Smarandache Idempotents in Loop Rings $Z_t L_n(m)$ of the Loops $L_n(m)$

W.B.Vasantha and Moon K. Chetry

Department of Mathematics, I.I.T.Madras, Chennai

Abstract In this paper we establish the existence of S-idempotents in case of loop rings $Z_t L_n(m)$ for a special class of loops $L_n(m)$; over the ring of modulo integers Z_t for a specific value of t. These loops satisfy the conditions g_i^2 for every $g_i \in L_n(m)$. We prove $Z_t L_n(m)$ has an S-idempotent when tis a perfect number or when t is of the form $2^i p$ or $3^i p$ (where p is an odd prime) or in general when $t = p_1^i p_2(p_1 \text{ and } p_2 \text{ are distinct odd primes})$, It is important to note that we are able to prove only the existence of a single S-idempotent; however we leave it as an open problem whether such loop rings have more than one S-idempotent.

§1. Basic Results

This paper has three sections. In section one, we give the basic notions about the loops $L_n(m)$ and recall the definition of S-idempotents in rings. In section two, we establish the existence of S-idempotents in the loop ring $Z_t L_n(m)$. In the final section, we suggest some interesting problems based on our study.

Here we just give the basic notions about the loops $L_n(m)$ and the definition of Sidempotents in rings.

Definition 1.1 [4]. Let R be a ring. An element $x \in R \setminus \{0\}$ is said to be a Smarandache idempotents (S-idempotent) of R if $x^2 = x$ and there exist $a \in R \setminus \{x, 0\}$ such that

i.
$$a^2 = x$$

ii. $xa = x$ or $ax = a$.

For more about S-idempotent please refer [4].

Definition 1.2 [2]. A positive integer n is said to be a perfect number if n is equal to the sum of all its positive divisors, excluding n itself. e.g. 6 is a perfect number. As 6 = 1 + 2 + 3.

Definition 1.3 [1]. A non-empty set L is said to form a loop, if in L is defined a binary operation, called product and denoted by '.' such that

1. For $a, b \in L$ we have $a.b \in L$. (closure property.)

2. There exists an element $e \in L$ such that $a \cdot e = e \cdot a = a$ for all $a \in L$. (e is called the identity element of L.)

3. For every ordered pair $(a, b) \in L \times L$ there exists a unique pair $(x, y) \in L \times L$ such that ax = b and ya = b.

Definition 1.4 [3]. Let $L_n(m) = \{e, 1, 2, 3, \dots, n\}$ be a set where n > 3, n is odd and m is a positive integer such that (m, n) = 1 and (m - 1, n) = 1 with m < n. Define on $L_n(m)$, a binary operation '.' as following:

$$i. \quad e.i = i.e = i \text{ for all } i \in L_n(m) \setminus \{e\}$$

$$ii. \quad i^2. = e \text{ for all } i \in L_n(m)$$

$$iii. \quad i.j = t, \text{ where } t \equiv (mj - (m-1)i)(\text{mod}n) \text{ for all } i, j \in L_n(m),$$

$$i \neq e \text{ and } j \neq e.$$

Then $L_n(m)$ is a loop. This loop is always of even order; further for varying m, we get a class of loops of order n + 1 which we denote by

$$L_n = \{L_n(m) | n > 3, n \text{ is odd and } (m, n) = 1, (m - 1, n) = 1 \text{ with } m < n\}.$$

Example 1.1 [3]. Consider $L_5(2) = \{e, 1, 2, 3, 4, 5\}$. The composition table for $L_5(2)$ is given below:

•	е	1	2	3	4	5
е	е	1	2	3	4	5
1	1	e	3	5	2	4
2	2	5	е	4	1	3
3	3	4	1	е	5	2
4	4	3	5	2	е	1
5	5	2	4	3 5 4 e 2 1	3	e

This loop is non-commutative and non-associative and of order 6.

§2. Existence of S-idempotents in the Loop Rings $Z_t L_n(m)$

In this section we will prove the existence of an S-idempotent in the loop ring $Z_t L_n(m)$ when t is an even perfect number. Also we will prove that the loop ring $Z_t L_n(m)$ has an S-idempotent when t is of the form $2^i p$ or $3^i p$ (where p is an odd prime) or in general when $t = p_1^i p_2$ (p_1 and p_2 are distinct odd primes).

Theorem 2.1. Let $Z_t L_n(m)$ be a loop ring, where t is an even perfect number of the form $t = 2^s (2^{s+1} - 1)$ for some s > 1, then $\alpha = 2^s + 2^s g_i \in Z_t L_n(m)$ is an S-idempotent.

Proof. As t is an even perfect number, t must be of the form

$$t = 2^{s}(2^{s+1} - 1),$$
 for some $s > 1$

where $2^{s+1} - 1$ is a prime.

Consider

$$\alpha = 2^s + 2^s g_i \in Z_t L_n(m).$$

Choose

$$\beta = (t - 2^s) + (t - 2^s)g_i \in Z_t L_n(m).$$

Clearly

$$\begin{aligned} \alpha^2 &= (2^s + 2^s g_i)^2 \\ &= 2.2^{2s} (1 + g_i) \\ &\equiv 2^s (1 + g_i) \quad [2^s . 2^{s+1} \equiv 2^s (\text{mod } t)] \\ &= \alpha. \end{aligned}$$

 $\beta^2 = ((t-2^s) + (t-2^s)g_i)^2$ $= 2(t-2^s)^2(1+g_i)$

 $\equiv 2^s(1+g_i)$

 $= \alpha$.

Now

Also

$$\begin{aligned} \alpha\beta &= [2^s + 2^s g_i][(t - 2^s) + (t - 2^s)g_i] \\ &= 2^s(1 + g_i)(t - 2^s)(1 + g_i) \\ &\equiv -2.2^s.2^s(1 + g_i) \\ &\equiv (t - 2^s)(1 + g_i) \\ &= \beta. \end{aligned}$$

So we get

 $\alpha^2 = \alpha, \ \beta^2 = \alpha \quad \text{and} \ \alpha\beta = \beta.$

Therefore $\alpha = 2^s + 2^s g_i$ is an S-idempotent.

Example 2.1. Take the loop ring $Z_6L_n(m)$. Here 6 is an even perfect number. As $6 = 2.(2^s - 1)$, so $\alpha = 2 + 2g_i$ is an S-idempotent. For

$$\alpha^2 = (2+2g_i)^2$$
$$\equiv 2+2g_i$$
$$= \alpha.$$

Choose now

$$\beta = (6-2) + (6-2)g_i.$$

then

$$\beta^2 = (4 + 4g_i)^2$$
$$\equiv (2 + 2g_i)$$
$$= \alpha.$$

And

$$\alpha\beta = (2+2g_i)(4+4g_i)$$
$$= 8+8g_i+8g_i+8$$
$$\equiv 4+4g_i$$
$$= \beta.$$

So $\alpha = 2 + 2g_i$ is an S-idempotent.

Theorem 2.2. Let $Z_{2p}L_n(m)$ be a loop ring where p is an odd prime such that $p \mid 2^{t_0+1}-1$ for some $t_0 \geq 1$, then $\alpha = 2^{t_0} + 2^{t_0}g_i \in Z_{2p}L_n(m)$ is an S-idempotent.

Proof. Suppose $p \mid 2^{t_0+1} - 1$ for some $t_0 \geq 1$. Take $\alpha = 2^{t_0} + 2^{t_0}g_i \in Z_{2p}L_n(m)$ and $\beta = (2p - 2^{t_0}) + (2p - 2^{t_0})g_i \in Z_{2p}L_n(m)$.

Clearly

$$\begin{aligned} \alpha^2 &= (2^{t_0} + 2^{t_0} g_i)^2 \\ &= 2.2^{2t_0} (1 + g_i) \\ &= 2^{t_0 + 1} . 2^{t_0} (1 + g_i) \\ &\equiv 2^{t_0} (1 + g_i) \\ &= \alpha. \end{aligned}$$

 \mathbf{As}

$$2^{t_0} \cdot 2^{t_0+1} \equiv 2^{t_0} \pmod{2p}$$

Since

$$2^{t_0+1} \equiv 1 \pmod{p}$$

 $\Leftrightarrow 2^{t_0} \cdot 2^{t_0+1} \equiv 2^{t_0} (mod \ 2p) \ \text{ for } \ gcd(2^{t_0}, 2p) = 2, \ t_0 \geq 1.$

Also

$$\beta^{2} = [(2p - 2^{t_{0}}) + (2p - 2^{t_{0}})g_{i}]^{2}$$

$$= 2(2p - 2^{t_{0}})^{2}(1 + g_{i})$$

$$\equiv 2 \cdot 2^{2t_{0}}(1 + g_{i})$$

$$= 2^{t_{0}+1} \cdot 2^{t_{0}}(1 + g_{i})$$

$$\equiv 2^{t_{0}}(1 + g_{i})$$

$$\equiv \alpha.$$

And

$$\begin{aligned} \alpha\beta &= [2^{t_0} + 2^{t_0}g_i][(2p - 2^{t_0}) + (2p - 2^{t_0})g_i] \\ &\equiv -2^{t_0}(1 + g_i)2^{t_0}(1 + g_i) \\ &= -2.2^{t_0}(1 + g_i) \\ &\equiv (2p - 2^{t_0})(1 + g_i) \\ &= \beta. \end{aligned}$$

So we get

 $\alpha^2 = \alpha, \ \beta^2 = \alpha \text{ and } \alpha\beta = \beta.$

Hence $\alpha = 2^{t_0} + 2^{t_0}g_i$ is an S-idempotent.

Example 2.2. Consider the loop ring $Z_{10}L_n(m)$. Here $5 \mid 2^{3+1} - 1$, so $t_0 = 3$. Take

$$\alpha = 2^3 + 2^3 q_i$$
 and $\beta = 2 + 2 q_i$

Now

$$\alpha^2 = (8 + 8g_i)^2$$
$$= 64 + 128g_i + 64$$
$$\equiv 8 + 8g_i$$
$$= \alpha.$$

And

$$\beta^2 = (2 + 2g_i)^2$$
$$= 4 + 8g_i + 4$$
$$\equiv 8 + 8g_i$$
$$= \alpha.$$

Also

$$\begin{aligned} \alpha\beta &= (8+8g_i)(2+2g_i) \\ &= 16+16g_i+16g_i+16 \\ &\equiv 2+2g_i \\ &= \beta. \end{aligned}$$

So $\alpha = 8 + 8g_i$ is an S-idempotent.

Theorem 2.3. Let $Z_{2^{i}p}L_{n}(m)$ be a loop ring where p is an odd prime such that $p \mid 2^{t_{0}+1}-1$ for some $t_0 \ge i$, then $\alpha = 2^{t_0} + 2^{t_0}g_i \in Z_{2^ip}L_n(m)$ is an S-idempotent.

Proof. Note that $p \mid 2^{t_0+1} - 1$ for some $t_0 \ge i$. Therefore

$$2^{t_0+1} \equiv 1 \pmod{p}$$
 for some $t_0 \ge i$
 $\Leftrightarrow 2^{t_0} \cdot 2^{t_0+1} \equiv 2^{t_0} \pmod{2^i p}$ as $gcd(2^{t_0}, 2^i p) = 2^i, t_0 \ge 1$

Now take

$$\alpha = 2^{t_0} + 2^{t_0} g_i \in Z_{2^i p} L_n(m) \text{ and } \beta = (2^i p - 2^{t_0}) + (2^i p - 2^{t_0}) g_i \in Z_{2^i p} L_n(m).$$

Then it is easy to see that

$$\alpha^2 = \alpha, \ \beta^2 = \alpha \quad \text{and} \ \alpha\beta = \beta.$$

Hence $\alpha = 2^{t_0} + 2^{t_0}g_i$ is an S-idempotent.

Example 2.3. Take the loop ring $Z_{2^3,7}L_n(m)$. Here $7 \mid 2^{5+1} - 1$, so $t_0 = 5$. Take

$$\alpha = 2^5 + 2^5 g_i$$
 and $\beta = (2^3 \cdot 7 - 2^5) + (2^3 \cdot 7 - 2^5) g_i$.

Now

$$\alpha^{2} = (32 + 32g_{i})^{2}$$

= 1024 + 2048g_{i} + 1024
$$\equiv 32 + 32g_{i}$$

= α .

And

$$\beta^{2} = (24 + 24g_{i})^{2}$$

= 576 + 1152g_{i} + 576
= 24 + 24g_{i}
= α .

Also

$$\alpha\beta = (32+32g_i)(24+24g_i)$$
$$\equiv 24+24g_i$$
$$= \beta.$$

So $\alpha = 32 + 32g_i$ is an S-idempotent.

Theorem 2.4. Let $Z_{3^i p} L_n(m)$ be a loop ring where p is an odd prime such that $p \mid 2.3^{t_0} - 1$ for some $t_0 \geq i$, then $\alpha = 3^{t_0} + 3^{t_0} g_i \in Z_{3^i p} L_n(m)$ is an S-idempotent.

Proof. Suppose $p \mid 2.3^{t_0} - 1$ for some $t_0 \ge i$.

Take

$$\alpha = 3^{t_0} + 3^{t_0}g_i \in Z_{3^i p}L_n(m)$$
 and $\beta = (3^i p - 3^{t_0}) + (3^i p - 3^{t_0})g_i \in Z_{3^i p}L_n(m)$.

Then

$$\alpha^{2} = (3^{t_{0}} + 3^{t_{0}}g_{i})^{2}$$

$$= 2 \cdot 3^{2t_{0}}(1 + g_{i})$$

$$= 2 \cdot 3^{t_{0}}3^{t_{0}}(1 + g_{i})$$

$$\equiv 3^{t_{0}}(1 + g_{i})$$

$$= \alpha$$

As

$$2.3^{t_0} \equiv 1 \pmod{p}$$
 for some $t_0 \ge i$
 $\Leftrightarrow 2.3^{t_0}.3^{t_0} \equiv 3^{t_0} \pmod{3^i p}$ as $gcd(3^{t_0}, 3^i p) = 3^i, t_0 \ge 1.$

Similarly

 $\beta^2 = \alpha$ and $\alpha\beta = \beta$.

So $\alpha = 3^{t_0} + 3^{t_0}g_i$ is an S-idempotent.

Example 2.4. Take the loop ring $Z_{3^2,5}L_n(m)$. Here $5 \mid 2.3^5 - 1$, so $t_0 = 5$. Take _

$$\alpha = 3^5 + 3^5 g_i$$
 and $\beta = (3^2.5 - 3^5) + (3^2.5 - 3^5) g_i$.

Now

$$\alpha^2 = (18 + 18g_i)^2$$
$$\equiv 18 + 18g_i$$
$$= \alpha.$$

And

$$\begin{aligned} \beta^2 &= (27 + 27g_i)^2 \\ &\equiv 18 + 18g_i \\ &= \alpha. \end{aligned}$$

Also

$$\alpha\beta = \beta.$$

So $\alpha = 3^5 + 3^5 g_i$ is an S-idempotent.

We can generalize Theorem 2.3 and Theorem 2.4 as following:

Theorem 2.5. Let $Z_{p_1^i p_2} L_n(m)$ be a loop ring where p_1 and p_2 are distinct odd primes and $p_2 \mid 2.p_1^{t_0} - 1$ for some $t_0 \geq i$, then $\alpha = p_1^{t_0} + p_1^{t_0}g_i \in Z_{p_1^i p_2}L_n(m)$ is an S-idempotent.

Proof. Suppose $p_2 \mid 2.p_1^{t_0} - 1$ for some $t_0 \geq i$.

Take

$$\alpha = p_1^{t_0} + p_1^{t_0} g_i \in Z_{p_1^i p_2} L_n(m) \text{ and } \beta = (p_1^i p_2 - p_1^{t_0}) + (p_1^i p_2 - p_1^{t_0}) g_i \in Z_{p_1^i p_2} L_n(m)$$

Then

$$\begin{aligned} \alpha^2 &= (p_1^{t_0} + p_1^{t_0} g_i)^2 \\ &= 2.p_1^{2t_0} (1 + g_i) \\ &= 2.p_1^{t_0} p_1^{t_0} (1 + g_i) \\ &\equiv p_1^{t_0} (1 + g_i) \\ &= \alpha. \end{aligned}$$

As

$$2.p_1^{t_0} \equiv 1 \pmod{p_2}$$
 for some $t_0 \ge i$

 $\Leftrightarrow 2.p_1^{t_0}.p_1^{t_0} \equiv p_1^{t_0}(mod \ p_1^ip_2) \ \text{ as } \ gcd(p_1^{t_0},p_1^ip_2) = p_1^i, \ t_0 \geq i.$

Similarly

 $\beta^2 = \alpha$ and $\alpha\beta = \beta$.

So $\alpha = p_1^{t_0} + p_1^{t_0} g_i$ is an S-idempotent.

§3. Conclusion

We see in all the 5 cases described in the Theorem 2.1 to 2.5 we are able to establish the existence of one non-trivial S-idempotent. however we are not able to prove the uniqueness of this S-idempotent. Hence we suggest the following problems:

• Does the loop rings described in the Theorems 2.1 to 2.5 can have more than one S-idempotent?

• Does the loop rings $Z_t L_n(m)$ have S-idempotent when t is of the form $t = p_1 p_2 \dots p_s$ where $p_1 p_2 \dots p_s$ are distinct odd primes?

References

[1] Bruck R.H, A survey of binary system, Spring Verlag, 1958.

[2] Burton David, Elementary Number Theory, Universal Book Stall. New Delhi, 1998.

[3] Singh S.V., On a new class of loops and loop rings. PhD thesis, IIT Madras, 1994.

[4] Vasantha Kandasamy, W.B. Smarandache Rings. American Reseach Press, Rehoboth, 2002.