The Genus of the Folded Hypercube

Rong-Xia Hao and Wenmao Cairen
(Department of Mathematics, Beijing Jiaotong University, Beijing 100044, P.R.China)
Haoyang Liu
(School of Mathematical Sciences, Peking University, Beijing 100871, P.R.China)
E-mail: rxhao@bjtu.edu.cn

Abstract

The folded hypercube $F Q_{n}$ is a variance of the hypercube network and is superior to Q_{n} in some properties[IEEE Trans. Parallel Distrib. Syst. 2 (1991) 31-42]. The genus of n-dimensional hypercube Q_{n} were given by G. Ringel. In this paper, the genus $\gamma\left(F Q_{n}\right)$ of $F Q_{n}$ is discussed. That is, $\gamma\left(F Q_{n}\right)=(n-3) 2^{n-3}+1$ if n is odd and $(n-3) 2^{n-3}+1 \leq \gamma\left(F Q_{n}\right) \leq(n-2) 2^{n-3}+1$ if n is even.

Key Words: n-Dimensional hypercube, folded hypercube, genus, surface, Smarandache λ^{S}-drawing, .

AMS(2010): 05C25, 20B25

§1. Introduction

Let $G=(V(G), E(G))$ be a graph, where $V(G)$ is a finite vertex set and $E(G)$ is the edge set which is the subset of $\{(u, v) \mid(u, v)$ is an unordered pair of $V(G)\}$. Two vertices u and v are adjacent if $(u, v) \in E(G)$. A path, written as $\left\langle v_{0}, v_{1}, v_{2}, \cdots, v_{m}\right\rangle$, is a sequence of adjacent vertices, in which all the vertices $v_{0}, v_{1}, v_{2}, \cdots, v_{m}$ are distinct except possibly $v_{0}=v_{m}$, the path with $v_{0}=v_{m}$ is a cycle. The girth of a graph G is the length of the shortest cycle of G.

If $|G|>1$ and $G-F$ is connected for every set $F \subseteq E(G)$ of fewer then l edges, then G is called l-edge-connected. The greatest integer l such that G is l-edge-connected is the edge-connectivity $\lambda(G)$ of G.

A surface is a compact connected orientable 2-manifold which could be thought of as a sphere on which has been placed a number of handles. The number of handles is referred to as the genus of the surface. A drawing of graph G on a surface S is such a drawing with no edge crosses itself, no adjacent edges cross each other, no two edges intersect more than once, and no three edges have a common point. A Smarandache λ^{S}-drawing of G on S is a drawing of G on S with minimal intersections λ^{S}. Particularly, a Smarandache 0-drawing of G on S if existing, is called an embedding of G on S.

A region of a graph G embedded on a surface is the connected sections of the surface bounded by a set of edges of G. This set of edges is called the boundary of the region, and

[^0]the number of edges is the length of the region. We will use $\left(v_{0}, v_{1}, v_{2}, \cdots, v_{m}\right)$, called a facial cycle, to denote the region bounded by edges $\left(v_{0}, v_{1}\right),\left(v_{1}, v_{2}\right), \cdots$, and $\left(v_{m}, v_{0}\right)$. so a facial cycle of a graph is a region of the graph. A region is a k-cycle if its length is k. A region is a 2-cell if any simple closed curve within the region can be collapsed to a single point. An embedding of a graph G on a surface S is a 2-cell embedding if all embedded regions are 2-cells.

An embedding of G into an oriented surface S induce a rotation system as follows: The local rotation at a vertex v is the cyclic permutation corresponding to the order in which the edge-ends are traversed in an orientation-preserving tour around v. A rotation system of the given embedding of G in S is the collection of local rotations at all vertices of G. It is proved [19] that every 2-cell embedding of a graph G in an orientable surface is uniquely determined, up to homeomorphism, by its rotation system.

Let G be a graph and π be an embedding of G, the corresponding rotation system is denoted by ρ_{π}. For any $v \in V$, the local rotation at v determined by ρ_{π} is denoted by $\rho_{\pi}(v)$. In the following, we consider 2-cell embedding of simple undirected graphs on orientable surfaces, the rotation at a vertex is clockwise. The readers are referred to [1] for undefined notations.

The genus $\gamma(G)$ of a graph G is meant the minimum genus of all possible surfaces on which G can be embedded with no edge crossings, similarly, the $\gamma_{M}(G)$ is the maximum genus. As a measure of the complexity of a network, the genus gives an indication of how efficiently the network can be laid out. The smaller the genus, the more efficient the layout. The planer graphs have genus zero since no handles are needed to prevent edge intersections.

Let G be a connected graph with a 2-cell embedding on an orientable surface of genus g, having m vertices, q edges and r regions, then the well known Euler's formula [16] is: $m-q+r=$ $2-2 g$. For embedding, Duke's interpolation theorem [5] is that a connected graph G has a 2-cell embedding on surface S_{k} if and only if $\gamma(G) \leq k \leq \gamma_{M}(G)$, where k is the genus of surface S_{k}.

Graph embeddings have been studied by many authors over years. Especially the study of the maximum and minimum orientable genus $\gamma_{M}(G)$ and $\gamma(G)$ of a graph G, they have been proved polynomial [7] and NP-complete [22], respectively. The embedding properties of a graph and some results about surfaces are extensively treated in the books [3,4,8,19]. More results about genera and embedding genus distributions are referred to see [9-11,13-15,17-18,20,23$25,27]$ etc.. Although there are much results about maximal genera, but minimum genera for most kinds of graphs are not known. The folded hypercube $F Q_{n}$ is a variance of the hypercube network and is superior to Q_{n} in some properties such as diameters [6]. The genus $\gamma\left(Q_{n}\right)$ of n-dimensional hypercube Q_{n} were given by G. Ringel [21], the genus of n-cube is discussed by Beineke and Harary [2].

In this paper, the genus $\gamma\left(F Q_{n}\right)$ of $F Q_{n}$ is discussed. That is, $\gamma\left(F Q_{n}\right)=(n-3) 2^{n-3}+1$ for n is odd and $(n-3) 2^{n-3}+1 \leq \gamma\left(F Q_{n}\right) \leq(n-2) 2^{n-3}+1$ for n is even.

§2. Main Results

The n-dimensional hypercube, denoted by Q_{n}, is a bipartite graph with 2^{n} vertices, its any vertex v is denoted by an n-bit binary string $v=x_{n} x_{n-1} \cdots x_{2} x_{1}$ or $\left(x_{n} x_{n-1} \cdots x_{2} x_{1}\right)$, where
$x_{i} \in\{0,1\}$ for all $i, 1 \leq i \leq n$. Two vertices of Q_{n} are adjacent if and only if their binary strings differ in exactly one bit position. So Q_{n} is an n-regular graph.

If $x=x_{n} x_{n-1} \cdots x_{2} x_{1}$ and $y=y_{n} y_{n-1} \cdots y_{2} y_{1}$ are two vertices in Q_{n} such that $y_{i}=1-x_{i}$ for $1 \leq i \leq n$, then we denote $y=\bar{x}$, and we say that x and \bar{x} have complementary addresses. As a variance of the Q_{n}, the n-dimensional folded hypercube, denoted by $F Q_{n}$, proposed first by El-Amawy and Latifi[?], is defined as follows: $F Q_{n}$ is an $(n+1)$-regular graph, its vertex set is exactly $V\left(Q_{n}\right)$, and its edge set is $E\left(Q_{n}\right) \bigcup E_{0}$, where $E_{0}=\left\{x \bar{x} \mid x \in V\left(Q_{n}\right)\right\}$. In other words, $F Q_{n}$ is a graph obtained from Q_{n} by adding edges, called complementary edges, between any pair of vertices with complementary addresses. $F Q_{2}$ and $F Q_{3}$ are shown in Fig.1.

Fig. $1 \quad F Q_{2}$ and $F Q_{3}$
Lemma 2.1([2,21]) Let Q_{n} be an n-hypercube, then $\gamma\left(Q_{n}\right)=(n-4) 2^{n-3}+1$.
Lemma 2.1([6]) The edge-connectivity of n-folded hypercube $\lambda\left(F Q_{n}\right) \geq n+1$.
Lemma 2.3(Jungerman [12], Xuong [25]) If G is a 4-edge-connected graph with m vertices and q edges, then $\gamma_{M}(G)=\left\lfloor\frac{q-m+1}{2}\right\rfloor$.

Lemma 2.4 Let Q_{n} be an n-dimensional hypercube. Then there exists an embedding π_{n} of Q_{n} for $n \geq 3$ on the surface S of genus $(n-4) 2^{n-3}+1$, such that each of the following three kinds of cycles for $x_{i} \in\{0,1\}, 3 \leq i \leq n$,

$$
\begin{aligned}
& \left(\left(x_{n} \cdots x_{3} 10\right),\left(x_{n} \cdots x_{3} 00\right),\left(x_{n} \cdots x_{3} 01\right),\left(x_{n} \cdots x_{3} 11\right)\right) ; \\
& \left(\left(x_{n} \cdots x_{3} 10\right),\left(x_{n} \cdots x_{3} 00\right),\left(\overline{x_{n}} x_{n-1} \cdots x_{3} 00\right),\left(\overline{x_{n}} x_{n-1} \cdots x_{3} 10\right)\right) \text { and } \\
& \left(\left(x_{n} \cdots x_{3} 01\right),\left(x_{n} \cdots x_{3} 11\right),\left(\overline{x_{n}} x_{n-1} \cdots x_{3} 11\right),\left(\overline{x_{n}} x_{n-1} \cdots x_{3} 01\right)\right)
\end{aligned}
$$

is a facial 4 -cycle of π_{n}.
Proof It is true for Q_{3}, shown in Fig.2. Assume it is true for $Q_{n-1}, n \geq 4$. There exists an embedding π_{n-1} of Q_{n-1} on the surface S^{\prime} of genus $(n-5) 2^{n-4}+1$, such that each of three kinds of cycles $\left(\left(x_{n-1} \cdots x_{3} 10\right),\left(x_{n-1} \cdots x_{3} 00\right),\left(x_{n-1} \cdots x_{3} 01\right),\left(x_{n-1} \cdots x_{3} 11\right)\right)$; $\left(\left(x_{n-1} \cdots x_{3} 10\right),\left(x_{n-1} \cdots x_{3} 00\right),\left(\overline{x_{n-1}} x_{n-2} \cdots x_{3} 00\right),\left(\overline{x_{n-1}} x_{n-2} \cdots x_{3} 10\right)\right)$ and $\left(\left(x_{n-1} \cdots x_{3} 01\right)\right.$, $\left.\left(x_{n-1} \cdots x_{3} 11\right),\left(\overline{x_{n-1}} x_{n-2} \cdots x_{3} 11\right),\left(\overline{x_{n-1}} x_{n-2} \cdots x_{3} 01\right)\right)$ for $x_{i} \in\{0,1\}, 3 \leq i \leq n-1$, is a facial cycle on embedding π_{n-1} of Q_{n-1}. So the rotations of π_{n-1} are as follows:

$$
\begin{aligned}
\rho_{\pi_{n-1}}\left(x_{n-1} \cdots x_{3} 10\right) & =\left(A^{\prime}\left(x_{n-1} \cdots x_{3} 11\right)\left(x_{n-1} \cdots x_{3} 00\right)\right), \\
\rho_{\pi_{n-1}}\left(x_{n-1} \cdots x_{3} 00\right) & =\left(B^{\prime}\left(x_{n-1} \cdots x_{3} 10\right)\left(x_{n-1} \cdots x_{3} 01\right)\right), \\
\rho_{\pi_{n-1}}\left(x_{n-1} \cdots x_{3} 01\right) & =\left(C^{\prime}\left(x_{n-1} \cdots x_{3} 00\right)\left(x_{n-1} \cdots x_{3} 11\right)\right), \\
\rho_{\pi_{n-1}}\left(x_{n-1} \cdots x_{3} 11\right) & =\left(D^{\prime}\left(x_{n-1} \cdots x_{3} 01\right)\left(x_{n-1} \cdots x_{3} 10\right)\right)
\end{aligned}
$$

because of $\left(\left(x_{n-1} \cdots x_{3} 10\right),\left(x_{n-1} \cdots x_{3} 00\right),\left(x_{n-1} \cdots x_{3} 01\right),\left(x_{n-1} \cdots x_{3} 11\right)\right)$ being facial cycles along counter-clockwise; or

$$
\begin{aligned}
\rho_{\pi_{n-1}}\left(x_{n-1} \cdots x_{3} 10\right) & =\left(A^{\prime}\left(x_{n-1} \cdots x_{3} 00\right)\left(x_{n-1} \cdots x_{3} 11\right)\right), \\
\rho_{\pi_{n-1}}\left(x_{n-1} \cdots x_{3} 00\right) & =\left(B^{\prime}\left(x_{n-1} \cdots x_{3} 01\right)\left(x_{n-1} \cdots x_{3} 10\right)\right), \\
\rho_{\pi_{n-1}}\left(x_{n-1} \cdots x_{3} 01\right) & =\left(C^{\prime}\left(x_{n-1} \cdots x_{3} 11\right)\left(x_{n-1} \cdots x_{3} 00\right)\right), \\
\rho_{\pi_{n-1}}\left(x_{n-1} \cdots x_{3} 11\right) & =\left(D^{\prime}\left(x_{n-1} \cdots x_{3} 10\right)\left(x_{n-1} \cdots x_{3} 01\right)\right)
\end{aligned}
$$

because of $\left(\left(x_{n-1} \cdots x_{3} 11\right),\left(x_{n-1} \cdots x_{3} 01\right),\left(x_{n-1} \cdots x_{3} 00\right),\left(x_{n-1} \cdots x_{3} 10\right)\right)$ being facial cycles along counter-clockwise, where $A^{\prime}, B^{\prime}, C^{\prime}, D^{\prime}$ are the ordered subsequences of vertices which incident with $\left(x_{n-1} \cdots x_{3} 10\right),\left(x_{n-1} \cdots x_{3} 00\right),\left(x_{n-1} \cdots x_{3} 01\right)$ and $\left(x_{n-1} \cdots x_{3} 11\right)$, respectively.

By Euler's formula, the boundary of every region in π_{n-1} of Q_{n-1} on S^{\prime} is a 4 -cycle. Let Q_{n-1} embed on another copy surface $S^{\prime \prime}$ of genus $(n-5) 2^{n-4}+1$ such that the embedding of Q_{n-1} on $S^{\prime \prime}$ is a "mirror image" of the embedding of Q_{n-1} on S^{\prime}. As a subgraph of Q_{n}, the vertices in embedding of Q_{n-1} on S^{\prime} and on $S^{\prime \prime}$ are labeled by ($0 x_{n-1} \cdots x_{3} x_{2} x_{1}$) and $\left(1 x_{n-1} \cdots x_{3} x_{2} x_{1}\right)$ respectively, where $x_{i} \in\{0,1\}, 1 \leq i \leq n-1$. For simplification, we also use the signals of $A^{\prime}, B^{\prime}, C^{\prime}$ and D^{\prime} in the following.

Based on π_{n-1}, the rotation system of π_{n} is given as follows:

$$
\begin{aligned}
& \rho_{\pi_{n}}\left(x_{n} \cdots x_{3} 10\right)=\left(\left(\overline{x_{n}} x_{n-1} \cdots x_{3} 10\right) A^{\prime}\left(x_{n} \cdots x_{3} 11\right)\left(x_{n} \cdots x_{3} 00\right)\right), \\
& \rho_{\pi_{n}}\left(x_{n} \cdots x_{3} 00\right)=\left(B^{\prime}\left(\overline{x_{n}} x_{n-1} \cdots x_{3} 00\right)\left(x_{n} \cdots x_{3} 10\right)\left(x_{n} \cdots x_{3} 01\right)\right), \\
& \rho_{\pi_{n}}\left(x_{n} \cdots x_{3} 01\right)=\left(\left(\overline{x_{n}} x_{n-1} \cdots x_{3} 01\right) C^{\prime}\left(x_{n} \cdots x_{3} 00\right)\left(x_{n} \cdots x_{3} 11\right)\right), \\
& \rho_{\pi_{n}}\left(x_{n} \cdots x_{3} 11\right)=\left(D^{\prime}\left(\overline{x_{n}} x_{n-1} \cdots x_{3} 11\right)\left(x_{n} \cdots x_{3} 01\right)\left(x_{n} \cdots x_{3} 10\right)\right) ; \text { or } \\
& \rho_{\pi_{n}}\left(\overline{x_{n}} x_{n-1} \cdots x_{3} 10\right)=\left(A^{\prime}\left(x_{n} \cdots x_{3} 10\right)\left(\overline{x_{n}} x_{n-1} \cdots x_{3} 00\right)\left(\overline{x_{n}} x_{n-1} \cdots x_{3} 11\right)\right), \\
& \rho_{\pi_{n}}\left(\overline{x_{n}} x_{n-1} \cdots x_{3} 00\right)=\left(\left(x_{n} \cdots x_{3} 00\right) B^{\prime}\left(\overline{x_{n}} x_{n-1} \cdots x_{3} 01\right)\left(\overline{x_{n}} x_{n-1} \cdots x_{3} 10\right)\right), \\
& \rho_{\pi_{n}}\left(\overline{x_{n}} x_{n-1} \cdots x_{3} 01\right)=\left(C^{\prime}\left(x_{n} \cdots x_{3} 01\right)\left(\overline{x_{n}} x_{n-1} \cdots x_{3} 11\right)\left(\overline{x_{n}} x_{n-1} \cdots x_{3} 00\right)\right), \\
& \rho_{\pi_{n}}\left(\overline{x_{n}} x_{n-1} \cdots x_{3} 11\right)=\left(\left(x_{n} \cdots x_{3} 11\right) D^{\prime}\left(\overline{x_{n}} x_{n-1} \cdots x_{3} 10\right)\left(\overline{x_{n}} x_{n-1} \cdots x_{3} 01\right)\right),
\end{aligned}
$$

where $\overline{x_{i}}=1-x_{i}$.
By using the method of researching regions of embedding from rotation system in [19], the following four kinds of facial cycles on S^{\prime} or $S^{\prime \prime}$

$$
\begin{aligned}
& \left(\left(00 x_{n-2} \cdots x_{3} 10\right),\left(00 x_{n-2} \cdots x_{3} 00\right),\left(01 x_{n-2} \cdots x_{3} 00\right),\left(01 x_{n-2} \cdots x_{3} 10\right)\right) ; \\
& \left(\left(11 x_{n-2} \cdots x_{3} 10\right),\left(11 x_{n-2} \cdots x_{3} 00\right),\left(10 x_{n-2} \cdots x_{3} 00\right),\left(10 x_{n-2} \cdots x_{3} 10\right)\right) ; \\
& \left(\left(00 x_{n-2} \cdots x_{3} 11\right),\left(00 x_{n-2} \cdots x_{3} 01\right),\left(01 x_{n-2} \cdots x_{3} 01\right),\left(01 x_{n-2} \cdots x_{3} 11\right)\right) ; \\
& \left(\left(11 x_{n-2} \cdots x_{3} 11\right),\left(11 x_{n-2} \cdots x_{3} 01\right),\left(10 x_{n-2} \cdots x_{3} 01\right),\left(10 x_{n-2} \cdots x_{3} 11\right)\right) ;
\end{aligned}
$$

are replaced in π_{n} by the following eight facial 4-cycles:

$$
\left(\left(00 x_{n-2} \cdots x_{3} 10\right),\left(00 x_{n-2} \cdots x_{3} 00\right),\left(10 x_{n-2} \cdots x_{3} 00\right),\left(10 x_{n-2} \cdots x_{3} 10\right)\right) ;
$$

$$
\begin{aligned}
& \left(\left(00 x_{n-2} \cdots x_{3} 00\right),\left(01 x_{n-2} \cdots x_{3} 00\right),\left(11 x_{n-2} \cdots x_{3} 00\right),\left(10 x_{n-2} \cdots x_{3} 00\right)\right) ; \\
& \left(\left(01 x_{n-2} \cdots x_{3} 00\right),\left(01 x_{n-2} \cdots x_{3} 10\right),\left(11 x_{n-2} \cdots x_{3} 10\right),\left(11 x_{n-2} \cdots x_{3} 00\right)\right) ; \\
& \left(\left(01 x_{n-2} \cdots x_{3} 10\right),\left(00 x_{n-2} \cdots x_{3} 10\right),\left(10 x_{n-2} \cdots x_{3} 10\right),\left(11 x_{n-2} \cdots x_{3} 10\right)\right) ; \\
& \left(\left(00 x_{n-2} \cdots x_{3} 11\right),\left(00 x_{n-2} \cdots x_{3} 01\right),\left(10 x_{n-2} \cdots x_{3} 01\right),\left(10 x_{n-2} \cdots x_{3} 11\right)\right) ; \\
& \left(\left(00 x_{n-2} \cdots x_{3} 01\right),\left(01 x_{n-2} \cdots x_{3} 01\right),\left(11 x_{n-2} \cdots x_{3} 01\right),\left(10 x_{n-2} \cdots x_{3} 01\right)\right) ; \\
& \left(\left(01 x_{n-2} \cdots x_{3} 01\right),\left(01 x_{n-2} \cdots x_{3} 11\right),\left(11 x_{n-2} \cdots x_{3} 11\right),\left(11 x_{n-2} \cdots x_{3} 01\right)\right) ; \\
& \left(\left(01 x_{n-2} \cdots x_{3} 11\right),\left(00 x_{n-2} \cdots x_{3} 11\right),\left(10 x_{n-2} \cdots x_{3} 11\right),\left(11 x_{n-2} \cdots x_{3} 11\right)\right)
\end{aligned}
$$

and the other regions are not changed. As a result, each region of π_{n} is a 4 -cycle. By the Euler's formula, the genus of embedding π_{n} of Q_{n} is exactly $2\left((n-5) 2^{n-4}+1\right)+2^{n-3}-1=(n-4) 2^{n-3}+1$.

Further more, it could be found that the following three kinds of 4-cycles
$\left(\left(x_{n} \cdots x_{3} 10\right),\left(x_{n} \cdots x_{3} 00\right),\left(x_{n} \cdots x_{3} 01\right),\left(x_{n} \cdots x_{3} 11\right)\right)$;
$\left(\left(x_{n} \cdots x_{3} 10\right),\left(x_{n} \cdots x_{3} 00\right),\left(\overline{x_{n}} x_{n-1} \cdots x_{3} 00\right),\left(\overline{x_{n}} x_{n-1} \cdots x_{3} 10\right)\right)$ and
$\left(\left(x_{n} \cdots x_{3} 01\right),\left(x_{n} \cdots x_{3} 11\right),\left(\overline{x_{n}} x_{n-1} \cdots x_{3} 11\right),\left(\overline{x_{n}} x_{n-1} \cdots x_{3} 01\right)\right)$
for $x_{i} \in\{0,1\}$ and $3 \leq i \leq n$ are facial 4-cycles on π_{n}.

Fig. $2 Q_{3}$
Lemma 2.5([26])
(1) $F Q_{n}$ is a bipartite graph if and only if n is odd.
(2) If n is even, then the length of any shortest odd cycle in $F Q_{n}$ is $n+1$.

Theorem 2.6 The genus of $F Q_{n}(n \geq 3)$ is given as $\gamma\left(F Q_{n}\right)=(n-3) 2^{n-3}+1$ for n is odd and $(n-3) 2^{n-3}+1 \leq \gamma\left(F Q_{n}\right) \leq(n-2) 2^{n-3}+1$ for n is even.

Proof $F Q_{n}$ is embedded on the surface of genus $\gamma\left(F Q_{n}\right)$ with m vertices, q edges and r regions, where $m=2^{n}$ and $q=(n+1) 2^{n-1}$. From Lemma 2.5, the girth of $F Q_{n}$ is 4 for $n \geq 3$. By Euler's formula, $4 r \leq 2 q, m-q+r=2-2 \gamma\left(F Q_{n}\right) \leq m-\frac{q}{2}$, so $2 \gamma\left(F Q_{n}\right)-2 \geq \frac{q}{2}-m$. That implies $\gamma\left(F Q_{n}\right) \geq(n-3) 2^{n-3}+1$.

To finish the proving, we only need to give an embedding of $F Q_{n}$ such that the genus of embedded surface is $(n-3) 2^{n-3}+1$ if n is odd, and is $(n-2) 2^{n-3}+1$ if n is even, respectively.

First, Q_{n} is embedded on the surface with rotation system σ which is the same as the embedding π_{n} in Lemma 2.4, then we have the following rotations:

$$
\begin{align*}
\rho_{\sigma}\left(x_{n} \cdots x_{3} 10\right) & =\left(A\left(x_{n} \cdots x_{3} 11\right)\left(x_{n} \cdots x_{3} 00\right)\right) \\
\rho_{\sigma}\left(x_{n} \cdots x_{3} 00\right) & =\left(B\left(x_{n} \cdots x_{3} 10\right)\left(x_{n} \cdots x_{3} 01\right)\right) \tag{2.1}\\
\rho_{\sigma}\left(x_{n} \cdots x_{3} 01\right) & =\left(C\left(x_{n} \cdots x_{3} 00\right)\left(x_{n} \cdots x_{3} 11\right)\right) \\
\rho_{\sigma}\left(x_{n} \cdots x_{3} 11\right) & =\left(D\left(x_{n} \cdots x_{3} 01\right)\left(x_{n} \cdots x_{3} 10\right)\right)
\end{align*}
$$

Or

$$
\begin{align*}
\rho_{\sigma}\left(x_{n} \cdots x_{3} 10\right) & =\left(A\left(x_{n} \cdots x_{3} 00\right)\left(x_{n} \cdots x_{3} 11\right)\right), \\
\rho_{\sigma}\left(x_{n} \cdots x_{3} 00\right) & =\left(B\left(x_{n} \cdots x_{3} 01\right)\left(x_{n} \cdots x_{3} 10\right)\right), \tag{2.2}\\
\rho_{\sigma}\left(x_{n} \cdots x_{3} 01\right) & =\left(C\left(x_{n} \cdots x_{3} 11\right)\left(x_{n} \cdots x_{3} 00\right)\right), \\
\rho_{\sigma}\left(x_{n} \cdots x_{3} 11\right) & =\left(D\left(x_{n} \cdots x_{3} 10\right)\left(x_{n} \cdots x_{3} 01\right)\right),
\end{align*}
$$

where A, B, C, D are the ordered sequences of vertices which is incident with $\left(x_{n} \cdots x_{3} 10\right)$, $\left(x_{n} \cdots x_{3} 00\right),\left(x_{n} \cdots x_{3} 01\right),\left(x_{n} \cdots x_{3} 11\right)$, respectively.

According to ρ_{σ} of formulae (2.1) and (2.2) respectively and the fact that graph $F Q_{n}$ is obtained from Q_{n} by adding complementary edges, the rotation system, denoted by θ, of $F Q_{n}$ is gotten from rotation system σ as followings:

$$
\begin{align*}
\rho_{\theta}\left(x_{n} \cdots x_{3} 10\right) & =\left(A\left(x_{n} \cdots x_{3} 11\right)\left(\overline{x_{n}} \cdots \overline{x_{3}} 01\right)\left(x_{n} \cdots x_{3} 00\right)\right), \\
\rho_{\theta}\left(x_{n} \cdots x_{3} 00\right) & =\left(B\left(x_{n} \cdots x_{3} 10\right)\left(\overline{x_{n}} \cdots \overline{x_{3}} 11\right)\left(x_{n} \cdots x_{3} 01\right)\right), \tag{2.3}\\
\rho_{\theta}\left(x_{n} \cdots x_{3} 01\right) & =\left(C\left(x_{n} \cdots x_{3} 00\right)\left(\overline{x_{n}} \cdots \overline{x_{3}} 10\right)\left(x_{n} \cdots x_{3} 11\right)\right), \\
\rho_{\theta}\left(x_{n} \cdots x_{3} 11\right) & =\left(D\left(x_{n} \cdots x_{3} 01\right)\left(\overline{x_{n}} \cdots \overline{x_{3}} 00\right)\left(x_{n} \cdots x_{3} 10\right)\right) .
\end{align*}
$$

Or

$$
\begin{align*}
& \rho_{\theta}\left(\overline{x_{n}} \cdots \overline{x_{3}} 10\right)=\left(A\left(\overline{x_{n}} \cdots \overline{x_{3}} 00\right)\left(x_{n} \cdots x_{3} 01\right)\left(\overline{x_{n}} \cdots \overline{x_{3}} 11\right)\right), \\
& \rho_{\theta}\left(\overline{x_{n}} \cdots \overline{x_{3}} 00\right)=\left(B\left(\overline{x_{n}} \cdots \overline{x_{3}} 01\right)\left(x_{n} \cdots x_{3} 11\right)\left(\overline{x_{n}} \cdots \overline{x_{3}} 10\right)\right), \tag{2.4}\\
& \rho_{\theta}\left(\overline{x_{n}} \cdots \overline{x_{3}} 01\right)=\left(C\left(\overline{x_{n}} \cdots \overline{x_{3}} 11\right)\left(x_{n} \cdots x_{3} 10\right)\left(\overline{x_{n}} \cdots \overline{x_{3}} 00\right)\right), \\
&\left.\rho_{\theta}\left(\overline{x_{n}} \cdots \overline{x_{3}} 10\right)\left(x_{n} \cdots x_{3} 00\right)\left(\overline{x_{n}} \cdots \overline{x_{3}} 01\right)\right),
\end{align*}
$$

where $\overline{x_{i}}=1-x_{i}$.

If n is odd, by the embedding σ of Q_{n}, the two kinds of 4-cycles

$$
\begin{align*}
& \left(\left(x_{n} \cdots x_{3} 10\right),\left(x_{n} \cdots x_{3} 00\right),\left(x_{n} \cdots x_{3} 01\right),\left(x_{n} \cdots x_{3} 11\right)\right) \tag{2.5}\\
& \left(\left(\overline{x_{n}} \cdots \overline{x_{3}} 10\right),\left(\overline{x_{n}} \cdots \overline{x_{3}} 11\right),\left(\overline{x_{n}} \cdots \overline{x_{3}} 01\right),\left(\overline{x_{n}} \cdots \overline{x_{3}} 00\right)\right)
\end{align*}
$$

are facial cycles of this embedding of Q_{n} on the clockwise direction (or counter-clockwise direction). From the definition of θ of $F Q_{n}$, the following four kinds of complementary edges are
added in the facial cycles (2.5) shown in (a)(b) of Fig.3.

$$
\begin{align*}
& \left.\left.\left(\left(x_{n} \cdots x_{3} 10\right),\left(\overline{x_{n}} \cdots \overline{x_{3}} 01\right)\right) ;\left(x_{n} \cdots x_{3} 00\right), \overline{x_{n}} \cdots \overline{x_{3}} 11\right)\right) ; \\
& \left.\left.\left(\left(x_{n} \cdots x_{3} 01\right),\left(\overline{x_{n}} \cdots \overline{x_{3}} 10\right)\right) ;\left(x_{n} \cdots x_{3} 11\right), \overline{x_{n}} \cdots \overline{x_{3}} 00\right)\right) \tag{2.6}
\end{align*}
$$

(a)

(b)

(c)

(d)

Fig. 3 Two kinds of embedding depending on n being odd or even

As a result, the regions (2.5) of σ are replaced by the following four kinds of 4-regions in θ of $F Q_{n}$:

$$
\begin{align*}
& \left(\left(x_{n} \cdots x_{3} 11\right),\left(x_{n} \cdots x_{3} 10\right),\left(\overline{x_{n}} \cdots \overline{x_{3}} 01\right),\left(\overline{x_{n}} \cdots \overline{x_{3}} 00\right)\right) ; \\
& \left(\left(x_{n} \cdots x_{3} 01\right),\left(x_{n} \cdots x_{3} 11\right),\left(\overline{x_{n}} \cdots \overline{x_{3}} 00\right),\left(\overline{x_{n}} \cdots \overline{x_{3}} 10\right)\right) ; \tag{2.7}\\
& \left(\left(x_{n} \cdots x_{3} 00\right),\left(x_{n} \cdots x_{3} 01\right),\left(\overline{x_{n}} \cdots \overline{x_{3}} 10\right),\left(\overline{x_{n}} \cdots \overline{x_{3}} 11\right)\right) ; \\
& \left(\left(x_{n} \cdots x_{3} 10\right),\left(x_{n} \cdots x_{3} 00\right),\left(\overline{x_{n}} \cdots \overline{x_{3}} 11\right),\left(\overline{x_{n}} \cdots \overline{x_{3}} 01\right)\right) \text {. }
\end{align*}
$$

The other regions are not changed, thus all regions of embedding θ of $F Q_{n}$ are all 4-cycles, and the number of regions is $2^{n-2}(n+1)$. Recalled that $F Q_{n}$ have 2^{n} vertices, $2^{n-1}(n+1)$ edges. By Euler's formula, the total genus of θ of $F Q_{n}$ for n being odd is $(n-3) 2^{n-3}+1$.

If n is even, by the embedding σ of Q_{n}, the two kinds of 4 -cycles

$$
\begin{align*}
& \left(\left(x_{n} \cdots x_{3} 10\right),\left(x_{n} \cdots x_{3} 00\right),\left(x_{n} \cdots x_{3} 01\right),\left(x_{n} \cdots x_{3} 11\right)\right) \tag{2.8}\\
& \left(\left(\overline{x_{n}} \cdots \overline{x_{3}} 10\right),\left(\overline{x_{n}} \cdots \overline{x_{3}} 00\right),\left(\overline{x_{n}} \cdots \overline{x_{3}} 01\right),\left(\overline{x_{n}} \cdots \overline{x_{3}} 11\right)\right)
\end{align*}
$$

are facial cycles of this embedding of Q_{n} on the clockwise direction (or counter-clockwise direction). From the definition of θ of $F Q_{n}$, By adding four kinds of complementary edges of (2.6) in facial cycles (2.8) shown in (c) and (d) of Fig.3, the regions in (2.8) of σ are replaced by the following two kinds of 8-cycles in θ of $F Q_{n}$:

$$
\begin{aligned}
& \left(\left(x_{n} \cdots x_{3} 10\right),\left(x_{n} \cdots x_{3} 11\right),\left(\overline{x_{n}} \cdots \overline{x_{3}} 00\right),\left(\overline{x_{n}} \cdots \overline{x_{3}} 10\right),\right. \\
& \left.\left(x_{n} \cdots x_{3} 01\right),\left(x_{n} \cdots x_{3} 00\right),\left(\overline{x_{n}} \cdots \overline{x_{3}} 11\right),\left(\overline{x_{n}} \cdots \overline{x_{3}} 01\right)\right) ; \\
& \left(\left(x_{n} \cdots x_{3} 10\right),\left(x_{n} \cdots x_{3} 00\right),\left(\overline{x_{n}} \cdots \overline{x_{3}} 11\right),\left(\overline{x_{n}} \cdots \overline{x_{3}} 10\right),\right. \\
& \left.\left(x_{n} \cdots x_{3} 01\right),\left(x_{n} \cdots x_{3} 11\right),\left(\overline{x_{n}} \cdots \overline{x_{3}} 00\right),\left(\overline{x_{n}} \cdots \overline{x_{3}} 01\right)\right) .
\end{aligned}
$$

As a result, the number of regions in θ is less 2^{n-1} than regions in σ. By Euler's formula $2^{n}-2^{n-1}(n+1)+\left(2^{n-2} n-2^{n-1}\right)=2-2 h$, the genus h of embedding θ of $F Q_{n}$ for n being even is $(n-2) 2^{n-3}+1$.

From Lemmas 2.2 and 2.3, the following theorem is immediately obtained.

Theorem 2.7 The maximum genus of $F Q_{n}$ is given by $\gamma_{M}\left(F Q_{n}\right)=(n-1) 2^{n-2}$ for $n \geq 3$. Furthermore, $\gamma\left(F Q_{2}\right)=0, \gamma_{M}\left(F Q_{2}\right)=1$.

References

[1] J.A.Bondy, U.S.R.Murty, Graph Theory with Applications, Macmillan Press LTD, London and Basingstoke, 1976.
[2] L.W.Beineke and F.Harary, The genus of the n-cube, Canad. J. Math., 17(1965), 494-496.
[3] G.Chartrand and L.Lesniak, Graphs and Digraphs, Pacific Grove, CA: Wadsworth and Brooks, 1986.
[4] Reinhard Diestel, Graph Theory, Springer, 2011.
[5] R.A.Duke, The genus regional number, and Betti number of a graph, Canad. J. Math., 18(1966) 817-822.
[6] A.El-Amawy and S.Latifi, Properties and performance of folded hypercubes, IEEE Trans. Parallel Distrib. Syst., 2(1991), 31-42.
[7] M.Furst, G.Gross, and L.A.McGeoch, Finding a maximum-genus graph imbedding, J. Assoc. Comput. Mach., 35(1988), 523-534.
[8] J.L.Gross and T.W.Tucker, Topological Graph Theory, New York, 1987.
[9] J.L. Gross, D.P. Robbins and T.W. Tucker, Genus distributions for bouquets of circles, J. Combin. Theory, Ser. B, 47(1989), 292-306.
[10] R.X.Hao, Y.P.Liu, The genus distributions of directed antiladders in orientable surfaces, Appl. Math. Lett., 21(2008), 161-164.
[11] R.X.Hao, Y.P.Liu, The genus polynomials of cross-ladder digraphs in orientable surfaces, Science in China, 51(5)(2008), 827-986.
[12] M.Jungerman, A characterization of upper embeddable graphs, Trans. Amer. Math. Soc., 241(1978), 401-406.
[13] J.H.Kwak and S.H.Shim, Total embedding distributions for bouquets of circles, Discrete Math., 248(2002), 93-108.
[14] D.M.Li, Genus distribution for Möbius ladders, Northeast Math. J., 21(1)(2005), 70-80.
[15] Y.P.Liu, Embeddability in Graphs, Kluwer Academic Publisher, Dordrecht/ Boston/ London, 1995.
[16] S.A.J.Lhuiler, Mémoire sur la polyédrométrie, Annales de mathématiques, 3(1811-2) 169189.
[17] B.Mohar, An obstruction to embedding graph in surfaces, Discrete Math., 78(1989), 135142.
[18] B.Mohar, Face covers and the genus problem for apex graphs, J.Combin. Theory, Ser. B, 82(2001), 102-117.
[19] B.Mohar and C.Thomassen, Graph on Surfaces, The Johns Hopkins University Press Baltimore and Landon, 2001.
[20] L.Nesbesky, A note on upper embeddable graphs, Czechoslovak Mathematical J., 33(1)(1983), 37-40.
[21] G.Ringel, Uber drei kombinatorische Probleme am n-demensionalem Würfel und Würfelgitter, Abh. Math. Sem. Univ. Hamburg, 20(1955), 10-19.
[22] C.Thomassen, The graph genus problem is NP-complete, J Assoc Comput Mach Algorithms, 10(1989), 568-576.
[23] E.H.Tesar, Genus distributions for Ringel ladders, Discrete Math., 216(2000), 235-252.
[24] T. Abe, The Turaev genus of an adequate knot, Topology and its Applications, 156 (2009) 2704-2712.
[25] N.H.Xuong, How to determine the maximum genus of a graph, J.Combinatorial Theory, Ser. B, 26(1979), 217-225.
[26] J.M.Xu and M.J. Ma, Cycles in folded hypercubes, Appl. Math. Lett., 19(2006), 140-145.
[27] D.Zhou, R.X.Hao, W.L.He, Lower bounds for the maximum genus of 4-regular graphs, Turk. J. Math., 36(2012), 530-537.

[^0]: ${ }^{1}$ Supported by the National Natural Science Foundation of China (11371052, 11271012, 11171020, 10901015).
 ${ }^{2}$ Received December 20, 2013, Accepted February 15, 2014.

