Scientia Magna

Vol. 3 (2007), No. 3, 26-29

An identity involving the function $e_{p}(n)$

Xiaowei Pan and Pei Zhang
Department of Mathematics, Northwest University
Xi'an, Shaanxi, P.R.China

Abstract

The main purpose of this paper is to study the relationship between the Riemann zeta-function and an infinite series involving the Smarandache function $e_{p}(n)$ by using the elementary method, and give an interesting identity.

Keywords Riemann zeta-function, infinite series, identity.

§1. Introduction and Results

Let p be any fixed prime, n be any positive integer, $e_{p}(n)$ denotes the largest exponent of power p in n. That is, $e_{p}(n)=m$, if $p^{m} \mid n$ and $p^{m+1} \nmid n$. In problem 68 of [1], Professor F.Smarandache asked us to study the properties of the sequence $\left\{e_{p}(n)\right\}$. About the elementary properties of this function, many scholars have studied it (see reference [2]-[7]), and got some useful results. For examples, Liu Yanni [2] studied the mean value properties of $e_{p}\left(b_{k}(n)\right)$, where $b_{k}(n)$ denotes the k-th free part of n, and obtained an interesting mean value formula for it. That is, let p be a prime, k be any fixed positive integer, then for any real number $x \geq 1$, we have the asymptotic formula

$$
\sum_{n \leq x} e_{p}\left(b_{k}(n)\right)=\left(\frac{p^{k}-p}{\left(p^{k}-p\right)(p-1)}-\frac{k-1}{p^{k}-1}\right) x+O\left(x^{\frac{1}{2}+\epsilon}\right)
$$

where ϵ denotes any fixed positive number.
Wang Xiaoying [3] studied the mean value properties of $\sum_{n \leq x}\left((n+1)^{m}-n^{m}\right) e_{p}(n)$, and proved the following conclusion:

Let p be a prime, $m \geq 1$ be any integer, then for any real number $x>1$, we have the asymptotic formula

$$
\sum_{n \leq x}\left((n+1)^{m}-n^{m}\right) e_{p}(n)=\frac{1}{p-1} \frac{m}{m+1} x+O\left(x^{1-\frac{1}{m}}\right)
$$

Gao Nan [4] and [5] also studied the mean value properties of the sequences $p^{e_{q}(n)}$ and $p^{e_{q}(b(n))}$, got two interesting asymptotic formulas:

$$
\sum_{n \leq x} p^{e_{q}(n)}= \begin{cases}\frac{q-1}{q-p} x+O\left(x^{\frac{1}{2}+\epsilon}\right), & \text { if } q>p \\ \frac{p-1}{p \ln p} x \ln x+\left(\frac{p-1}{p \ln p}(\gamma-1)+\frac{p+1}{2 p}\right) x+O\left(x^{\frac{1}{2}+\epsilon}\right), & \text { if } q=p\end{cases}
$$

and

$$
\sum_{n \leq x} p^{e_{q}(b(n))}=\frac{q^{2}+p^{2} q+p}{q^{2}+q+1} x+O\left(x^{\frac{1}{2}+\epsilon}\right)
$$

where ϵ is any fixed positive number, γ is the Euler constant.
Lv Chuan [6] used elementary and analytic methods to study the asymptotic properties of $\sum_{n \leq x} e_{p}(n) \varphi(n)$ and obtain an interesting asymptotic formula:

$$
\sum_{n \leq x} e_{p}(n) \varphi(n)=\frac{3 p}{(p+1) \pi^{2}} x^{2}+O\left(x^{\frac{3}{2}+\epsilon}\right)
$$

Ren Ganglian [7] studied the properties of the sequence $e_{p}(n)$ and give some sharper asymptotic formulas for the mean value $\sum_{n \leq x} e_{p}^{k}(n)$.

Especially in [8], Xu Zhefeng studied the elementary properties of the primitive numbers of power p, and got an useful result. That is, for any prime p and complex number s, we have the identity:

$$
\sum_{n=1}^{\infty} \frac{1}{S_{p}^{s}(n)}=\frac{\zeta(s)}{p^{s}-1}
$$

In this paper, we shall use the elementary methods to study the relationship between the Riemann zeta-function and an infinite series involving $e_{p}(n)$, and obtain an interesting identity. That is, we shall prove the following conclusion:

Theorem. For any prime p and complex number s with $\operatorname{Re}(s)>1$, we have the identity

$$
\sum_{n=1}^{\infty} \frac{e_{p}(n)}{n^{s}}=\sum_{n=1}^{\infty} \frac{1}{S_{p}^{s}(n)}=\frac{\zeta(s)}{p^{s}-1}
$$

where $\zeta(s)$ is the Riemann zeta-function.
From this theorem, we can see that $\sum_{n=1}^{\infty} \frac{e_{p}(n)}{n^{s}}$ and $\sum_{n=1}^{\infty} \frac{1}{S_{p}^{s}(n)}$ denote the same Dirichlet series. Of course, we can also obtain some relationship between $\sum_{n=1}^{\infty} \frac{e_{p}(n)}{n^{s}}$ and $\sum_{n=1}^{\infty} \frac{1}{S_{p}^{s}(n)}$, that is, we have the following conclusion:

Corollary. For any prime p, we have

$$
e_{p}(m)=\sum_{\substack{n \in N \\ S_{P}(n)=m}} 1
$$

§2. Proof of the theorem

In this section, we shall use elementary methods to complete the proof of the theorem.

Let $m=e_{p}(n)$, if $p^{m} \| n$, then we can write $n=p^{m} n_{1}$, where $\left(n_{1}, p\right)=1$. Noting that, $e_{p}(n)$ is the largest exponent of power p, so we have

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{e_{p}(n)}{n^{s}}=\sum_{m=1}^{\infty} \sum_{\substack{n_{1}=1 \\\left(n_{1}, p\right)=1}}^{\infty} \frac{m}{\left(p^{m} n_{1}\right)^{s}}=\sum_{m=1}^{\infty} \frac{m}{p^{m s}} \sum_{\substack{n_{1}=1 \\ p \nmid n_{1}}}^{\infty} \frac{1}{n_{1}^{s}}=\sum_{m=1}^{\infty} \frac{m}{p^{m s}}\left(\sum_{n_{1}=1}^{\infty} \frac{1}{n_{1}^{s}}-\sum_{\substack{n_{1}=1 \\ p \mid n_{1}}}^{\infty} \frac{1}{n_{1}^{s}}\right) \tag{1}
\end{equation*}
$$

let $n_{1}=p n_{2}$, then

$$
\begin{aligned}
\sum_{m=1}^{\infty} \frac{m}{p^{m s}}\left(\sum_{n_{1}=1}^{\infty} \frac{1}{n_{1}^{s}}-\sum_{\substack{n_{1}=1 \\
p \mid n_{1}}}^{\infty} \frac{1}{n_{1}^{s}}\right) & =\sum_{m=1}^{\infty} \frac{m}{p^{m s}}\left(\zeta(s)-\sum_{n_{2}=1}^{\infty} \frac{1}{p^{s} n_{2}^{s}}\right) \\
& =\sum_{m=1}^{\infty} \frac{m}{p^{m s}}\left(\zeta(s)-\zeta(s) \frac{1}{p^{s}}\right) \\
& =\zeta(s)\left(1-\frac{1}{p^{s}}\right) \sum_{m=1}^{\infty} \frac{m}{p^{m s}}
\end{aligned}
$$

Since

$$
\begin{aligned}
& \sum_{m=1}^{\infty} \frac{m}{p^{m s}}=\frac{1}{p^{s}}+\sum_{m=1}^{\infty} \frac{m+1}{p^{(m+1) s}}, \\
& \frac{1}{p^{s}} \cdot \sum_{m=1}^{\infty} \frac{m}{p^{m s}}=\sum_{m=1}^{\infty} \frac{m}{p^{(m+1) s}},
\end{aligned}
$$

then

$$
\begin{aligned}
\sum_{m=1}^{\infty} \frac{m}{p^{m s}}-\frac{1}{p^{s}} \cdot \sum_{m=1}^{\infty} \frac{m}{p^{m s}} & =\frac{1}{p^{s}}+\sum_{m=1}^{\infty} \frac{m+1}{p^{(m+1) s}}-\sum_{m=1}^{\infty} \frac{m}{p^{(m+1) s}} \\
& =\frac{1}{p^{s}}+\sum_{m=1}^{\infty} \frac{1}{p^{(m+1) s}}=\sum_{m=1}^{\infty} \frac{1}{p^{m s}}
\end{aligned}
$$

That is,

$$
\left(1-\frac{1}{p^{s}}\right) \sum_{m=1}^{\infty} \frac{m}{p^{m s}}=\sum_{m=1}^{\infty} \frac{1}{p^{m s}}=\frac{1}{p^{s}} \frac{1}{1-\frac{1}{p^{s}}},
$$

so

$$
\begin{equation*}
\sum_{m=1}^{\infty} \frac{m}{p^{m s}}=\frac{1}{p^{s}\left(1-\frac{1}{p^{s}}\right)^{2}} \tag{2}
\end{equation*}
$$

Now, combining (1) and (2), we have the following identity

$$
\begin{aligned}
\sum_{n=1}^{\infty} \frac{e_{p}(n)}{n^{s}} & =\sum_{m=1}^{\infty} \frac{m}{p^{m s}}\left(\sum_{n_{1}=1}^{\infty} \frac{1}{n_{1}^{s}}-\sum_{\substack{n_{1}=1 \\
p \mid n_{1}}}^{\infty} \frac{1}{n_{1}^{s}}\right) \\
& =\zeta(s)\left(1-\frac{1}{p^{s}}\right) \sum_{m=1}^{\infty} \frac{m}{p^{m s}} \\
& =\zeta(s)\left(1-\frac{1}{p^{s}}\right) \frac{1}{p^{s}\left(1-\frac{1}{p^{s}}\right)^{2}}=\frac{\zeta(s)}{p^{s}-1}
\end{aligned}
$$

This completes the proof of Theorem.
Then, noting the definition and properties of $S_{p}(n)$, we have

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{1}{S_{p}^{s}(n)}=\sum_{m=1}^{\infty} \frac{1}{(p m)^{s}} \sum_{\substack{n \in N \\ S_{P}(n)=m p}} 1 \tag{3}
\end{equation*}
$$

and we also have

$$
\sum_{n=1}^{\infty} \frac{e_{p}(n)}{n^{s}}=\sum_{m=1}^{\infty} \frac{e_{p}(m p)}{(m p)^{s}}
$$

therefore, from the definition of $e_{p}(n)$, we can easily get

$$
\begin{equation*}
\sum_{m=1}^{\infty} \frac{e_{p}(m p)}{(m p)^{s}}=\sum_{m=1}^{\infty} \frac{1}{(p m)^{s}} \sum_{\substack{n \in N \\ S_{P}(n)=m p}} 1 . \tag{4}
\end{equation*}
$$

Combining (3) and (4), it is clear that

$$
e_{p}(m)=\sum_{\substack{n \in N \\ S_{P}(n)=m}} 1
$$

This completes the proof of Corollary.

References

[1] F.Smarandache, Only Problems, not solutions, Chicago, Xiquan Publ. House, 1993.
[2] Liu Yanni and Gao Peng, Mean value of a new arithmetic function, Scientia Magna, 1(2005), No. 1, 187-189.
[3] Wang Xiaoying, On the mean value of an arithmetical function, Hexis, 2004, 77-79.
[4] Gao Nan, A number theoretic function and its mean value, Hexis, 2004, 49-52.
[5] Gao Nan, A Hybrid number theoretic function and its mean value, Hexis, 2004, 107-109.
[6] Lv Chuan, On the mean value of an arithmetical function, Hexis, 2004, 89-92.
[7] Ren Ganglian, A number theoretic function and its mean value, Scientia Magna, 1(2005), No. 1, 163-166.
[8] Tom M. Apostol, Introduction to Analytic Number Theory, New York, Springer-Verlag, 1976.

