Smarandache Idempotents in Loop Rings $Z_{t} L_{n}(m)$ of the Loops $L_{n}(m)$

W.B.Vasantha and Moon K. Chetry
Department of Mathematics, I.I.T.Madras, Chennai

Abstract

In this paper we establish the existence of S-idempotents in case of loop rings $Z_{t} L_{n}(m)$ for a special class of loops $L_{n}(m)$; over the ring of modulo integers Z_{t} for a specific value of t. These loops satisfy the conditions g_{i}^{2} for every $g_{i} \in L_{n}(m)$. We prove $Z_{t} L_{n}(m)$ has an S-idempotent when t is a perfect number or when t is of the form $2^{i} p$ or $3^{i} p$ (where p is an odd prime) or in general when $t=p_{1}^{i} p_{2}$ (p_{1} and p_{2} are distinct odd primes), It is important to note that we are able to prove only the existence of a single S-idempotent; however we leave it as an open problem whether such loop rings have more than one S-idempotent.

§1. Basic Results

This paper has three sections. In section one, we give the basic notions about the loops $L_{n}(m)$ and recall the definition of S-idempotents in rings. In section two, we establish the existence of S -idempotents in the loop ring $Z_{t} L_{n}(m)$. In the final section, we suggest some interesting problems based on our study.

Here we just give the basic notions about the loops $L_{n}(m)$ and the definition of Sidempotents in rings.

Definition 1.1 [4]. Let R be a ring. An element $x \in R \backslash\{0\}$ is said to be a Smarandache idempotents (S-idempotent) of R if $x^{2}=x$ and there exist $a \in R \backslash\{x, 0\}$ such that

$$
\begin{array}{ll}
\text { i. } & a^{2}=x \\
\text { ii. } & x a=x \text { or } a x=a .
\end{array}
$$

For more about S-idempotent please refer [4].
Definition 1.2 [2]. A positive integer n is said to be a perfect number if n is equal to the sum of all its positive divisors, excluding n itself. e.g. 6 is a perfect number. As $6=1+2+3$.

Definition 1.3 [1]. A non-empty set L is said to form a loop, if in L is defined a binary operation, called product and denoted by '.'s such that

1. For $a, b \in L$ we have $a . b \in L$. (closure property.)
2. There exists an element $e \in L$ such that $a . e=e . a=a$ for all $a \in L . \quad(e$ is called the identity element of L.)
3. For every ordered pair $(a, b) \in L \times L$ there exists a unique pair $(x, y) \in L \times L$ such that $a x=b$ and $y a=b$.

Definition 1.4 [3]. Let $L_{n}(m)=\{e, 1,2,3, \cdots, n\}$ be a set where $n>3, n$ is odd and m is a positive integer such that $(m, n)=1$ and $(m-1, n)=1$ with $m<n$. Define on $L_{n}(m)$, a binary operation '.' as following:

$$
\begin{aligned}
i . & e . i=i . e=i \text { for all } i \in L_{n}(m) \backslash\{e\} \\
i i . & i^{2} .=e \text { for all } i \in L_{n}(m) \\
\text { iii. } & i . j=t, \text { where } t \equiv(m j-(m-1) i)(\bmod n) \text { for all } i, j \in L_{n}(m), \\
& i \neq e \text { and } j \neq e .
\end{aligned}
$$

Then $L_{n}(m)$ is a loop. This loop is always of even order; further for varying m, we get a class of loops of order $n+1$ which we denote by

$$
L_{n}=\left\{L_{n}(m) \mid n>3, n \text { is odd and }(m, n)=1,(m-1, n)=1 \text { with } m<n\right\} .
$$

Example 1.1 [3]. Consider $L_{5}(2)=\{e, 1,2,3,4,5\}$. The composition table for $L_{5}(2)$ is given below:

\cdot	e	1	2	3	4	5
e	e	1	2	3	4	5
1	1	e	3	5	2	4
2	2	5	e	4	1	3
3	3	4	1	e	5	2
4	4	3	5	2	e	1
5	5	2	4	1	3	e

This loop is non-commutative and non-associative and of order 6 .

§2. Existence of S-idempotents in the Loop Rings $Z_{t} L_{n}(m)$

In this section we will prove the existence of an S-idempotent in the loop ring $Z_{t} L_{n}(m)$ when t is an even perfect number. Also we will prove that the loop ring $Z_{t} L_{n}(m)$ has an S-idempotent when t is of the form $2^{i} p$ or $3^{i} p$ (where p is an odd prime) or in general when $t=p_{1}^{i} p_{2}$ (p_{1} and p_{2} are distinct odd primes).

Theorem 2.1. Let $Z_{t} L_{n}(m)$ be a loop ring, where t is an even perfect number of the form $t=2^{s}\left(2^{s+1}-1\right)$ for some $s>1$, then $\alpha=2^{s}+2^{s} g_{i} \in Z_{t} L_{n}(m)$ is an S-idempotent.

Proof. As t is an even perfect number, t must be of the form

$$
t=2^{s}\left(2^{s+1}-1\right), \quad \text { for some } s>1
$$

where $2^{s+1}-1$ is a prime.
Consider

$$
\alpha=2^{s}+2^{s} g_{i} \in Z_{t} L_{n}(m)
$$

Choose

$$
\beta=\left(t-2^{s}\right)+\left(t-2^{s}\right) g_{i} \in Z_{t} L_{n}(m) .
$$

Clearly

$$
\begin{aligned}
\alpha^{2} & =\left(2^{s}+2^{s} g_{i}\right)^{2} \\
& =2.2^{2 s}\left(1+g_{i}\right) \\
& \equiv 2^{s}\left(1+g_{i}\right) \quad\left[2^{s} .2^{s+1} \equiv 2^{s}(\bmod t)\right] \\
& =\alpha .
\end{aligned}
$$

Now

$$
\begin{aligned}
\beta^{2} & =\left(\left(t-2^{s}\right)+\left(t-2^{s}\right) g_{i}\right)^{2} \\
& =2 \cdot\left(t-2^{s}\right)^{2}\left(1+g_{i}\right) \\
& \equiv 2^{s}\left(1+g_{i}\right) \\
& =\alpha
\end{aligned}
$$

Also

$$
\begin{aligned}
\alpha \beta & =\left[2^{s}+2^{s} g_{i}\right]\left[\left(t-2^{s}\right)+\left(t-2^{s}\right) g_{i}\right] \\
& =2^{s}\left(1+g_{i}\right)\left(t-2^{s}\right)\left(1+g_{i}\right) \\
& \equiv-2.2^{s} \cdot 2^{s}\left(1+g_{i}\right) \\
& \equiv\left(t-2^{s}\right)\left(1+g_{i}\right) \\
& =\beta .
\end{aligned}
$$

So we get

$$
\alpha^{2}=\alpha, \quad \beta^{2}=\alpha \quad \text { and } \quad \alpha \beta=\beta .
$$

Therefore $\alpha=2^{s}+2^{s} g_{i}$ is an S-idempotent.
Example 2.1. Take the loop ring $Z_{6} L_{n}(m)$. Here 6 is an even perfect number. As $6=2 .\left(2^{s}-1\right)$, so $\alpha=2+2 g_{i}$ is an S-idempotent. For

$$
\begin{aligned}
\alpha^{2} & =\left(2+2 g_{i}\right)^{2} \\
& \equiv 2+2 g_{i} \\
& =\alpha .
\end{aligned}
$$

Choose now

$$
\beta=(6-2)+(6-2) g_{i} .
$$

then

$$
\begin{aligned}
\beta^{2} & =\left(4+4 g_{i}\right)^{2} \\
& \equiv\left(2+2 g_{i}\right) \\
& =\alpha .
\end{aligned}
$$

And

$$
\begin{aligned}
\alpha \beta & =\left(2+2 g_{i}\right)\left(4+4 g_{i}\right) \\
& =8+8 g_{i}+8 g_{i}+8 \\
& \equiv 4+4 g_{i} \\
& =\beta .
\end{aligned}
$$

So $\alpha=2+2 g_{i}$ is an S-idempotent.
Theorem 2.2. Let $Z_{2 p} L_{n}(m)$ be a loop ring where p is an odd prime such that $p \mid 2^{t_{0}+1}-1$ for some $t_{0} \geq 1$, then $\alpha=2^{t_{0}}+2^{t_{0}} g_{i} \in Z_{2 p} L_{n}(m)$ is an S-idempotent.

Proof. Suppose $p \mid 2^{t_{0}+1}-1$ for some $t_{0} \geq 1$. Take $\alpha=2^{t_{0}}+2^{t_{0}} g_{i} \in Z_{2 p} L_{n}(m)$ and $\beta=\left(2 p-2^{t_{0}}\right)+\left(2 p-2^{t_{0}}\right) g_{i} \in Z_{2 p} L_{n}(m)$.

Clearly

$$
\begin{aligned}
\alpha^{2} & =\left(2^{t_{0}}+2^{t_{0}} g_{i}\right)^{2} \\
& =2 \cdot 2^{2 t_{0}}\left(1+g_{i}\right) \\
& =2^{t_{0}+1} \cdot 2^{t_{0}}\left(1+g_{i}\right) \\
& \equiv 2^{t_{0}}\left(1+g_{i}\right) \\
& =\alpha .
\end{aligned}
$$

As

$$
2^{t_{0}} .2^{t_{0}+1} \equiv 2^{t_{0}}(\bmod 2 p)
$$

Since

$$
\begin{gathered}
2^{t_{0}+1} \equiv 1(\bmod p) \\
\Leftrightarrow 2^{t_{0}} .2^{t_{0}+1} \equiv 2^{t_{0}}(\bmod 2 p) \text { for } \operatorname{gcd}\left(2^{t_{0}}, 2 p\right)=2, \quad t_{0} \geq 1 .
\end{gathered}
$$

Also

$$
\begin{aligned}
\beta^{2} & =\left[\left(2 p-2^{t_{0}}\right)+\left(2 p-2^{t_{0}}\right) g_{i}\right]^{2} \\
& =2\left(2 p-2^{t_{0}}\right)^{2}\left(1+g_{i}\right) \\
& \equiv 2.2^{2 t_{0}}\left(1+g_{i}\right) \\
& =2^{t_{0}+1} \cdot 2^{t_{0}}\left(1+g_{i}\right) \\
& \equiv 2^{t_{0}}\left(1+g_{i}\right) \\
& =\alpha .
\end{aligned}
$$

And

$$
\begin{aligned}
\alpha \beta & =\left[2^{t_{0}}+2^{t_{0}} g_{i}\right]\left[\left(2 p-2^{t_{0}}\right)+\left(2 p-2^{t_{0}}\right) g_{i}\right] \\
& \equiv-2^{t_{0}}\left(1+g_{i}\right) 2^{t_{0}}\left(1+g_{i}\right) \\
& =-2.2^{t_{0}}\left(1+g_{i}\right) \\
& \equiv\left(2 p-2^{t_{0}}\right)\left(1+g_{i}\right) \\
& =\beta
\end{aligned}
$$

So we get

$$
\alpha^{2}=\alpha, \quad \beta^{2}=\alpha \quad \text { and } \quad \alpha \beta=\beta .
$$

Hence $\alpha=2^{t_{0}}+2^{t_{0}} g_{i}$ is an S-idempotent.
Example 2.2. Consider the loop ring $Z_{10} L_{n}(m)$. Here $5 \mid 2^{3+1}-1$, so $t_{0}=3$.
Take

$$
\alpha=2^{3}+2^{3} g_{i} \text { and } \beta=2+2 g_{i} .
$$

Now

$$
\begin{aligned}
\alpha^{2} & =\left(8+8 g_{i}\right)^{2} \\
& =64+128 g_{i}+64 \\
& \equiv 8+8 g_{i} \\
& =\alpha .
\end{aligned}
$$

And

$$
\begin{aligned}
\beta^{2} & =\left(2+2 g_{i}\right)^{2} \\
& =4+8 g_{i}+4 \\
& \equiv 8+8 g_{i} \\
& =\alpha .
\end{aligned}
$$

Also

$$
\begin{aligned}
\alpha \beta & =\left(8+8 g_{i}\right)\left(2+2 g_{i}\right) \\
& =16+16 g_{i}+16 g_{i}+16 \\
& \equiv 2+2 g_{i} \\
& =\beta .
\end{aligned}
$$

So $\alpha=8+8 g_{i}$ is an S-idempotent.
Theorem 2.3. Let $Z_{2^{i} p} L_{n}(m)$ be a loop ring where p is an odd prime such that $p \mid 2^{t_{0}+1}-1$ for some $t_{0} \geq i$, then $\alpha=2^{t_{0}}+2^{t_{0}} g_{i} \in Z_{2^{i} p} L_{n}(m)$ is an S-idempotent.

Proof. Note that $p \mid 2^{t_{0}+1}-1$ for some $t_{0} \geq i$.
Therefore

$$
\begin{gathered}
2^{t_{0}+1} \equiv 1(\bmod p) \text { for some } t_{0} \geq i \\
\Leftrightarrow 2^{t_{0}} \cdot 2^{t_{0}+1} \equiv 2^{t_{0}}\left(\bmod 2^{i} p\right) \text { as } \operatorname{gcd}\left(2^{t_{0}}, 2^{i} p\right)=2^{i}, \quad t_{0} \geq 1 .
\end{gathered}
$$

Now take

$$
\alpha=2^{t_{0}}+2^{t_{0}} g_{i} \in Z_{2^{i} p} L_{n}(m) \text { and } \beta=\left(2^{i} p-2^{t_{0}}\right)+\left(2^{i} p-2^{t_{0}}\right) g_{i} \in Z_{2^{i} p} L_{n}(m) .
$$

Then it is easy to see that

$$
\alpha^{2}=\alpha, \quad \beta^{2}=\alpha \quad \text { and } \quad \alpha \beta=\beta
$$

Hence $\alpha=2^{t_{0}}+2^{t_{0}} g_{i}$ is an S-idempotent.
Example 2.3. Take the loop ring $Z_{2^{3} .7} L_{n}(m)$. Here $7 \mid 2^{5+1}-1$, so $t_{0}=5$.
Take

$$
\alpha=2^{5}+2^{5} g_{i} \text { and } \beta=\left(2^{3} .7-2^{5}\right)+\left(2^{3} .7-2^{5}\right) g_{i} .
$$

Now

$$
\begin{aligned}
\alpha^{2} & =\left(32+32 g_{i}\right)^{2} \\
& =1024+2048 g_{i}+1024 \\
& \equiv 32+32 g_{i} \\
& =\alpha .
\end{aligned}
$$

And

$$
\begin{aligned}
\beta^{2} & =\left(24+24 g_{i}\right)^{2} \\
& =576+1152 g_{i}+576 \\
& \equiv 24+24 g_{i} \\
& =\alpha .
\end{aligned}
$$

Also

$$
\begin{aligned}
\alpha \beta & =\left(32+32 g_{i}\right)\left(24+24 g_{i}\right) \\
& \equiv 24+24 g_{i} \\
& =\beta .
\end{aligned}
$$

So $\alpha=32+32 g_{i}$ is an S-idempotent.
Theorem 2.4. Let $Z_{3^{i} p} L_{n}(m)$ be a loop ring where p is an odd prime such that $p \mid 2.3^{t_{0}}-1$ for some $t_{0} \geq i$, then $\alpha=3^{t_{0}}+3^{t_{0}} g_{i} \in Z_{3^{i} p} L_{n}(m)$ is an S-idempotent.

Proof. Suppose $p \mid 2.3^{t_{0}}-1$ for some $t_{0} \geq i$.
Take

$$
\alpha=3^{t_{0}}+3^{t_{0}} g_{i} \in Z_{3^{i} p} L_{n}(m) \text { and } \beta=\left(3^{i} p-3^{t_{0}}\right)+\left(3^{i} p-3^{t_{0}}\right) g_{i} \in Z_{3^{i} p} L_{n}(m) .
$$

Then

$$
\begin{aligned}
\alpha^{2} & =\left(3^{t_{0}}+3^{t_{0}} g_{i}\right)^{2} \\
& =2.3^{2 t_{0}}\left(1+g_{i}\right) \\
& =2.3^{t_{0}} 3^{t_{0}}\left(1+g_{i}\right) \\
& \equiv 3^{t_{0}}\left(1+g_{i}\right) \\
& =\alpha .
\end{aligned}
$$

As

$$
\begin{gathered}
2.3^{t_{0}} \equiv 1(\bmod p) \text { for some } t_{0} \geq i \\
\Leftrightarrow 2.3^{t_{0}} .3^{t_{0}} \equiv 3^{t_{0}}\left(\bmod 3^{i} p\right) \text { as } \operatorname{gcd}\left(3^{t_{0}}, 3^{i} p\right)=3^{i}, \quad t_{0} \geq 1 .
\end{gathered}
$$

Similarly

$$
\beta^{2}=\alpha \quad \text { and } \quad \alpha \beta=\beta .
$$

So $\alpha=3^{t_{0}}+3^{t_{0}} g_{i}$ is an S-idempotent.

Example 2.4. Take the loop ring $Z_{3^{2} .5} L_{n}(m)$. Here $5 \mid 2.3^{5}-1$, so $t_{0}=5$.
Take

$$
\alpha=3^{5}+3^{5} g_{i} \text { and } \beta=\left(3^{2} .5-3^{5}\right)+\left(3^{2} .5-3^{5}\right) g_{i} .
$$

Now

$$
\begin{aligned}
\alpha^{2} & =\left(18+18 g_{i}\right)^{2} \\
& \equiv 18+18 g_{i} \\
& =\alpha .
\end{aligned}
$$

And

$$
\begin{aligned}
\beta^{2} & =\left(27+27 g_{i}\right)^{2} \\
& \equiv 18+18 g_{i} \\
& =\alpha .
\end{aligned}
$$

Also

$$
\alpha \beta=\beta .
$$

So $\alpha=3^{5}+3^{5} g_{i}$ is an S-idempotent.
We can generalize Theorem 2.3 and Theorem 2.4 as following:
Theorem 2.5. Let $Z_{p_{1}^{i} p_{2}} L_{n}(m)$ be a loop ring where p_{1} and p_{2} are distinct odd primes and $p_{2} \mid 2 . p_{1}^{t_{0}}-1$ for some $t_{0} \geq i$, then $\alpha=p_{1}^{t_{0}}+p_{1}^{t_{0}} g_{i} \in Z_{p_{1}^{i} p_{2}} L_{n}(m)$ is an S-idempotent.

Proof. Suppose $p_{2} \mid 2 . p_{1}^{t_{0}}-1$ for some $t_{0} \geq i$.
Take

$$
\alpha=p_{1}^{t_{0}}+p_{1}^{t_{0}} g_{i} \in Z_{p_{1}^{i} p_{2}} L_{n}(m) \text { and } \beta=\left(p_{1}^{i} p_{2}-p_{1}^{t_{0}}\right)+\left(p_{1}^{i} p_{2}-p_{1}^{t_{0}}\right) g_{i} \in Z_{p_{1}^{i} p_{2}} L_{n}(m) .
$$

Then

$$
\begin{aligned}
\alpha^{2} & =\left(p_{1}^{t_{0}}+p_{1}^{t_{0}} g_{i}\right)^{2} \\
& =2 . p_{1}^{2 t_{0}}\left(1+g_{i}\right) \\
& =2 . p_{1}^{t_{0}} p_{1}^{t_{0}}\left(1+g_{i}\right) \\
& \equiv p_{1}^{t_{0}}\left(1+g_{i}\right) \\
& =\alpha .
\end{aligned}
$$

As

$$
\begin{gathered}
2 . p_{1}^{t_{0}} \equiv 1\left(\bmod p_{2}\right) \text { for some } t_{0} \geq i \\
\Leftrightarrow 2 . p_{1}^{t_{0}} . p_{1}^{t_{0}} \equiv p_{1}^{t_{0}}\left(\bmod p_{1}^{i} p_{2}\right) \text { as } \operatorname{gcd}\left(p_{1}^{t_{0}}, p_{1}^{i} p_{2}\right)=p_{1}^{i}, \quad t_{0} \geq i .
\end{gathered}
$$

Similarly

$$
\beta^{2}=\alpha \quad \text { and } \quad \alpha \beta=\beta .
$$

So $\alpha=p_{1}^{t_{0}}+p_{1}^{t_{0}} g_{i}$ is an S-idempotent.

§3. Conclusion

We see in all the 5 cases described in the Theorem 2.1 to 2.5 we are able to establish the existence of one non-trivial S-idempotent. however we are not able to prove the uniqueness of this S-idempotent. Hence we suggest the following problems:

- Does the loop rings described in the Theorems 2.1 to 2.5 can have more than one Sidempotent?
- Does the loop rings $Z_{t} L_{n}(m)$ have S-idempotent when t is of the form $t=p_{1} p_{2} \ldots p_{s}$ where $p_{1} p_{2} \ldots p_{s}$ are distinct odd primes?

References

[1] Bruck R.H, A survey of binary system, Spring Verlag, 1958.
[2] Burton David, Elementary Number Theory, Universal Book Stall. New Delhi, 1998.
[3] Singh S.V., On a new class of loops and loop rings. PhD thesis, IIT Madras, 1994.
[4] Vasantha Kandasamy, W.B. Smarandache Rings. American Reseach Press, Rehoboth, 2002.

