Smarandache Idempotents in finite ring Z_{n} and in Group Ring $Z_{n} G$

W.B.Vasantha and Moon K.Chetry
Department of Mathematics
I.I.T. Madras, Chennai

Abstract

In this paper we analyze and study the Smarandache idempotents (S-idempotents) in the ring Z_{n} and in the group ring $Z_{n} G$ of a finite group G over the finite ring Z_{n}. We have shown the existance of Smarandache idempotents (S-idempotents) in the ring Z_{n} when $n=2^{m} p$ (or $3 p$), where p is a prime >2 (or p a prime >3). Also we have shown the existance of Smarandache idempotents (S-idempotents) in the group ring $Z_{2} G$ and $Z_{2} S_{n}$ where $n=2^{m} p$ (p a prime of the form $2^{m} t+1$).

§1. Introduction

This paper has 4 sections. In section 1, we just give the basic definition of S-idempotents in rings. In section 2, we prove the existence of S-idempotents in the ring Z_{n} where $n=2^{m} p, m \in$ N and p is an odd prime. We also prove the existence of S-idempotents for the ring Z_{n} where n is of the form $n=3 p, p$ is a prime greater than 3 . In section 3 , we prove the existence of S-idempotents in group rings $Z_{2} G$ of cyclic group G over Z_{2} where order of G is $n, n=2^{m} p$ (p a prime of the form $2^{m} t+1$). We also prove the existence of S-idempotents for the group ring $Z_{2} S_{n}$ where $n=2^{m} p$ (p a prime of the form $2^{m} t+1$). In the final section, we propose some interesting number theoretic problems based on our study.

Here we just recollect the definition of Smarandache idempotents (S-idempotent) and some basic results to make this paper a self contained one.

Definition 1.1[5]. Let R be a ring. An element $x \in R 0$ is said to be a Smarandache idempotent (S-idempotent) of R if $x^{2}=x$ and there exist $a \in R \quad x, 0$ such that

$$
\begin{aligned}
& \text { i. } \quad a^{2}=x \\
& \text { ii. } \quad x a=x \quad \text { or } \quad a x=a .
\end{aligned}
$$

Example 1.1. Let $Z_{1} 0=\{0,1,2, \ldots, 9\}$ be the ring of integers modulo 10. Here

$$
6^{2} \equiv 6(\bmod 10), \quad 4^{2} \equiv 6(\bmod 10)
$$

and

$$
6 \cdot 4 \equiv 4(\bmod 10)
$$

So 6 is a S-idempotent in Z_{10}.
Example 1.2. Take $Z_{12}=\{0,1,2, \ldots, 11\}$ the ring of integers modulo 12. Here

$$
4^{2} \equiv 4(\bmod 12), \quad 8^{2} \equiv 4(\bmod 12)
$$

and

$$
4 \cdot 8 \equiv 8(\bmod 12)
$$

So 4 is a S-idempotent in Z_{12}.
Example 1.3. In $Z_{30}=\{0,1,2, \ldots, 29\}$ the ring of integers modulo 30, 25 is a Sidempotent. As

$$
25^{2} \equiv 25(\bmod 30), \quad 5^{2} \equiv 25(\bmod 30)
$$

and

$$
25 \cdot 5 \equiv 5(\bmod 30)
$$

So 25 is a S-idempotent in Z_{30}.
Theorem 1.1 [5]. Let R be a ring. If $x \in R$ is a S-idempotent then it is an idempotent in R.

Proof. From the very definition of S-idempotents.

§2. S-idempotents in the finite ring Z_{n}

In this section, we find conditions for Z_{n} to have S-idempotents and prove that when n is of the form $2^{m} p, p$ a prime $¿ 2$ or $n=3 p$ (p a prime $¿ 3$) has S-idempotents. We also explicitly find all the S-idempotents.

Theorem 2.1. $Z_{p}=\{0,1,2, \ldots, p-1\}$, the prime field of characteristic p, where p is a prime has no non-trivial S-idempotents.

Proof. Straightforward, as every S-idempotents are idempotents and Z_{p} has no nontrivial idempotents.

Theorem 2.2: The ring $Z_{2 p}$, where p is an odd prime has S-idempotents.
Proof. Here p is an odd prime, so p must be of the form $2 m+1$ i.e $p=2 m+1$. Take

$$
x=p+1 \quad \text { and } \quad a=p-1 .
$$

Here

$$
\begin{aligned}
p^{2}=(2 m+1)^{2} & =4 m^{2}+4 m+1 \\
& =2 m(2 m+1)+2 m+1 \\
& =2 p m+p \\
& \equiv p(\bmod 2 p) .
\end{aligned}
$$

So

$$
p^{2} \equiv p(\bmod 2 p)
$$

Again

$$
\begin{aligned}
x^{2}=(p+1)^{2} & \equiv p^{2}+1(\bmod 2 p) \\
& \equiv p+1(\bmod 2 p)
\end{aligned}
$$

Therefore

$$
x^{2}=x
$$

Also

$$
a^{2}=(p-1)^{2} \equiv p+1(\bmod 2 p)
$$

therefore

$$
a^{2}=x
$$

And

$$
\begin{aligned}
x a & =(p+1)(p-1) \\
& =p^{2}-1 \\
& \equiv p-1(\bmod 2 p)
\end{aligned}
$$

therefore

$$
x a=a .
$$

So $x=p+1$ is a S-idempotent in $Z_{2 p}$.
Example 2.1. Take $Z_{6}=Z_{2 \cdot 3}=\{0,1,2,3,4,5\}$ the ring of integers modulo 6. Then $x=3+1=4$ is a S-idempotent. As

$$
x^{2}=4^{2} \equiv 4(\bmod 6),
$$

take $a=2$, then $a^{2}=2^{2} \equiv 4(\bmod 6)$.
Therefore

$$
a^{2}=x
$$

and

$$
x a=4 \cdot 2 \equiv 2(\bmod 6)
$$

i.e

$$
x a=a .
$$

Theorem 2.3. The ring $Z_{2^{2} p}$, p a prime >2 and is of the form $4 m+1$ or $4 m+3$ has (at least) two S-idempotents.

Proof. Here p is of the form $4 m+1$ or $4 m+3$.
If $p=4 m+1$, then $p^{2} \equiv p\left(\bmod 2^{2} p\right)$. As

$$
\begin{aligned}
p^{2} & =(4 m+1)^{2} \\
& =16 m^{2}+8 m+1 \\
& =4 m(4 m+1)+4 m+1 \\
& =4 p m+p \\
& \equiv p\left(\bmod 2^{2} p\right)
\end{aligned}
$$

therefore

$$
p^{2} \equiv p\left(\bmod 2^{2} p\right)
$$

Now, take $x=3 p+1$ and $a=p-1$ then

$$
\begin{aligned}
x^{2}=(3 p+1)^{2} & =9 p^{2}+6 p+1 \\
& \equiv 9 p+6 p+1\left(\bmod 2^{2} p\right) \\
& \equiv 3 p+1\left(\bmod 2^{2} p\right)
\end{aligned}
$$

therefore

$$
a^{2}=x
$$

And

$$
\begin{aligned}
x a & =(3 p+1)(p-1) \\
& =3 p^{2}-3 p+p-1 \\
& \equiv p-1\left(\bmod 2^{2} p\right)
\end{aligned}
$$

therefore

$$
x a=a .
$$

So x is an S-idempotent.
Similarly, we can prove that $y=p$, (here take $a=3 p$) is another S-idempotent. These are the only two S-idempotents in $Z_{2^{2} p}$ when $p=4 m+1$. If $p=4 m+3$, then $p^{2} \equiv 3 p\left(\bmod 2^{2} p\right)$.

As above, we can show that $x=p+1,(a=3 p-1)$ and $y=3 p,(a=p)$ are the two S-idempotents. So we are getting a nice pattern here for S-idempotents in $Z_{2^{2} p}$:
I. If $p=4 m+1$, then $x=3 p+1, \quad(a=p-1)$ and $y=p, \quad(a=3 p)$ are the two S-idempotents.
II. If $p=4 m+3, x=p+1, \quad(a=3 p-1)$ and $y=3 p,(a=p)$ are the two S-idempotents.

Example 2.2. Take $Z_{2^{2} .5}=\{0,1, \ldots, 19\}$, here $5=4 \cdot 1+1$. So $x=3 \cdot 5+1=16,(a=$ $5-1=4)$ is an S-idempotent. As $16^{2} \equiv 16(\bmod 20), 4^{2} \equiv 16(\bmod 20)$ and $16 \cdot 4 \equiv 4(\bmod 20)$. Also $y=5,(a=3 \cdot 5=15)$ is another S-idempotent. As $5^{2} \equiv 5(\bmod 20), 15^{2} \equiv 5(\bmod 20)$ and $5 \cdot 15 \equiv 15(\bmod 20)$.

Example 2.3. In the ring $Z_{2^{2} .7}=\{0,1, \ldots, 27\}$, here $7=4 \cdot 1+3, x=7+1=8,(a=3$. $7-1=20)$ is an S-idempotent. As $8^{2} \equiv 8(\bmod 28), 20^{2} \equiv 8(\bmod 28)$ and $8 \cdot 20 \equiv 20(\bmod 28)$. Also $y=3 \cdot 7=21,(a=7)$ is another S-idempotent. As $21^{2} \equiv 21(\bmod 28), 7^{2} \equiv 21(\bmod 28)$ and $21 \cdot 7 \equiv 7(\bmod 28)$.

Theorem 2.4. The ring $Z_{2^{3}}$, p a prime >2 has (at least) two S-idempotents of $\phi\left(2^{3}\right)$ types (where $\phi(n)$ is the number of integer less than n and relatively prime to n).

Proof. As p is prime >2. So p is one of the $8 m+1,8 m+3,8 m+5,8 m+7$. Now we will get the following two S-idempotents for each $\phi\left(2^{3}\right)=4$ types of prime p.
I. If $p=8 m+1$, then $x=7 p+1,(a=p-1)$ and $y=p,(a=7 p)$ are S-idempotents.
II. If $p=8 m+3$, then $x=5 p+1,(a=3 p-1)$ and $y=3 p,(a=5 p)$ are S-idempotents.
III. If $p=8 m+5$, then $x=3 p+1,(a=5 p-1)$ and $y=5 p,(a=3 p)$ are S-idempotents.
$I V$. If $p=8 m+7$, then $x=p+1,(a=7 p-1)$ and $y=7 p,(a=p)$ are S-idempotents.

Example 2.4. In the ring $Z_{2^{3} \cdot 3}=\{0,1, \ldots, 23\}$, here $3=8 \cdot 0+3$. So $x=5 \cdot 3+$ $1=16,(a=3 \cdot 3-1=8)$ is an S-idempotent. As $16^{2} \equiv 16(\bmod 24), 8^{2} \equiv 16(\bmod 24)$ and $16 \cdot 8 \equiv 8(\bmod 24)$. Also $y=3 \cdot 3=9,(a=5 \cdot 3=15)$ is another S-idempotent. As $9^{2} \equiv$ $9(\bmod 24), 15^{2} \equiv 9(\bmod 24)$ and $9 \cdot 15 \equiv 15(\bmod 24)$.

Example 2.5. Take $Z_{2^{3} \cdot 13}=Z_{104}=\{0,1, \ldots, 103\}$, here $13=8 \cdot 1+5$. So $x=3 \cdot 13+1=$ $40,(a=5 \cdot 13-1=64)$ is an S-idempotent. As $40^{2} \equiv 40(\bmod 104), 64^{2} \equiv 40(\bmod 104)$ and $40 \cdot 64 \equiv 64(\bmod 104)$. Also $y=5 \cdot 13=65,(a=3 \cdot 13=39)$ is another S-idempotent. As $65^{2} \equiv 65(\bmod 104), 39^{2} \equiv 65(\bmod 104)$ and $65 \cdot 39 \equiv 39(\bmod 104)$.

Theorem 2.5. The ring $Z_{2^{4}}$, p a prime >2 has (at least) two S-idempotents for each of $\phi\left(2^{4}\right)$ types of prime p.

Proof. As above, we can list the S-idempotents for all $\phi\left(2^{4}\right)=8$ types of prime p.
I. If $p=16 m+1$, then $x=15 p+1,(a=p-1)$ and $y=p,(a=15 p)$ are S-idempotents.
II. If $p=16 m+3$, then $x=13 p+1,(a=3 p-1)$ and $y=3 p,(a=13 p)$ are S-idempotents.
III. If $p=16 m+5$, then $x=11 p+1,(a=5 p-1)$ and $y=5 p,(a=11 p)$ are S-idempotents.
IV. If $p=16 m+7$, then $x=9 p+1,(a=7 p-1)$ and $y=7 p,(a=9 p)$ are S-idempotents.
V. If $p=16 m+9$, then $x=7 p+1,(a=9 p-1)$ and $y=9 p,(a=7 p)$ are S-idempotents.
VI. If $p=16 m+11$, then $x=5 p+1,(a=11 p-1)$ and $y=11 p,(a=5 p)$ are S-idempotents.
VII. If $p=16 m+13$, then $x=3 p+1,(a=13 p-1)$ and $y=13 p,(a=13 p)$ are S-idempotents.
VIII. If $p=16 m+15$, then $x=p+1,(a=15 p-1)$ and $y=15 p,(a=p)$ are S-idempotents.

Example 2.6. In the ring $Z_{2^{4} \cdot 17}=Z_{272}=\{0,1, \ldots, 271\}$, here $17=16 \cdot 1+1$. So $x=15 \cdot 17+1=256,(a=17-1=16)$ is an S-idempotent. As $256^{2} \equiv 256(\bmod 272), 16^{2} \equiv$ $256(\bmod 272)$ and $256 \cdot 16 \equiv 16(\bmod 272)$. Also $y=17,(a=15 \cdot 17=255)$ is another S idempotent. As $17^{2} \equiv 17(\bmod 272), 255^{2} \equiv 17(\bmod 272)$ and $17 \cdot 255 \equiv 255(\bmod 272)$.

We can generalize the above result as followings:
Theorem 2.6. The ring $Z_{2^{n} p}$, p a prime >2 has (at least) two S-idempotents for each of $\phi\left(2^{n}\right)$ types of prime p.

Proof. Here p is one of the $\phi\left(2^{n}\right)$ form:

$$
2^{n} m_{1}+1, \quad 2^{n} m_{2}+3, \quad \ldots \quad 2^{n} m_{\phi\left(2^{n}\right)}+\left(2^{n}-1\right)
$$

We can find the two S-idempotents for each p as above. We are showing here for the prime $p=2^{n} m_{1}+1$ only. If

$$
p=2^{n} m_{1}+1
$$

then

$$
x=\left(2^{n}-1\right) p+1, \quad(a=p-1)
$$

and

$$
y=p, \quad\left(a=\left(2^{n}-1\right) p\right)
$$

are S-idempotents.
Similarly we can find S-idempotents for each of the $\phi\left(2^{n}\right)$ form of prime p.
Theorem 2.7. The ring $Z_{3 p}$, p a prime >3 has (at least) two S-idempotents of $\phi(3)$ types.

Proof. Here p can be one of the form $3 m+1$ or $3 m+2$. We can apply the Theorem 2.6 for $Z_{3 p}$ also.
I. If $p=3 m+1$, then $x=2 p+1,(a=p-1)$ and $y=p,(a=2 p)$ are S-idempotents.
II. If $p=3 m+2$, then $x=p+1,(a=2 p-1)$ and $y=2 p,(a=p)$ are S-idempotents.

Example 2.7. In the ring $Z_{3 \cdot 5}=Z_{15}=\{0,1, \ldots, 14\}$, here $5=3 \cdot 1+2$. So $x=5+1=$ $6,(a=2 \cdot 5-1=9)$ is an S-idempotent. As $6^{2} \equiv 6(\bmod 15), 9^{2} \equiv 6(\bmod 15)$ and $6 \cdot 9 \equiv$ $9(\bmod 15)$. Also $y=2 \cdot 5=10,(a=5)$ is another S-idempotent. As $10^{2} \equiv 10(\bmod 15), 5^{2} \equiv$ $10(\bmod 15)$ and $10 \cdot 5 \equiv 5(\bmod 15)$.

Remark: The above result is not true for the ring $Z_{3^{2} p}, p$ prime >3. As, for $p=$ $9 m+5 ; x=4 p+1,(a=5 p-1)$ should be an S-idempotent from the above result. But we see it is not the case in general; for take the ring $Z_{3^{2} \cdot 23}=Z_{207}=\{0,1, \ldots, 206\}$. Here $p=9 \cdot 2+5$. Now take

$$
x=4 \cdot 23+1=93 \quad \text { and } \quad a=5 \cdot 23-1=114 .
$$

But

$$
x^{2} \not \equiv x(\bmod 207) .
$$

So x is not even an idempotent. So $x=4 p+1$ is not an S-idempotent of $Z_{3^{2} p}$.

§3. S-idempotents in the group rings $Z_{2} G$

Here we prove the existance of Smarandache idempotents for the group rings $Z_{3^{2} p}$ of the cyclic group G of order $2^{n} p$ where p is a prime of the form $2^{n} t+1$.

Example 3.2. Let $G=\left\{g / g^{52}=1\right\}$ be the cyclic group of order $2^{2} \cdot 13$. Consider the group ring $Z_{2} G$ of the group G over Z_{2}. Take

$$
x=1+g^{4}+g^{8}+g^{12}+\ldots+g^{44}+g^{48}
$$

and

$$
a=1+g^{2}+g^{4}+\ldots+g^{22}+g^{24}
$$

then

$$
x^{2}=x, \quad \text { and } \quad a^{2}=x
$$

also

$$
x \cdot a=x .
$$

So $x=1+g^{4}+g^{8}+g^{12}+\ldots+g^{44}+g^{48}$ is a S-idempotent in $Z_{2} G$.
Theorem 3.1. Let $Z_{2} G$ be the group ring of the finite cyclic group G of order $2^{2} p$, where p is a prime of the form $2^{2} m+1$, then the group ring $Z_{2} G$ has non-trivial S-idempotents.

Proof. Here G is a cyclic group of order $2^{2} p$, where p of the form $2^{2} m+1$.
Take

$$
x=1+g^{4}+g^{8}+\ldots+g^{16 m}
$$

and

$$
a=1+g^{2}+g^{4}+\ldots+g^{8 m}
$$

then

$$
\begin{aligned}
x^{2} & =\left(1+g^{4}+g^{8}+\ldots+g^{16 m}\right)^{2} \\
& =1+g^{4}+g^{8}+\ldots+g^{16 m} \\
& =x .
\end{aligned}
$$

And

$$
\begin{aligned}
a^{2} & =\left(1+g^{2}+g^{4}+\ldots+g^{8 m}\right)^{2} \\
& =1+\left(g^{2}\right)^{2}+\left(g^{4}\right)^{2}+\ldots+\left(g^{8 m}\right)^{2} \\
& =x .
\end{aligned}
$$

Also

$$
\begin{aligned}
x \cdot a & =\left(1+g^{4}+g^{8}+\ldots+g^{16 m}\right)\left(1+g^{2}+g^{4}+\ldots+g^{8 m}\right) \\
& =1+g^{4}+g^{8}+\ldots+g^{16 m} \\
& =x
\end{aligned}
$$

So $x=1+g^{4}+g^{8}+\ldots+g^{16 m}$ is a S-idempotent in $Z_{2} G$.
Example 3.3. Let $G=\left\{g / g^{136}=1\right\}$ be the cyclic group of order $2^{3} \cdot 17$. Consider the group ring $Z_{2} G$ of the group G over Z_{2}.

Take

$$
x=1+g^{8}+g^{16}+\ldots+g^{128}
$$

and

$$
a=1+g^{4}+g^{8}+\ldots+g^{64}
$$

then

$$
\begin{aligned}
x^{2} & =\left(1+g^{8}+g^{16}+\ldots+g^{128}\right)^{2} \\
& =1+g^{8}+g^{16}+\ldots+g^{128} \\
& =x .
\end{aligned}
$$

And

$$
\begin{aligned}
a^{2} & =\left(1+g^{4}+g^{8}+\ldots+g^{64}\right)^{2} \\
& =1+\left(g^{4}\right)^{2}+\left(g^{8}\right)^{2}+\ldots+\left(g^{64}\right)^{2} \\
& =x .
\end{aligned}
$$

Also

$$
\begin{aligned}
x \cdot a & =\left(1+g^{8}+g^{16}+\ldots+g^{128}\right)\left(1+g^{4}+g^{8}+\ldots+g^{64}\right) \\
& =1+g^{8}+g^{64}+\ldots+g^{128} \\
& =x .
\end{aligned}
$$

So $x=1+g^{8}+g^{16}+\ldots+g^{128}$ is a S-idempotent in $Z_{2} G$.

Theorem 3.2. Let $Z_{2} G$ be the group ring of a finite cyclic group G of order $2^{3} p$, where p is a prime of the form $2^{3} m+1$, then the group ring $Z_{2} G$ has non-trivial S-idempotents.

Proof. Here G is a cyclic group of order $2^{3} p$, where p of the form $2^{3} m+1$.
Take

$$
x=1+g^{8}+g^{16}+\ldots+g^{8(p-1)}
$$

and

$$
a=1+g^{4}+g^{8}+\ldots+g^{4(p-1)}
$$

then

$$
\begin{aligned}
x^{2} & =\left(1+g^{8}+g^{16}+\ldots+g^{8(p-1)}\right)^{2} \\
& =1+g^{8}+g^{16}+\ldots+g^{8(p-1)} \\
& =x .
\end{aligned}
$$

And

$$
\begin{aligned}
a^{2} & =\left(1+g^{4}+g^{8}+\ldots+g^{4(p-1)}\right)^{2} \\
& =1+\left(g^{4}\right)^{2}+\left(g^{8}\right)^{2}+\ldots+\left(g^{8(p-1)}\right)^{2} \\
& =x .
\end{aligned}
$$

Also

$$
\begin{aligned}
x \cdot a & =\left(1+g^{8}+g^{16}+\ldots+g^{8(p-1)}\right)\left(1+g^{4}+g^{8}+\ldots+g^{4(p-1)}\right) \\
& =1+g^{8}+g^{16}+\ldots+g^{8(p-1)} \\
& =x .
\end{aligned}
$$

So $x=1+g^{8}+g^{16}+\ldots+g^{8(p-1)}$ is a S-idempotent in $Z_{2} G$.
We can generalize the above two results as followings:
Theorem 3.3. Let $Z_{2} G$ be the group ring of a finite cyclic group G of order $2^{n} p$, where p is a prime of the form $2^{n} t+1$, then the group ring $Z_{2} G$ has non-trivial S-idempotents.

Proof. Here G is a cyclic group of order $2^{n} p$, where p of the form $2^{n} t+1$.
Take

$$
x=1+g^{2^{n}}+g^{2^{n} \cdot 2}+\ldots+g^{2^{n}(p-1)}
$$

and

$$
a=1+g^{2^{n-1}}+g^{2^{n-1} \cdot 2}+\ldots+g^{2^{n-1} \cdot(p-1)}
$$

then

$$
\begin{aligned}
x^{2} & =\left(1+g^{2^{n}}+g^{2^{n} \cdot 2}+\ldots+g^{2^{n}(p-1)}\right)^{2} \\
& =1+g^{2^{n}}+g^{2^{n} \cdot 2}+\ldots+g^{2^{n}(p-1)} \\
& =x .
\end{aligned}
$$

And

$$
\begin{aligned}
a^{2} & =\left(1+g^{2^{n-1}}+g^{2^{n-1} \cdot 2}+\ldots+g^{2^{n-1} \cdot(p-1)}\right)^{2} \\
& =1+\left(g^{2^{n-1}}\right)^{2}+\left(g^{2^{n-1} \cdot 2}\right)^{2}+\ldots+\left(g^{2^{n-1} \cdot(p-1)}\right)^{2} \\
& =x .
\end{aligned}
$$

Also

$$
\begin{aligned}
x \cdot a & =\left(1+g^{2^{n}}+g^{2^{n} \cdot 2}+\ldots+g^{2^{n}(p-1)}\right)\left(1+g^{2^{n-1}}+g^{2^{n-1} \cdot 2}+\ldots+g^{2^{n-1} \cdot(p-1)}\right) \\
& =1+g^{2^{n}}+g^{2^{n} \cdot 2}+\ldots+g^{2^{n}(p-1)} \\
& =x
\end{aligned}
$$

So $x=1+g^{2^{n}}+g^{2^{n} \cdot 2}+\ldots+g^{2^{n}(p-1)}$ is a S-idempotent in $Z_{2} G$.
Corollary 3.1. Let $Z_{2} S_{n}$ be the group ring of a symmetric group S_{n} where $n=2^{n} p$, and p is a prime of the form $2^{n} t+1$, then the group ring $Z_{2} S_{n}$ has non-trivial S-idempotents.

Proof. Here $Z_{2} S_{n}$ is a group ring where $n=2^{n} p$, and p of the form $2^{n} t+1$. Clearly $Z_{2} S_{n}$ contains a finite cyclic group of order $2^{n} p$. Then by the Theorem 3.3, $Z_{2} S_{n}$ has a non-trivial S-idempotent.

§4. Conclusions

Here we have mainly proved the existance of S-idempotents in certain types of group rings. But it is interesting to enumerate the number of S-idempotents for the group rings $Z_{2} G$ and $Z_{2} S_{n}$ in the Theorem 3.3 and Corollary 3.1. We feel that $Z_{2} G$ can have only one S-idempotent but we are not in a position to give a proof for it. Also, the problem of finding S-idempotents in $Z_{p} S_{n}\left(\right.$ and $\left.Z_{p} G\right)$ where $(p, n)=1($ and $(p,|G|)=1)$ or $(p, n)=d \neq 1($ and $(p,|G|)=d \neq 1)$ are still interesting number theoretic problems.

References

[1] I.G.Connel, On the group ring, Can.J.Math. 15(1963), 650-685.
[2] Kim E.T., Idempotents in some group rings, Bull Korean math.soc., 2(1987), 77-81.
[3] C.P.Milies and S.K.Sehgal, An Introduction to group rings, algebras and applications, Kluwer Academic Publishers, Dordrecht, Netherlands,(2002).
[4] D.S.Passman, The algebraic structure of group rings, Wiley interscience (1997).
[5] W.B.Vasantha Kandasamy, Smarandache rings, American research press, Rehoboth (2002).

