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Abstract In this paper we analyze and study the Smarandache idempotents (S-idempotents) in the

ring Zn and in the group ring ZnG of a finite group G over the finite ring Zn. We have shown the

existance of Smarandache idempotents (S-idempotents) in the ring Zn when n = 2mp (or 3p), where

p is a prime > 2 (or p a prime > 3). Also we have shown the existance of Smarandache idempotents

(S-idempotents) in the group ring Z2G and Z2Sn where n = 2mp (p a prime of the form 2mt + 1).

§1. Introduction

This paper has 4 sections. In section 1, we just give the basic definition of S-idempotents in
rings. In section 2, we prove the existence of S-idempotents in the ring Zn where n = 2mp,m ∈
N and p is an odd prime. We also prove the existence of S-idempotents for the ring Zn where
n is of the form n = 3p, p is a prime greater than 3. In section 3, we prove the existence of
S-idempotents in group rings Z2G of cyclic group G over Z2 where order of G is n, n = 2mp (p
a prime of the form 2mt + 1). We also prove the existence of S-idempotents for the group ring
Z2Sn where n = 2mp (p a prime of the form 2mt + 1). In the final section, we propose some
interesting number theoretic problems based on our study.

Here we just recollect the definition of Smarandache idempotents (S-idempotent) and some
basic results to make this paper a self contained one.

Definition 1.1[5]. Let R be a ring. An element x ∈ R 0 is said to be a Smarandache
idempotent (S-idempotent) of R if x2 = x and there exist a ∈ R x, 0 such that

i. a2 = x

ii. xa = x or ax = a.

Example 1.1. Let Z10 = {0, 1, 2, . . . , 9} be the ring of integers modulo 10. Here

62 ≡ 6(mod10), 42 ≡ 6(mod10)

and
6 · 4 ≡ 4(mod10).
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So 6 is a S-idempotent in Z10.
Example 1.2. Take Z12 = {0, 1, 2, . . . , 11} the ring of integers modulo 12. Here

42 ≡ 4(mod12), 82 ≡ 4(mod12)

and

4 · 8 ≡ 8(mod12).

So 4 is a S-idempotent in Z12.
Example 1.3. In Z30 = {0, 1, 2, . . . , 29} the ring of integers modulo 30, 25 is a S-

idempotent. As

252 ≡ 25(mod30), 52 ≡ 25(mod30)

and

25 · 5 ≡ 5(mod30).

So 25 is a S-idempotent in Z30.
Theorem 1.1 [5]. Let R be a ring. If x ∈ R is a S-idempotent then it is an idempotent

in R.
Proof. From the very definition of S-idempotents.

§2. S-idempotents in the finite ring Zn

In this section, we find conditions for Zn to have S-idempotents and prove that when n is
of the form 2mp, p a prime ¿2 or n = 3p (p a prime ¿3) has S-idempotents. We also explicitly
find all the S-idempotents.

Theorem 2.1. Zp = {0, 1, 2, . . . , p− 1}, the prime field of characteristic p, where p is a
prime has no non-trivial S-idempotents.

Proof. Straightforward, as every S-idempotents are idempotents and Zp has no non-
trivial idempotents.

Theorem 2.2: The ring Z2p, where p is an odd prime has S-idempotents.
Proof. Here p is an odd prime, so p must be of the form 2m + 1 i.e p = 2m + 1. Take

x = p + 1 and a = p− 1.

Here

p2 = (2m + 1)2 = 4m2 + 4m + 1

= 2m(2m + 1) + 2m + 1

= 2pm + p

≡ p(mod2p).

So

p2 ≡ p(mod2p).
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Again

x2 = (p + 1)2 ≡ p2 + 1(mod2p)

≡ p + 1(mod2p).

Therefore
x2 = x.

Also
a2 = (p− 1)2 ≡ p + 1(mod2p),

therefore
a2 = x.

And

xa = (p + 1)(p− 1)

= p2 − 1

≡ p− 1(mod2p)

therefore
xa = a.

So x = p + 1 is a S-idempotent in Z2p.
Example 2.1. Take Z6 = Z2·3 = {0, 1, 2, 3, 4, 5} the ring of integers modulo 6. Then

x = 3 + 1 = 4 is a S-idempotent. As

x2 = 42 ≡ 4(mod6),

take a = 2, then a2 = 22 ≡ 4(mod6).
Therefore

a2 = x,

and
xa = 4 · 2 ≡ 2(mod6)

i.e
xa = a.

Theorem 2.3. The ring Z22p, p a prime > 2 and is of the form 4m + 1 or 4m + 3 has
(at least) two S-idempotents.

Proof. Here p is of the form 4m + 1 or 4m + 3.
If p = 4m + 1, then p2 ≡ p(mod22p). As

p2 = (4m + 1)2

= 16m2 + 8m + 1

= 4m(4m + 1) + 4m + 1

= 4pm + p

≡ p(mod22p),
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therefore
p2 ≡ p(mod22p).

Now, take x = 3p + 1 and a = p− 1 then

x2 = (3p + 1)2 = 9p2 + 6p + 1

≡ 9p + 6p + 1(mod22p)

≡ 3p + 1(mod22p)

therefore
a2 = x.

And

xa = (3p + 1)(p− 1)

= 3p2 − 3p + p− 1

≡ p− 1(mod22p)

therefore
xa = a.

So x is an S-idempotent.
Similarly, we can prove that y = p, (here take a = 3p) is another S-idempotent. These are

the only two S-idempotents in Z22p when p = 4m + 1. If p = 4m + 3, then p2 ≡ 3p(mod22p).
As above, we can show that x = p + 1, (a = 3p − 1) and y = 3p, (a = p) are the two

S-idempotents. So we are getting a nice pattern here for S-idempotents in Z22p:
I. If p = 4m + 1, then x = 3p + 1, (a = p − 1) and y = p, (a = 3p) are the two

S-idempotents.
II. If p = 4m+3, x = p+1, (a = 3p−1) and y = 3p, (a = p) are the two S-idempotents.
Example 2.2. Take Z22·5 = {0, 1, . . . , 19}, here 5 = 4 · 1 + 1. So x = 3 · 5 + 1 = 16, (a =

5 − 1 = 4) is an S-idempotent. As 162 ≡ 16(mod20), 42 ≡ 16(mod20) and 16 · 4 ≡ 4(mod20).
Also y = 5, (a = 3 · 5 = 15) is another S-idempotent. As 52 ≡ 5(mod20), 152 ≡ 5(mod20) and
5 · 15 ≡ 15(mod20).

Example 2.3. In the ring Z22·7 = {0, 1, . . . , 27}, here 7 = 4 · 1+3, x = 7+1 = 8, (a = 3 ·
7 − 1 = 20) is an S-idempotent. As 82 ≡ 8(mod28), 202 ≡ 8(mod28) and 8 · 20 ≡ 20(mod28).
Also y = 3 · 7 = 21, (a = 7) is another S-idempotent. As 212 ≡ 21(mod28), 72 ≡ 21(mod28)
and 21 · 7 ≡ 7(mod28).

Theorem 2.4. The ring Z23p, p a prime > 2 has (at least) two S-idempotents of φ(23)
types (where φ(n) is the number of integer less than n and relatively prime to n).

Proof. As p is prime > 2. So p is one of the 8m + 1, 8m + 3, 8m + 5, 8m + 7. Now we
will get the following two S-idempotents for each φ(23) = 4 types of prime p.

I. If p = 8m + 1, then x = 7p + 1, (a = p− 1) and y = p, (a = 7p) are S-idempotents.
II. If p = 8m + 3, then x = 5p + 1, (a = 3p− 1) and y = 3p, (a = 5p) are S-idempotents.
III. If p = 8m + 5, then x = 3p + 1, (a = 5p− 1) and y = 5p, (a = 3p) are S-idempotents.
IV. If p = 8m + 7, then x = p + 1, (a = 7p− 1) and y = 7p, (a = p) are S-idempotents.
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Example 2.4. In the ring Z23·3 = {0, 1, . . . , 23}, here 3 = 8 · 0 + 3. So x = 5 · 3 +
1 = 16, (a = 3 · 3 − 1 = 8) is an S-idempotent. As 162 ≡ 16(mod24), 82 ≡ 16(mod24) and
16 · 8 ≡ 8(mod24). Also y = 3 · 3 = 9, (a = 5 · 3 = 15) is another S-idempotent. As 92 ≡
9(mod24), 152 ≡ 9(mod24) and 9 · 15 ≡ 15(mod24).

Example 2.5. Take Z23·13 = Z104 = {0, 1, . . . , 103}, here 13 = 8 ·1+5. So x = 3 ·13+1 =
40, (a = 5 · 13 − 1 = 64) is an S-idempotent. As 402 ≡ 40(mod104), 642 ≡ 40(mod104) and
40 · 64 ≡ 64(mod104). Also y = 5 · 13 = 65, (a = 3 · 13 = 39) is another S-idempotent. As
652 ≡ 65(mod104), 392 ≡ 65(mod104) and 65 · 39 ≡ 39(mod104).

Theorem 2.5. The ring Z24p, p a prime > 2 has (at least) two S-idempotents for each
of φ(24) types of prime p.

Proof. As above, we can list the S-idempotents for all φ(24) = 8 types of prime p.
I. If p = 16m + 1, then x = 15p + 1, (a = p− 1) and y = p, (a = 15p) are S-idempotents.
II. If p = 16m+3, then x = 13p+1, (a = 3p−1) and y = 3p, (a = 13p) are S-idempotents.
III. If p = 16m+5, then x = 11p+1, (a = 5p−1) and y = 5p, (a = 11p) are S-idempotents.
IV. If p = 16m + 7, then x = 9p + 1, (a = 7p− 1) and y = 7p, (a = 9p) are S-idempotents.
V. If p = 16m + 9, then x = 7p + 1, (a = 9p− 1) and y = 9p, (a = 7p) are S-idempotents.
VI. If p = 16m+11, then x = 5p+1, (a = 11p−1) and y = 11p, (a = 5p) are S-idempotents.
VII. If p = 16m + 13, then x = 3p + 1, (a = 13p − 1) and y = 13p, (a = 13p) are

S-idempotents.
VIII. If p = 16m+15, then x = p+1, (a = 15p−1) and y = 15p, (a = p) are S-idempotents.
Example 2.6. In the ring Z24·17 = Z272 = {0, 1, . . . , 271}, here 17 = 16 · 1 + 1. So

x = 15 · 17 + 1 = 256, (a = 17 − 1 = 16) is an S-idempotent. As 2562 ≡ 256(mod272), 162 ≡
256(mod272) and 256 · 16 ≡ 16(mod272). Also y = 17, (a = 15 · 17 = 255) is another S-
idempotent. As 172 ≡ 17(mod272), 2552 ≡ 17(mod272) and 17 · 255 ≡ 255(mod272).

We can generalize the above result as followings:
Theorem 2.6. The ring Z2np, p a prime > 2 has (at least) two S-idempotents for each

of φ(2n) types of prime p.
Proof. Here p is one of the φ(2n) form:

2nm1 + 1, 2nm2 + 3, . . . 2nmφ(2n) + (2n − 1).

We can find the two S-idempotents for each p as above. We are showing here for the prime
p = 2nm1 + 1 only. If

p = 2nm1 + 1,

then
x = (2n − 1)p + 1, (a = p− 1)

and
y = p, (a = (2n − 1)p)

are S-idempotents.
Similarly we can find S-idempotents for each of the φ(2n) form of prime p.
Theorem 2.7. The ring Z3p, p a prime > 3 has (at least) two S-idempotents of φ(3)

types.
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Proof. Here p can be one of the form 3m + 1 or 3m + 2. We can apply the Theorem 2.6
for Z3p also.

I. If p = 3m + 1, then x = 2p + 1, (a = p− 1) and y = p, (a = 2p) are S-idempotents.
II. If p = 3m + 2, then x = p + 1, (a = 2p− 1) and y = 2p, (a = p) are S-idempotents.
Example 2.7. In the ring Z3·5 = Z15 = {0, 1, . . . , 14}, here 5 = 3 · 1 + 2. So x = 5 + 1 =

6, (a = 2 · 5 − 1 = 9) is an S-idempotent. As 62 ≡ 6(mod15), 92 ≡ 6(mod15) and 6 · 9 ≡
9(mod15). Also y = 2 · 5 = 10, (a = 5) is another S-idempotent. As 102 ≡ 10(mod15), 52 ≡
10(mod15) and 10 · 5 ≡ 5(mod15).

Remark: The above result is not true for the ring Z32p, p prime > 3. As, for p =
9m + 5; x = 4p + 1, (a = 5p− 1) should be an S-idempotent from the above result. But we see
it is not the case in general; for take the ring Z32·23 = Z207 = {0, 1, . . . , 206}. Here p = 9 · 2+5.
Now take

x = 4 · 23 + 1 = 93 and a = 5 · 23− 1 = 114.

But
x2 6≡ x(mod207).

So x is not even an idempotent. So x = 4p + 1 is not an S-idempotent of Z32p.

§3. S-idempotents in the group rings Z2G

Here we prove the existance of Smarandache idempotents for the group rings Z32p of the
cyclic group G of order 2np where p is a prime of the form 2nt + 1.

Example 3.2. Let G = {g/g52 = 1} be the cyclic group of order 22 · 13. Consider the
group ring Z2G of the group G over Z2. Take

x = 1 + g4 + g8 + g12 + . . . + g44 + g48

and
a = 1 + g2 + g4 + . . . + g22 + g24

then
x2 = x, and a2 = x

also
x · a = x.

So x = 1 + g4 + g8 + g12 + . . . + g44 + g48 is a S-idempotent in Z2G.
Theorem 3.1. Let Z2G be the group ring of the finite cyclic group G of order 22p, where

p is a prime of the form 22m + 1, then the group ring Z2G has non-trivial S-idempotents.
Proof. Here G is a cyclic group of order 22p, where p of the form 22m + 1.
Take

x = 1 + g4 + g8 + . . . + g16m

and
a = 1 + g2 + g4 + . . . + g8m
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then

x2 = (1 + g4 + g8 + . . . + g16m)2

= 1 + g4 + g8 + . . . + g16m

= x.

And

a2 = (1 + g2 + g4 + . . . + g8m)2

= 1 + (g2)2 + (g4)2 + . . . + (g8m)2

= x.

Also

x · a = (1 + g4 + g8 + . . . + g16m)(1 + g2 + g4 + . . . + g8m)

= 1 + g4 + g8 + . . . + g16m

= x.

So x = 1 + g4 + g8 + . . . + g16m is a S-idempotent in Z2G.
Example 3.3. Let G = {g/g136 = 1} be the cyclic group of order 23 · 17. Consider the

group ring Z2G of the group G over Z2.
Take

x = 1 + g8 + g16 + . . . + g128

and
a = 1 + g4 + g8 + . . . + g64

then

x2 = (1 + g8 + g16 + . . . + g128)2

= 1 + g8 + g16 + . . . + g128

= x.

And

a2 = (1 + g4 + g8 + . . . + g64)2

= 1 + (g4)2 + (g8)2 + . . . + (g64)2

= x.

Also

x · a = (1 + g8 + g16 + . . . + g128)(1 + g4 + g8 + . . . + g64)

= 1 + g8 + g64 + . . . + g128

= x.

So x = 1 + g8 + g16 + . . . + g128 is a S-idempotent in Z2G.
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Theorem 3.2. Let Z2G be the group ring of a finite cyclic group G of order 23p, where
p is a prime of the form 23m + 1, then the group ring Z2G has non-trivial S-idempotents.

Proof. Here G is a cyclic group of order 23p, where p of the form 23m + 1.
Take

x = 1 + g8 + g16 + . . . + g8(p−1)

and
a = 1 + g4 + g8 + . . . + g4(p−1)

then

x2 = (1 + g8 + g16 + . . . + g8(p−1))2

= 1 + g8 + g16 + . . . + g8(p−1)

= x.

And

a2 = (1 + g4 + g8 + . . . + g4(p−1))2

= 1 + (g4)2 + (g8)2 + . . . + (g8(p−1))2

= x.

Also

x · a = (1 + g8 + g16 + . . . + g8(p−1))(1 + g4 + g8 + . . . + g4(p−1))

= 1 + g8 + g16 + . . . + g8(p−1)

= x.

So x = 1 + g8 + g16 + . . . + g8(p−1) is a S-idempotent in Z2G.
We can generalize the above two results as followings:
Theorem 3.3. Let Z2G be the group ring of a finite cyclic group G of order 2np, where

p is a prime of the form 2nt + 1, then the group ring Z2G has non-trivial S-idempotents.
Proof. Here G is a cyclic group of order 2np, where p of the form 2nt + 1.
Take

x = 1 + g2n

+ g2n·2 + . . . + g2n(p−1)

and
a = 1 + g2n−1

+ g2n−1·2 + . . . + g2n−1·(p−1)

then

x2 = (1 + g2n

+ g2n·2 + . . . + g2n(p−1))2

= 1 + g2n

+ g2n·2 + . . . + g2n(p−1)

= x.

And

a2 = (1 + g2n−1
+ g2n−1·2 + . . . + g2n−1·(p−1))2

= 1 + (g2n−1
)2 + (g2n−1·2)2 + . . . + (g2n−1·(p−1))2

= x.
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Also

x · a = (1 + g2n

+ g2n·2 + . . . + g2n(p−1))(1 + g2n−1
+ g2n−1·2 + . . . + g2n−1·(p−1))

= 1 + g2n

+ g2n·2 + . . . + g2n(p−1)

= x.

So x = 1 + g2n

+ g2n·2 + . . . + g2n(p−1) is a S-idempotent in Z2G.
Corollary 3.1. Let Z2Sn be the group ring of a symmetric group Sn where n = 2np, and

p is a prime of the form 2nt + 1, then the group ring Z2Sn has non-trivial S-idempotents.
Proof. Here Z2Sn is a group ring where n = 2np, and p of the form 2nt+1. Clearly Z2Sn

contains a finite cyclic group of order 2np. Then by the Theorem 3.3, Z2Sn has a non-trivial
S-idempotent.

§4. Conclusions

Here we have mainly proved the existance of S-idempotents in certain types of group rings.
But it is interesting to enumerate the number of S-idempotents for the group rings Z2G and
Z2Sn in the Theorem 3.3 and Corollary 3.1. We feel that Z2G can have only one S-idempotent
but we are not in a position to give a proof for it. Also, the problem of finding S-idempotents
in ZpSn (and ZpG) where (p, n) = 1 (and (p, |G|) = 1) or (p, n) = d 6= 1 (and (p, |G|) = d 6= 1)
are still interesting number theoretic problems.
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