4}y_{6}^{-}F_{4}F_{5}X_{4}X_{5}y_{6}y_{2}^{-}F_{1}\}$$

$$U_{9} = \{X_{1}y_{2}Y_{1}Z_{1}y_{2}^{-}y_{6}Y_{5}Y_{4}Z_{5}Z_{4}y_{6}^{-}F_{4}F_{5}X_{4}X_{5}F_{1}y_{3}^{-}y_{3}}\}$$

$$\begin{split} U_{10} &= \{X_1y_2Y_1Z_1y_2^-Y_5Y_4Z_5Z_4y_6^-F_4F_5X_4X_5y_6F_1y_3^-y_3\}\\ U_{11} &= \{X_1y_2Y_1Z_1y_2^-y_6Y_5Y_4Z_5Z_4y_6^-F_4F_5X_4X_5F_1y_3y_3^-\}\\ U_{12} &= \{X_1y_2Y_1Z_1y_2^-Y_5Y_4Z_5Z_4y_6^-F_4F_5X_4X_5y_6F_1y_3y_3^-\}\\ U_{13} &= \{X_1y_2Y_1Z_1y_6Y_5Y_4Z_5Z_4y_6^-F_4F_5X_4X_5y_2^-F_1y_3^-y_3\}\\ U_{14} &= \{X_1y_2Y_1Z_1Y_5Y_4Z_5Z_4y_6^-F_4F_5X_4X_5y_6y_2^-F_1y_3^-y_3\}\\ U_{15} &= \{X_1y_2Y_1Z_1y_6Y_5Y_4Z_5Z_4y_6^-F_4F_5X_4X_5y_6y_2^-F_1y_3y_3^-\}\\ U_{16} &= \{X_1y_2Y_1Z_1Y_5Y_4Z_5Z_4y_6^-F_4F_5X_4X_5y_6y_2^-F_1y_3y_3^-\}. \end{split}$$

The genus distribution of U_r can be obtained by using the recursion rule. Since the method is similar, we shall calculate the genus distribution of U_1 and leave the calculation of genus distribution for others to readers.

 $\begin{array}{l} U_1 \text{ is reduced to } \{X_1y_2Y_1Z_1y_2^-y_6Y_5Y_4Z_5Z_4y_6^-F_4F_5X_4X_5F_1\} \text{ by Op2. Let } H^{(0)} = S_1, \\ A_0 = y_2, \ C_0 = y_2^-y_6Y_5Y_4Z_5Z_4y_6^-F_4F_5X_4X_5 \text{ and } B_0 = D_0 = \emptyset. \text{ Then } H_2^{(1)} = H_3^{(1)} = \{y_2y_2^-y_6Y_5Y_4Z_5Z_4y_6^-F_4F_5X_4X_5\} \text{ and } H_4^{(1)} = H_5^{(1)} = \{y_2a_1y_2^-y_6Y_5Y_4Z_5Z_4y_6^-F_4F_5X_4X_5a_1^-\}. \end{array}$

 $\begin{array}{l} H_2^{(1)} \text{ is reduced to } \{y_6Y_5Y_4Z_5Z_4y_6^-F_4F_5X_4X_5\} \text{ by Op2. Let } A_0 = X_5y_6Y_5, \ B_0 = Z_5, \\ C_0 = y_6^- \text{ and } D_0 = F_5. \text{ Then } H_{2,2}^{(2)} = \{X_5y_6Y_5y_6^-F_5a_2Z_5a_2^-\}, \ H_{2,3}^{(2)} = \{X_5y_6Y_5Z_5y_6^-a_2F_5a_2^-\}, \\ H_{2,4}^{(2)} = \{X_5y_6Y_5Z_5a_2y_6^-F_5a_2^-\} \text{ and } H_{2,5}^{(2)} = \{X_5y_6Y_5F_5a_2Z_5y_6^-a_2^-\}. \ H_{4,2}^{(2)} = \{X_5a_1^-y_2a_1y_2^-y_6Y_5z_5y_6^-a_2F_5a_2^-\}, \\ y_6^-F_5a_2Z_5a_2^-\}, \ H_{4,3}^{(2)} = \{X_5a_1^-y_2a_1y_2^-y_6Y_5Z_5y_6^-a_2^-F_5a_2^-\}, \ H_{4,4}^{(2)} = \{X_5a_1^-y_2a_1y_2^-y_6Y_5Z_5a_2y_6^-F_5a_2Z_5y_6^-a_2^-\} \text{ by letting } A_0 = X_5a_1^-y_2a_1y_2^-y_6Y_5, \ B_0 = Z_5, \\ C_0 = y_6^- \text{ and } D_0 = F_5. \end{array}$

 $\begin{array}{l} \text{Similarly, } H^{(3)}_{2,2,2} = \{y_{6}a_{2}a_{2}a_{3}y_{6}a_{3}\}, H^{(3)}_{2,2,3} = \{y_{6}y_{6}a_{2}a_{3}a_{2}a_{3}^{-}\}, H^{(3)}_{2,3,4} = \{y_{6}y_{6}a_{3}a_{2}a_{2}^{-}a_{3}\} \\ \text{and } H^{(3)}_{2,2,5} = \{y_{6}a_{2}a_{3}y_{6}a_{2}a_{3}^{-}\}, H^{(3)}_{2,3,5} = \{y_{6}a_{2}a_{3}y_{6}a_{2}a_{3}^{-}\}, H^{(3)}_{2,3,4} = \{y_{6}a_{3}a_{2}a_{2}a_{3}^{-}\} \\ \text{and } H^{(3)}_{2,2,5} = \{y_{6}a_{2}a_{3}y_{6}a_{2}a_{3}^{-}\}, H^{(3)}_{2,3,5} = \{y_{6}a_{2}a_{3}y_{6}a_{2}a_{3}^{-}\}, H^{(3)}_{2,4,4} = \{y_{6}a_{3}a_{2}y_{6}^{-}a_{2}a_{3}^{-}\} \\ \text{and } H^{(3)}_{2,4,4} = \{y_{6}a_{3}a_{2}y_{6}a_{2}a_{3}^{-}\} \\ \text{and } H^{(3)}_{2,4,4} = \{y_{6}a_{3}a_{2}y_{6}a_{2}a_{3}^{-}\} \\ \text{and } H^{(3)}_{2,4,5} = \{y_{6}a_{3}a_{2}y_{6}a_{2}^{-}a_{3}^{-}\} \\ \text{and } H^{(3)}_{2,5,5} = \{y_{6}a_{2}a_{3}a_{2}y_{6}a_{3}^{-}\}, H^{(3)}_{4,2,5} = \{y_{6}a_{2}a_{3}a_{2}y_{6}a_{3}^{-}\}, H^{(3)}_{4,2,5} = \{y_{6}a_{2}a_{3}a_{2}a_{3}^{-}\}, H^{(3)}_{4,2,5} = \{a_{1}^{-}y_{2}a_{1}y_{2}^{-}y_{6}y_{6}^{-}a_{2}a_{3}a_{2}a_{3}^{-}\}, H^{(3)}_{4,2,5} = \{y_{6}a_{2}a_{3}a_{2}a_{3}^{-}a_{3}^{-}\}, H^{(3)}_{4,2,2} = \{a_{1}^{-}y_{2}a_{1}y_{2}^{-}y_{6}y_{6}^{-}a_{2}a_{3}a_{2}a_{3}^{-}], H^{(3)}_{4,2,5} = \{a_{1}^{-}y_{2}a_{1}y_{2}^{-}y_{6}y_{6}^{-}a_{2}a_{3}a_{2}a_{3}^{-}], H^{(3)}_{4,3,2} = \{a_{1}^{-}y_{2}a_{1}y_{2}^{-}y_{6}y_{6}^{-}a_{2}a_{3}a_{2}a_{3}^{-}], H^{(3)}_{4,3,3} = \{a_{1}^{-}y_{2}a_{1}y_{2}^{-}y_{6}y_{6}^{-}a_{2}a_{3}a_{2}a_{3}^{-}], H^{(3)}_{4,3,3} = \{a_{1}^{-}y_{2}a_{1}y_{2}^{-}y_{6}y_{6}^{-}a_{2}a_{3}a_{2}a_{3}^{-}], H^{(3)}_{4,3,3} = \{a_{1}^{-}y_{2}a_{1}y_{2}^{-}y_{6}y_{6}^{-}a_{2}a_{3}a_{2}^{-}a_{3}^{-}], H^{(3)}_{4,3,4} = \{a_{1}^{-}y_{2}a_{1}y_{2}^{-}y_{6}y_{6}a_{2}a_{3}a_{2}^{-}a_{3}^{-}], H^{(3)}_{4,4,4,4} = \{a_{1}^{-}y_{2}a_{1}y_{2}^{-}y_{6}a_{2}a_{3}a_{2}a_{3}^{-}], H^{(3)}_{4,4,4,4} = \{a_{1}^{-}y_{2}a_{1}y_{2}^{-}y_{6}a_{2}a_{3}a_{2}a_{3}^{-}], H^{(3)}_{4,4,4,4} = \{a_{1}^{-}y_{2}a_{1}y_{2}^{-}y_{6}a_{2}a_{3}a_{2}a_{3}^{-}], H^{(3)}_{4,4,4,4} = \{a_{1}^{-}y_{2}a_{1}y_{2}^{-}y_{6}a_{2}a_{3}a_{2}a_{3}^{-}], H^{(3)}_{4,4,4,4} = \{a_{1}^{-}y_{2}a_{1}y_{$

By using (1),

$$f_{U_1}(x) = 4 + 32x + 28x^2$$

Thus,

$$f_{G_0}(x) = 64 + 512x + 448x^2.$$

§5. Genus Distribution for a Graph

Theorem 5.1 Given a graph, the genus distribution of G is determined by using the genus distribution of some cubic graphs.

Proof Given a finite graph G_0 , suppose that u is adjacent to k+1 distinct vertices $v_0, v_1, v_2, \dots, v_k$ of G_0 with $k \ge 3$. Actually, the supposition always holds by subdividing some edges of G.

A distribution decomposition of a graph is defined below: add a vertex u_s of valence 3 such that u_s is adjacent to u, v_0 and v_s for each s with $1 \le s \le k$ and then obtain a graph G_s by deleting the edges uv_0 and uv_s .

Choose the spanning trees T_s of G_s such that uv_s , uu_s and u_sv_s are tree edges for $0 \le s \le k$. Consider a joint tree \widetilde{T}_0 of G. Let \widetilde{T}_s^* be the maximal joint tree of \widetilde{T}_0 such that $v_s \in V(T_s^*)$ and $v_t \notin V(T_s^*)$ for $t \ne s$ and $0 \le s, t \le k$.

Let v_s be the starting vertex of \widetilde{T}_s^* for $0 \leq s \leq k$. Suppose that \mathcal{A}_s is the set of all sequences by travelling \widetilde{T}_s^* and that Q_s is the embedding surface set of G_s . Then

$$Q_0 = \{A_0 A_{r_1} A_{r_2} A_{r_3} \cdots A_{r_k} | A_{r_p} \in \mathcal{A}_{r_p}, 1 \leqslant r_p \leqslant k, r_p \neq r_q \text{ for } p \neq q\}$$

and for $1\leqslant s\leqslant k$

$$Q_s = \{A_0 A_s A_{r_1} A_{r_2} A_{r_3} \cdots A_{r_{k-1}}, A_0 A_{r_1} A_{r_2} A_{r_3} \cdots A_{r_{k-1}} A_s | A_{r_p} \in \mathcal{A}_{r_p},$$
$$1 \leqslant r_p \leqslant k, r_p \neq s, 1 \leqslant p, q \leqslant k-1, \text{ and } r_p \neq r_q \text{ for } p \neq q \}.$$

Let $f_{Q_s}(x)$ denote the genus distribution of Q_s . It is obvious that

$$f_{Q_0}(x) = \frac{1}{2} \sum_{s=1}^k f_{Q_s}(x).$$

Thus,

$$f_{G_0}(x) = \frac{1}{2} \sum_{s=1}^k f_{G_s}(x).$$

Since G_0 has finite vertices, the genus distribution of G_0 can be transformed into those of some cubic graphs in homeomorphism by using the distribution decomposition. \Box

Next we give a simple application of Theorem 5.1.

Example 5.2 The graph W_4 is shown in Fig.2. In order to calculate its genus distribution, we use the distribution decomposition and then we obtain three graph G_s for $1 \le s \le 3$ (Fig.2). It is obvious that G_2 are isomorphic to Möbius ladder ML_3 and G_s are isomorphic to Ringel ladder RL_2 for s = 1 and 3. Since (see [8], [15])

$$f_{ML_3}(x) = 40x + 24x^2$$

and since (see [9], [15])

$$f_{RL_2}(x) = 2 + 38x + 24x^2$$

Fig.2: W_4 and G_s

References

- R.A. Duke, The genus, regional number, and Betti number of a graph, Canad. J. Math., 18 (1966), 817-822.
- [2] J. Edmonds, A combinatorial representation for polyhedral surfaces, Notices Amer. Math. Soc., 7 (1960), 646.
- [3] M.L. Furst, J.L. Gross, R. Statman, Genus distributions for two classes of graphs, J. Combin. Theory (B) 46 (1989), 22-36.
- [4] J. L. Gross, M. L. Furst, Hierarcy of imbedding distribution invariants of a graph, J. Graph Theory, 11 (1987), 205-220.
- [5] J.L. Gross, D.P. Robbins, T.W. Tucker, Genus distributions for bouquets of circles, J. Combin. Theory (B) 47 (1989), 292-306.
- [6] Y.P. Liu, Advances in Combinatorial Maps (in Chinese), Northern Jiaotong University Press, Beijing, 2003.
- [7] Y.P. Liu, *Embeddability in Graphs*, Kluwer Academic Publisher, Dordrecht/Boston/London, 1995.
- [8] L.A. McGeoch, Algorithms for two graph problems: computing maximum-genus imbeddings and the two-server problem, Ph.D Thesis, Computer Science Dept., Carnegie Mellon University, PA, 1987.
- [9] E.H. Tesar, Genus distribution of Ringel ladders, Discrete Math., 216 (2000), 235-252.
- [10] C. Thomassen, The graph genus problem is NP-complete, J. Algorithms, 10 (1989), 568-576.
- [11] L.X. Wan, Genus distribution of general ladders (in Chinese), Acta Math. Appl. Sinica, 31 (2008), 806-816.
- [12] L.X. Wan, K.Q. Feng, Y.P. Liu, D.J. Wang, Genus distribution for ladder type and cross type graphs, *Scien. China* A, 52 (2009), 1760-1768.

- [13] L.X. Wan, Y.P. Liu, Genus distribution of the orientable embeddings for a type of new graphs (in chinese), J. Beijing Jiaotong Univ., 29 (2005), 65-68.
- [14] L.X. Wan, Y.P. Liu, Orientable embedding genus distribution for certain types of graphs, J. Combin. Theory, Ser.(B) 98 (2008), 19-32.
- [15] L.X. Wan, Y.P. Liu, On embedding genus distribution of ladders and crosses, Applied Math. Letters, 22 (2009), 738-742.
- [16] L.X. Wan, Y.P. Liu, Orientable embedding distributions by genus for certain type of nonplanar graphs (I), Ars Combin., 79 (2006) 97-105.
- [17] L.X. Wan, Y.P. Liu, Orientable embedding distributions by genus for certain type of nonplanar graphs (II), accepted by *Ars Combin.*.
- [18] J.W.T. Youngs, Minimal imbeddings and the genus of a graph, J. Math. Mech., 12 (1963), 303-315.