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Abstract: Absolutely harmonious labeling f is an injection from the vertex set of a graph

G with q edges to the set {0, 1, 2, ..., q − 1}, if each edge uv is assigned f(u) + f(v) then the

resulting edge labels can be arranged as a0, a1, a2, ..., aq−1 where ai = q − i or q + i, 0 ≤

i ≤ q − 1 . However, when G is a tree one of the vertex labels may be assigned to exactly

two vertices. A graph which admits absolutely harmonious labeling is called absolutely

harmonious graph. In this paper, we obtain necessary conditions for a graph to be absolutely

harmonious and study absolutely harmonious behavior of certain classes of graphs.
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§1. Introduction

A vertex labeling of a graph G is an assignment f of labels to the vertices of G that induces a

label for each edge xy depending on the vertex labels. For an integer k ≥ 1, a Smarandachely

k-labeling of a graph G is a bijective mapping f : V → {1, 2, · · · , k|V (G)| + |E(G)|} with

an additional condition that |f(u) − f(v)| ≥ k for ∀uv ∈ E. particularly, if k = 1, i.e., such

a Smarandachely 1-labeling is the usually labeling of graph. Among them, labelings such as

those of graceful labeling, harmonious labeling and mean labeling are some of the interesting

vertex labelings found in the dynamic survey of graph labeling by Gallian [2]. Harmonious

labeling is one of the fundamental labelings introduced by Graham and Sloane [3] in 1980 in

connection with their study on error correcting code. Harmonious labeling f is an injection

from the vertex set of a graph G with q edges to the set {0, 1, 2, ..., q − 1}, if each edge uv is

assigned f(u) + f(v)(mod q) then the resulting edge labels are distinct. However, when G is

a tree one of the vertex labels may be assigned to exactly two vertices. Subsequently a few

variations of harmonious labeling, namely, strongly c-harmonious labeling [1], sequential labeling

[5], elegant labeling [1] and felicitous labeling [4] were introduced. The later three labelings

were introduced to avoid such exceptions for the trees given in harmonious labeling. A strongly
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1-harmonious graph is also known as strongly harmonious graph.

It is interesting to note that if a graph G with q edges is harmonious then the resulting

edge labels can be arranged as a0, a1, a2, · · · , aq−1 where ai = i or q + i, 0 ≤ i ≤ q − 1 . That

is for each i, 0 ≤ i ≤ q − 1 there is a distinct edge with label either i or q + i. An another

interesting and natural variation of edge label could be q− i or q+ i. This prompts to define a

new variation of harmonious labeling called absolutely harmonious labeling.

Definition 1.1 An absolutely harmonious labeling f is an injection from the vertex set of a

graph G with q edges to the set {0, 1, 2, ..., q − 1}, if each edge uv is assigned f(u)+f(v) then the

resulting edge labels can be arranged as a0, a1, a2, ..., aq−1 where ai = q−i or q+i, 0 ≤ i ≤ q−1 .

However, when G is a tree one of the vertex labels may be assigned to exactly two vertices. A

graph which admits absolutely harmonious labeling is called absolutely harmonious graph.

The result of Graham and Sloane [3] states that Cn, n ∼= 1(mod 4) is harmonious, but we

show that Cn, n ∼= 1(mod 4) is not an absolutely harmonious graph. On the other hand, we

show that C4 is an absolutely harmonious graph, but it is not harmonious. We observe that a

strongly harmonious graph is an absolutely harmonious graph.

To initiate the investigation on absolutely harmonious graphs, we obtain necessary condi-

tions for a graph to be an absolutely harmonious graph and prove the following results:

1. Path Pn, n ≥ 3, a class of banana trees, and Pn ⊙Kc
m are absolutely harmonious graphs.

2. Ladders, Cn ⊙ Kc
m, Triangular snakes, Quadrilateral snakes, and mK4 are absolutely

harmonious graphs.

3. Complete graph Kn is absolutely harmonious if and only if n = 3 or 4.

4. Cycle Cn, n ∼= 1 or 2 (mod 4), Cm × Cn where m and n are odd, mK3,m ≥ 2 are not

absolutely harmonious graphs.

§2. Necessary Conditions

Theorem 2.1 If G is an absolutely harmonious graph, then there exists a partition (V1, V2) of

the vertex set V (G), such that the number of edges connecting the vertices of V1 to the vertices

of V2 is exactly
⌈ q
2

⌉
.

Proof If G is an absolutely harmonious graph,then the vertices can be partitioned into

two sets V1 and V2 having respectively even and odd vertex labels. Observe that among the q

edges
q

2
edges or

⌈q
2

⌉
edges are labeled with odd numbers, according as q is even or q is odd.

For an edge to have odd label, one end vertex must be odd labeled and the other end vertex

must be even labeled. Thus, the number of edges connecting the vertices of V1 to the vertices

of V2 is exactly
⌈ q
2

⌉
. �

Remark 2.2 A simple and straight forward application of Theorem 2.1 identifies the non

absolutely harmonious graphs. For example, complete graph Kn has n(n−1)
2 edges. If we assign
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m vertices to the part V1, there will be m(n −m) edges connecting the vertices of V1 to the

vertices of V2. If Kn has an absolutely harmonious labeling, then there is a choice of m for

which m(n−m) =

⌈
n2 − n

4

⌉
. Such a choice of m does not exist for n = 5, 7, 8.10, ....

A graph is called even graph if degree of each vertex is even.

Theorem 2.3 If an even graph G is absolutely harmonious then q ∼= 0 or 3 (mod 4).

Proof Let G be an even graph with q ∼= 1 or 2 (mod 4) and d(v) denotes the degree of the

vertex v in G. Suppose f be an absolutely harmonious labeling of G. Then the resulting edge

labels can be arranged as a0, a1, a2, ..., aq−1 where ai = q − i or q + i, 0 ≤ i ≤ q − 1 . In other

words, for each i, the edge label ai is (q − i) + 2ibi, 0 ≤ i ≤ q − 1 where bi ∈ {0, 1}. Evidently

∑

v∈V (G)

d(v)f(v) − 2

q−1∑

k=0

kbk =



q + 1

2



 .

As d(v) is even for each v and q ∼= 1 or 2 (mod 4),

∑

v∈V (G)

d(v)f(v) − 2

q−1∑

k=0

kbk ∼= 0 (mod 2)

but


q + 1

2


 ∼= 1 (mod 2). This contradiction proves the theorem. �

Corollary 2.4 A cycle Cn is not an absolutely harmonious graph if n ∼= 1 or 2 (mod 4).

Corollary 2.5 A grid Cm × Cn is not an absolutely harmonious graph if m and n are odd.

Theorem 2.6 If f is an absolutely harmonious labeling of the cycle Cn , then edges of Cn can

be partitioned into two sub sets E1, E2 such that

∑

uv∈E1

|f(u) + f(v) − n| =
n(n+ 1)

4
and

∑

uv∈E2

|f(u) + f(v) − n| =
n(n− 3)

4
.

Proof Let v1v2v3...vnv1 be the cycle Cn, where ei = vi−1vi, 2 ≤ i ≤ n and e1 = vnv1 .

Define E1 = {uv ∈ E/ f(u) + f(v) − n is non negative} and E2 = {uv ∈ E/ f(u) + f(v) −

n is negative}. Since f is an absolutely harmonious labeling of the cycle Cn,

∑

uv∈E

|f(u) + f(v) − n| =
n(n− 1)

2
.

In other words,

∑

uv∈E1

|f(u) + f(v) − n| +
∑

uv∈E2

|f(u) + f(v) − n| =
n(n− 1)

2
. (1)

Since
∑

uv∈E(f(u) + f(v) − n) = −n, we have
∑

uv∈E1

|f(u) + f(v) − n| −
∑

uv∈E2

|f(u) + f(v) − n| = −n. (2)
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Solving equations (1) and (2), we get the desired result. �

Remark 2.7 If n ∼= 1 or 2 (mod 4) then both
n(n+ 1)

4
and

n(n− 3)

4
cannot be integers. Thus

the cycle Cn is not an absolutely harmonious graph if n ∼= 1 or 2 (mod 4).

Remark 2.8 Observe that the conditions stated in Theorem 2.1, Theorem 2.3, and Theorem

2.6 are necessary but not sufficient. Note that C8 satisfies all the conditions stated in Theorems

2.1, 2.3, and 2.6 but it is not an absolutely harmonious graph. For, checking each of the
8!

2
possibilities reveals the desired result about C8.

§3. Absolutely Harmonious Graphs

Theorem 3.1 The path Pn+1,where n ≥ 2 is an absolutely harmonious graph.

Proof Let Pn+1 : v1v2...vn+1 be a path, r =
⌈n

2

⌉
, s =






⌈
r
2

⌉
+ 1 if n ∼= 0 (mod 4)

⌈
r
2

⌉
otherwise

,

t =





s− 1 if n ∼= 0 or 1 (mod 4)

s if n ∼= 2 or 3 (mod 4)
, T1 = n, T2 =





2t+ 2 if n ∼= 0 or 1 (mod 4)

2t+ 1 if n ∼= 2 or 3 (mod 4)
and T3 =





−1 if n ∼= 0 or 1 (mod 4)

−2 if n ∼= 2 or 3 (mod 4)
.

Then r + s+ t = n+ 1. Define f : V (Pn+1) → {0, 1, 2, 3, · · · , n− 1} by:

f(vi) = T1 − i if 1 ≤ i ≤ r, f(vr+i) = T2 − 2i if 1 ≤ i ≤ s and f(vr+s+i) = T3 + 2i if

1 ≤ i ≤ t.

Evidently f is an absolutely harmonious labeling of Pn+1. For example, an absolutely

harmonious labeling of P12 is shown in Fig.3.1. �
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The tree obtained by joining a new vertex v to one pendant vertex of each of the k disjoint

stars K1,n1 ,K1,n2 ,K1,n3 , ...,K1,nk
is called a banana tree. The class of all such trees is denoted

by BT (n1, n2, n3, ..., nk).

Theorem 3.2 The banana tree BT (n, n, n, ..., n) is absolutely harmonious.
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Fig.3.2

Proof Let V (BT (n, n, n, · · · , n) = {v}∪{vj , vjr : 1 ≤ j ≤ k and 1 ≤ r ≤ n} where d(vj) =

n andE(BT (n, n, n, ..., n) = {vvjn : 1 ≤ j ≤ k}∪{vjvjr : 1 ≤ j ≤ k, 1 ≤ r ≤ n}. ClearlyBT (n, n,

· · · , n) has order (n+ 1)k + 1 and size (n+ 1)k. Define

f : V (BT (n, n, · · · , n) → {1, 2, 3, ..., (n+ 1)k − 1}

as follows:

f(v) = 1, f(vj) = (n+ 1)(j − 1) : 1 ≤ j ≤ k, f(vjr) = (n+ 1)(j − 1) + r : 1 ≤ r ≤ n.

It can be easily verified that f is an absolutely harmonious labeling of BT (n, n, n, ..., n). For

example an absolutely harmonious labeling of BT (4, 4, 4, 4)is shown in Fig.3.2. �

The corona G1⊙G2 of two graphsG1(p1, q1) and G2(p2, q2) is defined as the graph obtained

by taking one copy of G1 and p1 copies of G2 and then joining the ith vertex of G1 to all the

vertices in the ith copy of G2.

Theorem 3.3 The corona Pn ⊙KC
m is absolutely harmonious.

Proof Let V (Pn⊙KC
m) = {ui : 1 ≤ i ≤ n}∪{uij : 1 ≤ i ≤ n, 1 ≤ j ≤ m} and E(Pn⊙KC

m) =

{uiui+1 : 1 ≤ i ≤ n− 1} ∪ {uiuij : 1 ≤ i ≤ n, 1 ≤ j ≤ m}. We observe that Pn ⊙KC
m has order

(m+ 1)n and size (m+ 1)n− 1. Define f : V (Pn ⊙KC
m) −→ {0, 1, 2, ...,mn+ n− 2} as follows:

f(ui) =





0 if i = 1,

(m+ 1)(i− 1) if i =
⌈

n
2

⌉

(m+ 1)(i− 1) − 1 otherwise,

f(uim) =





(m+ 1)i if 1 ≤ i ≤
⌈

n
2

⌉
− 2,

(m+ 1)i− 1 if i =
⌈

n
2

⌉
− 1,

(m+ 1)i− 2
⌈

n
2

⌉
≤ i ≤ n,

and for 1 ≤ j ≤ m− 1,

f(uij) =





(m+ 1)(i− 1) + j if 1 ≤ i ≤

⌈
n
2

⌉
− 1,

(m+ 1)(i− 1) + j − 1 if
⌈

n
2

⌉
≤ i ≤ n.

It can be easily verified that f is an absolutely harmonious labeling of Pn ⊙KC
m. For example

an absolutely harmonious labeling of P5 ⊙KC
3 is shown in Fig. 3.3. �
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Theorem 3.4 The corona Cn ⊙KC
m is absolutely harmonious.

Proof Let V (Cn⊙KC
m) = {ui : 1 ≤ i ≤ n}∪{uij : 1 ≤ i ≤ n, 1 ≤ j ≤ m} and E(Cn⊙KC

m) =

{uiui+1 : 1 ≤ i ≤ n− 1} ∪ {unu1} ∪ {uiuij : 1 ≤ i ≤ n, 1 ≤ j ≤ m}. We observe that Cn ⊙KC
m

has order (m+ 1)n and size (m+ 1)n. Define f : V (Cn ⊙KC
m) −→ {0, 1, 2, ...,mn+ n− 1} as

follows:

f(ui) =





0 if i = 1,

(m+ 1)(i− 1) − 1 if 2 ≤ i ≤ n−1
2 ,

(m+ 1)(i− 1) otherwise,

, f(uim) =





(m+ 1)i if 1 ≤ i ≤ n−3
2 ,

(m+ 1)i− 1 otherwise

and for 1 ≤ j ≤ m− 1

f(uij) =





(m+ 1)(i− 1) + j if 1 ≤ i ≤
⌈

n
2

⌉
− 1,

(m+ 1)(i− 1) + j − 1 if
⌈

n
2

⌉
≤ i ≤ n.

It can be easily verified that f is an absolutely harmonious labeling of Cn ⊙KC
m. For example

an absolutely harmonious labeling of C5 ⊙KC
3 is shown in Figure 3.4. �
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Theorem 3.5 The ladder Pn × P2, where n ≥ 2 is an absolutely harmonious graph.

Proof Let V (Pn×P2) = {u1, u2, u3, ..., un}∪{v1, v2, v3, ..., vn} and E(Pn×P2) = {uiui+1 :

1 ≤ i ≤ n− 1} ∪ {vivi+1 : 1 ≤ i ≤ n− 1} ∪ {uivi : 1 ≤ i ≤ n}. We note that Pn × P2 has order
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2n and size 3n− 2.

Case 1. n ≡ 0(mod 4).

Define f : V (Pn × P2) −→ {0, 1, 2, ..., 3n− 3} by

f(ui) =






3i− 2 if i is odd,

3i− 2 if i is even and 2 ≤ i ≤ n−4
2 ,

3i− 1 if i is even and i = n
2 ,

3i− 3 if i is even and n+4
2 ≤ i ≤ n,

f(v1) = 0, f(vn+2
2

) =
3n− 6

2
, f(vi+1) = f(ui) + 1 if 1 ≤ i ≤ n− 1 and i 6=

n

2
.

Case 2. n ≡ 1(mod 4).

Define f : V (Pn × P2) −→ {0, 1, 2, ..., 3n− 3} by

f(ui) =





3i− 2 if i is odd and 1 ≤ i ≤ n−3
2 ,

3i− 1 if i = n+1
2 ,

3i− 3 if i is odd and n+5
2 ≤ i ≤ n,

3i− 2 if i is even,

f(v1) = 0, f(vn+3
2

) = 3n−3
2 , f(vi+1) = f(ui) + 1 if 1 ≤ i ≤ n− 1 and i 6= n+1

2 .

Case 3. n ≡ 2(mod 4).

Define f : V (Pn × P2) −→ {0, 1, 2, ..., 3n− 3} by

f(ui) =






3i− 2 if i is odd,

3i− 2 if i is even and 2 ≤ i ≤ n−2
2 ,

3i− 3 if i is even and n+2
2 ≤ i ≤ n,

f(v1) = 0, f(vi+1) = f(ui) + 1 if 1 ≤ i ≤ n− 1.

Case 4. n ≡ 3(mod 4).

Define f : V (Pn × P2) −→ {0, 1, 2, ..., 3n− 3} by

f(ui) =






3i− 2 if i is odd and 1 ≤ i ≤ n−1
2 ,

3i− 3 if i is odd and n+3
2 ≤ i ≤ n,

3i− 2 if i is even.

f(v1) = 0, f(vi+1) = f(ui) + 1 if 1 ≤ i ≤ n− 1.
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In all four cases, it can be easily verified that f is an absolutely harmonious labeling of Pn×P2.

For example, an absolutely harmonious labeling of P9 × P2 is shown in Fig.3.5. �

1 4 7 10 14 16 18 22 24

0 2 5 8 11 12 17 19 23

a24 a19 a13 a7 a0 a3 a10 a16 a22

a20 a14 a8 a1 a5 a9 a15 a21

a23 a18 a12 a6 a2 a4 a11 a17

Fig.3.5

A Kn-snake has been defined as a connected graph in which all blocks are isomorphic to

Kn and the block-cut point graph is a path. A K3-snake is called triangular snake.

Theorem 3.6 A triangular snake with n blocks is absolutely harmonious if and only if n ∼=

0 or 1 (mod 4).

Proof The necessity follows from Theorem 2.3.Let Gn be a triangular snake with n blocks

on p vertices and q edges. Then p = 2n− 1 and q = 3n. Let V (Gn) = {ui : 1 ≤ i ≤ n+ 1 } ∪

{vi : 1 ≤ i ≤ n} and E(Gn) = {uiui+1, uivi, ui+1vi : 1 ≤ i ≤ n}.

Case 1. n ≡ 0 (mod 4).

Let m =
n

4
. Define f : V (Gn) −→ {0, 1, 2, ..., 3n− 1} as follows:

f(ui) =





0 if i = 1,

2i− 2 if 2 ≤ i ≤ 3m and i ≡ 0 or 2 (mod 3),

2i− 1 if 2 ≤ i ≤ 3m and i ≡ 1 (mod 3),

6i− 3n− 7 otherwise,

f(vi) =





1 if i = 1,

2i− 1 if 2 ≤ i ≤ 3m− 1 and i ≡ or 2 (mod 3),

2i− 2 if 2 ≤ i ≤ 3m− 1 and i ≡ 1 (mod 3),

6m+ 1 if i = 3m,

6i− 3n− 3 otherwise.

Case 2. n ≡ 1 (mod 4).

Let m =
n− 1

4
. Define f : V (Gn) −→ {0, 1, 2, ..., 3n− 1} as follows:
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f(ui) =






0 if i = 1,

2i− 2 if 2 ≤ i ≤ 3m+ 2 and i ≡ 0 or 2 (mod 3),

2i− 1 if 2 ≤ i ≤ 3m+ 2 and i ≡ 1 (mod 3),

6i− 3n− 7 otherwise,

f(vi) =





1 if i = 1,

2i− 1 if 2 ≤ i ≤ 3m+ 1 and i ≡ 0 or 2 (mod 3)

2i− 2 if 2 ≤ i ≤ 3m+ 1 and i ≡ 1 (mod 3)

6i− 3n− 3 otherwise.

In both cases, it can be easily verified that f is an absolutely harmonious labeling of the

triangular snake Gn. For example, an absolutely harmonious labeling of a triangular snake

with five blocks is shown in Fig.3.6. �
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a13 a9 a4 a0 a7

Fig.3.6

Theorem 3.7 K4-snakes are absolutely harmonious.

Proof Let Gn be a K4-snake with n blocks on p vertices and q edges. Then p = 3n+1 and

q = 6n. Let V (Gn) = {ui, vi, wi : 1 ≤ i ≤ n}∪{vn+1} andE(Gn) = {uivi, uiwi, viwi : 1 ≤ i ≤ n}∪

{uivi+1, vivi+1, wivi+1 : 1 ≤ i ≤ n} Define f : V (Gn) −→ {0, 1, 2, ..., 6n− 1} as follows:

f(ui) = 3i− 3, f(vi) = 3i− 2, f(wi) = 3i− 1

where 1 ≤ i ≤ n, and f(vn+1) = 3n + 1. It can be easily verified that f is an absolutely

harmonious labeling of Gn and hence K4-snakes are absolutely harmonious. For example, an

absolutely harmonious labeling of a K4-snake with five blocks is shown in Fig.3.7. �
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A quadrilateral snake is obtained from a path u1u2...un+1 by joining ui, ui+1 to new vertices

vi, wi respectively and joining vi and wi.

Theorem 3.8 All quadrilateral snakes are absolutely harmonious.

Proof LetGn be a quadrilateral snake with V (Gn) = {ui : 1 ≤ i ≤ n+ 1 }∪{vi, wi : 1 ≤ i ≤ n}

and E(Gn) = {uiui+1, uivi, ui+1wi, viwi : 1 ≤ i ≤ n}. Then p = 3n + 1 and q = 4n. Let

m =






n
2 if n ≡ 0 (mod 2)

n−1
2 if n ≡ 1 (mod 2)

.

Define f : V (Gn) −→ {0, 1, 2, ...4n− 1} as follows:

f(ui) =






0 if i = 1,

4i− 6 if 2 ≤ i ≤ m+ 1,

4i− 7 if m+ 2 ≤ i ≤ n+ 1

, f(vi) =





4i− 3 if 1 ≤ i ≤ m,

4i− 2 if m+ 1 ≤ i ≤ n,

f(wi) =





4i if 1 ≤ i ≤ m,

4i− 1 if m+ 1 ≤ i ≤ n.

It can be easily verified that f is an absolutely harmonious labeling of the quadrilateral snake

Gn and hence quadrilateral snakes are absolutely harmonious. For example, an absolutely

harmonious labeling of a quadrilateral snake with six blocks is shown in Fig.3.8. �
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Theorem 3.9 The disjoint union of m copies of the complete graph on four vertices, mK4 is

absolutely harmonious.

Proof Let uj
i where 1 ≤ i ≤ 4 and 1 ≤ j ≤ m denotes the ith vertex of the jth copy of mK4.

We note that that mK4 has order 4m and size 6m. Define f : V (mK4) −→ {0, 1, 2, ...6m− 1}

as follows:f(u1
1) = 0, f(u1

2) = 1, f(u1
3) = 2, f(u1

4) = 4, f(u2
1) = q − 3, f(u2

2) = q − 4, f(u2
3) =

q − 5, f(u2
4) = q − 7, f(uj+2

i ) = f(uj
i ) + 6 if j is odd, and f(uj+2

i ) = f(uj
i ) − 6 if j is even,

where 1 ≤ i ≤ 4 and 1 ≤ j ≤ m − 2. Clearly f is an absolutely harmonious labeling. For

example, an absolutely harmonious labeling of 5K4 is shown in Figure 11. Box

Observation 3.10 If f is an absolutely harmonious labeling of a graph G,which is not a tree,

then

1. Each x in the set {0, 1, 2} has inverse image.

2. Inverse images of 0 and 1 are adjacent in G.

3. Inverse images of 0 and 2 are adjacent in G.

Theorem 3.11 The disjoint union of m copies of the complete graph on three vertices, mK3

is absolutely harmonious if and only if m = 1.

Proof Let uj
i ,where1 ≤ i ≤ 3 and 1 ≤ j ≤ m denote the ith vertex of the jth copy

of mK3. Assignments of the values 0, 1, 2 to the vertices of K3 gives the desired absolutely

harmonious labeling of K3. For m ≥ 2, mK3 has 3m vertices and 3m edges. If mK3 is

an absolutely harmonious graph, we can assign the numbers {0, 1, 2, 3m− 1} to the vertices

of mK3 in such a way that its edges receive each of the numbers a0,a1,...,aq−1 where ai =

q− i or q+ i, 0 ≤ i ≤ q−1. By Observation 3.10, we can assume, without loss of generality that

f(u1
1) = 0, f(u1

2) = 1, f(u1
3) = 2. Thus we get the edge labels aq−1, aq−2 and aq−3. In order to

have an edge labeled aq−4, we must have two adjacent vertices labeled q − 1 and q − 3. we can

assume without loss of generality that f(u2
1) = q − 1 and f(u2

2) = q − 3. In order to have an

edge labeled aq−5, we must have f(u3
2) = q− 4. There is now no way to obtain an edge labeled

aq−6. This contradiction proves the theorem. �

Theorem 3.12 A complete graph Kn is absolutely harmonious graph if and only if n = 3 or 4.

Proof From the definition of absolutely harmonious labeling, it can be easily verified that

K1 and K2 are not absolutely harmonious graphs. Assignments of the values 0, 1, 2 and 0, 1, 2, 4

respectively to the vertices of K3 and K4 give the desired absolutely harmonious labeling of

them. For n > 4, the graph Kn has q ≥ 10 edges. If Kn is an absolutely harmonious graph, we

can assign a subset of the numbers {0, 1, 2, q − 1} to the vertices of Kn in such a way that the

edges receive each of the numbers a0,a1,...,aq−1 where ai = q − i or q + i, 0 ≤ i ≤ q − 1. By

Observation 3.10, 0, 1, and 2 must be vertex labels. With vertices labeled 0, 1, and 2, we have

edges labeled aq−1, aq−2 and aq−3. To have an edge labeled aq−4 we must adjoin the vertex

label 4. Had we adjoined the vertex label 3 to induce aq−4, we would have two edges labeled

aq−3, namely, between 0 and 3, and between 1 and 2. Had we adjoined the vertex labels q − 1
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and q − 3 to induce aq−4, we would have three edges labeled a1, namely, between q − 1 and

0, between q − 1 and 2, and between q − 3 and 2. With vertices labeled 0, 1, 2,and 4, we have

edges labeled aq−1, aq−2, aq−3, aq−4, aq−5, and aq−6. Note that for K4 with q = 6, this gives

the absolutely harmonious labeling. To have an edge labeled aq−7, we must adjoin the vertex

label 7; all the other choices are ruled out. With vertices labeled 0, 1, 2, 4 and 7, we have edges

labeled aq−1, aq−2, aq−3, aq−4, aq−5, aq−6, aq−7, aq−8, aq−9, and aq−11. There is now no way

to obtain an edge labeled aq−10, because each of the ways to induce aq−10 using two numbers

contains at least one number that can not be assigned as vertex label. We may easily verify

that the following boxed numbers are not possible choices as vertex labels:

0 10

1 9

2 8

3 7

4 6

q − 1 q − 9

q − 2 q − 8

q − 3 q − 7

q − 4 q − 6

This contradiction proves the theorem. �
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